

Prof. Dr. Martin Petrick
Institute for Agricultural Policy & Market Research

Agricultural Policy & Climate Change

Summer School Climate Change Impacts on the MED agro food chain Schloss Rauischholzhausen 12 Sep 2019

Lecture overview

- The economic approach to abatement policy: costs vs benefits
- II. Selected policy options
- III. Specific challenges in climate change mitigation policy: vicious circles, collective action, future generations
- IV. Policy areas in agriculture & food

Part I: The economic approach to abatement policy

Global resource prices & income per capita

Runaway deforestation in the Amazon?

Source: CORE 2017 The Economy, p. 904.

Climate change: the record

Source: CORE 2017 The Economy, p. 908, https://www.core-econ.org.

Abatement policies

- Discovering & adopting less naturalresource intensive technologies
- Consume less environmentally damaging goods
- Limiting or banning use of environmental harmful substances or activities

Some pertinent questions

- What's the trade-off between consuming more goods & a less degraded natural environment?
- How should we value environmental quality?
- How should we trade off consumption now vs consumption by future generations?

Assumptions to derive a set of policy options

- A population composed of identical individuals
- Everybody lives forever
- Environmental benefit/harm equally distributed
- Policymakers serve citizens' interest

Least-cost abatement curve

Cost of Abatement. Billions € = cost per tonne abated x gigatonnes abated

Environmental quality, E (amount abated) gTCO₂

Abatement cost with inefficient policies

Cost of Abatement, A. Billions € = cost per tonne abated x gigatonnes abated

Source: CORE 2017 The Economy, p. 916.

Economic concepts to analyse trade-offs

- Marginal rate of transformation (MRT) = Increase in environmental quality / Decrease in consumption
- Marginal rate of substitution (MRS) =
 Marginal utility of consumption /
 Marginal utility of environmental quality

Ideal choice of abatement

Consumption of goods and services (billions €)

Source: CORE 2017 The Economy, p. 918.

Principles to make a policy choice

- Consider only policies on the frontier of the feasible set
- Choose combination of environmental quality & consumption on the highest possible indifference curve

Questions for understanding

- How would optimal policies differ if consumers cared less about the environment (had different values)?
- How would they differ if abatement became cheaper (different technology)?

Technological progress

Source: CORE 2017 The Economy, p. 935.

Cost of photovoltaic electricity

Source: CORE 2017 The Economy, p. 936.

Our assumptions reconsidered

- A population composed of identical individuals?
- Everybody lives forever?
- Environmental benefit/harm equally distributed?
- Policymakers serve citizens' interest?

Everybody equally affected?

- Rich vs poor countries
- Farmers vs consumers
- Firm owners vs workers

Part II: Selected policy options

Environmental policy options

- Private bargaining among affected parties (Coase solution)
- Taxes to make the pollutant more expensive (Pigouvian tax)
- Quotas & bans
- Price- vs quantity-based policies

Cap & Trade

Total abatement required, E* (e.g. units of CO₂ abated)

MPCA: Marginal private abatement costs. Source: CORE 2017 The Economy, p. 928.

Issues in Cap & Trade

- A potentially efficient abatement tool, BUT...
- Desirable Cap level may be hard to determine
- Pricing may send wrong signals, sometimes making pollution profitable
- Price floors may mitigate collapse due to external shocks (e.g. in UK)

The EU Emissions Trading Scheme

EUA: European Emission Allowances. Source: CORE 2017 The Economy, p. 929.

GHG emitted by agriculture

Note: Numbers may not sum to 100% due to rounding.

Sources: GlobAgri-WRR model (agricultural production emissions); WRI analysis based on UNEP (2012); FAO (2012a); EIA (2012); IEA (2012); and Houghton (2008) with adjustments.

^a Excludes emissions from agricultural energy sources described above.

^b Includes emissions from on-farm energy consumption as well as from manufacturing of farm tractors, irrigation pumps, other machinery, and key inputs such as fertilizer. It excludes emissions from the transport of food.

Cap & Trade in agriculture?

- Highly dispersed polluters
- Emissions hard to measure
- Cap impossible to enforce
- High administration & monitoring costs
- Danger of resource use dumping by producers abroad

Taxing consumers

IC: Indifference curve

Source: CORE 2017 The Economy, p. 929.

Part III: Specific challenges in climate change mitigation policy

Intricacies of climate change policies

- Complex dynamics (https://regimeshifts.org)
- Global collective action
- Future generations

Runaway deforestation in the Amazon?

Source: CORE 2017 The Economy, p. 904; The Economist Briefing August 3, 2019.

Environmental dynamics in the Amazon

Source: Author based on CORE 2017 The Economy, p. 946.

Climate change & irreversible deforestation

Source: Author based on CORE 2017 The Economy, p. 947.

cover

Policies to address tipping points

- Reduce risk that tipping points are crossed
- Establish evidence to reduce uncertainty about tipping points
- Respect planetary boundaries, i.e. keep sufficiently far away from tipping points
- Caps may be more effective than taxes in face of uncertainty

Game theory of global GHG emissions

- Players who is involved in the interaction
- Feasible strategies actions each player can take
- Information what each player knows when choosing their action
- Payoffs outcomes for every possible combination of actions

12.09.2019

Simplifying assumptions

- No other people involved or affected
- No other decision to take than which crop to grow
- Players interact only once
- They decide simultaneously, without knowing what the other does

12.09.2019

Reduction in global GHG emissions

Source: CORE 2017 The Economy, p. 177.

Reduction in global GHG emissions: payoffs

Source: CORE 2017 The Economy, p. 177.

Reduction in global GHG emissions: payoffs

Source: CORE 2017 The Economy, p. 177.

GHG reduction as a "prisoners' dilemma"

- Both China & US pursuing their self-interest yielded an unfavourable outcome for both of them
- Their joint reduction always threatened by "freeriding"
- Both have an interest in alternative outcome that global collective action hardly achieves

12.09.2019

The Stern-Nordhaus debate about discounting

- Future generations may be richer
- Small chance that humankind will be extinguished
- Impatience of current decision makers
- Stern advocates 1.4%, assuming no impatience
- Criticised by Nordhaus arguing that current generation needs to decide, using 4.3%

Source: CORE 2017 The Economy, p. 951.

Discounting future benefits

Discount rate (%)	Source	Years in the future				
		0	1	10	50	100
0,0	No discounting	\$1,00	\$1,00	\$1,00	\$1,00	\$1,00
1,4	Stern Review proposal	\$1,00	\$0,99	\$0,87	\$0,50	\$0,25
4,3	Nordhaus proposal	\$1,00	\$0,96	\$0,66	\$0,12	\$0,01
3,0		\$1,00	\$0,97	\$0,74	\$0,23	\$0,05

Source: Goulder, L. and Williams, R. 2012. The choice of discount rate for climate change policy evaluation, Climate Change Economics, Vol. 3, No. 4.

Source: CORE 2017 The Economy, p. 953.

Policies with negative abatement cost

HVAC: Heating, ventilation, air conditioning.

Source: Author based on CORE 2017 The Economy, p. 956.

Potentials of win-win policies

Consumption of goods and services (€ billions)

Source: Author based on CORE 2017 The Economy, p. 946.

Further reading

https://www.core-econ.org/

Part IV: Policy areas in agriculture & food

Five major policy areas

- Reduce growth in demand for food & other agricultural products
- Reduce GHG emissions from agricultural production
- 3. Increase food production without expanding agricultural land
- 4. Protect &restore natural ecosystems & limit agricultural land-shifting
- 5. Increase fish supply

Reducing food loss & waste

Share of total food available that is lost or wasted

15%

17%

Note: Numbers may not sum to 100 due to rounding. Data are for the year 2009. Source: WRI analysis based on FAO (2011c).

Source: World Resources Report 2019 Creating a Sustainable Food Future, p. 55.

22%

Promote less meat in diets

Reduce GHG emissions from ruminants

Improve fertiliser management

Global emissions from soil fertilisation:

Note: This chart excludes emissions from manure left on paddocks and pasture, discussed above, and differs from FAOSTAT estimates in part because GlobAgri-WRR is based on nitrogen estimates underlying Zhang et al. (2015b) and nitrogen availability in manure from a livestock management component based on Herrero et al. (2013).

Source: GlobAgri-WRR model.

Further reading

https://wrr-food.wri.org/

Conclusions

- Optimal environmental policy does not mean maximal abatement
- Innovation may be a powerful tool to combat excessive resource use
- Formal analysis helps highlighting tradeoffs (but does not necessarily solve them)
- Specific models shed light on complexities of policymaking (tipping points, collective action)