Ocean2100 aquarium facility
Background and aims:
Coral reefs are among the most diverse ecosystems on this planet. They are also among the most threatened ecosystems because of their vulnerability to environmental changes. The main threats to coral reefs on a global scale are ocean warming, extreme heatwaves, and ocean acidification. Together with local threats such as pollution and overfishing, climate change has caused a decline in coral reefs by more than 30 % to date. It is important to understand how hard corals and other coral reef organisms respond to and cope with these rapidly changing environmental conditions to inform coral reef conservation and to implement the most effective restoration approaches.
The Ocean2100 aquarium facility at the University of Giessen is a global change simulator that we use to expose stony corals and other organisms living in coral reefs to global change scenarios. All environmental parameters can be controlled and maintained stable to remove confounding factors and strengthen the insights gained from such experiments. In this set up, we aim to assess and measure the mechanisms underlying environmental tolerance using methods from a variety of fields, including 'omics' approaches together with functional microbiology, morphology, and ecophysiology.
Technical specifications:
The aquarium facility currently has a seawater capacity of almost 9,000 liters. The main experimental unit consists of 18 aquaria of 265 liters each. The seawater conditions in each tank can be controlled individually and are constantly monitored through an online system. Several smaller experimental units can be used to conduct ancillary experiments.
We currently keep over 30 species of stony coral and over 20 other coral reef species for our experiments.
Partners:
Ocean2100 is located at the Justus Liebig University of Giessen in Germany. It is a scientific lighthouse project of the Corporation CEMarin (Bogota, Colombia), funded by the German Academic Exchange Service (DAAD).
The Ocean2100 facilities are open to all CEMarin researchers and can be used free of charge.
For more inquiries contact Dr. Maren Ziegler
Publications from the Ocean2100 facility
- Puntin, G.; Craggs, J.; Hayden, R.; Engelhardt, K.E.; McIlroy, S.; Sweet, M.; Baker, D.M.; Ziegler, M. (2022): The reef-building coral Galaxea fascicularis: a new model system for coral symbiosis research. bioRxiv, 2022.2006.2002.494472.
- Martins, C.P.P.; Arnold, A.L.; Kömpf, K.; Schubert, P.; Ziegler, M.; Wilke, T. & Reichert, J. (2022): Growth response of reef-building corals to ocean acidification is mediated by interplay of taxon-specific physiological parameters. Frontiers in Marine Science, 9, 872631. doi.org/10.3389/fmars.2022.872631
- Rades, M.; Schubert, P.; Wilke, T. & Reichert, J. (2022): Reef-building corals do not develop adaptive mechanisms to better cope with microplastics. Frontiers in Marine Science, 9, 863187. doi.org/10.3389/fmars.2022.863187
- Reichert, J., Tirpitz, V., Anand, R., Bach, K., Knopp, J., Schubert, P., Wilke, T. & Ziegler, M. (2021). Interactive effects of microplastic pollution and heat stress on reef-building corals. Environmental Pollution, 290, 118010.
- Reichert, J.; Arnold, A.L.; Hammer, N.; Miller, I.B.; Rades, M.; Schubert, P.; Ziegler, M.; Wilke, T. (2021): Reef-building corals act as long-term sink for microplastic. Glob Chang Biol, 28, 33-45.
- Franco, A.; Rückert, C.; Blom, J.; Busche, T.; Reichert, J.; Schubert, P.; Goesmann, A.; Kalinowski, J.; Wilke, T.; Kämpfer, P. & Glaeser, S.P. (2020): High diversity of Vibrio spp. associated with different ecological niches in a marine aquaria system and description of Vibrio aquimaris sp. nov. Systematic and Applied Microbiology, 43, 126123.
- Schellenberg, J.; Reichert, J.; Hardt, M.; Klingelhöfer, I.; Morlock, G.; Schubert, P.; Bižic M.; Grossart, H.-P.; Kämpfer, P.; Wilke, T. & Glaeser, S.P. (2020): The bacterial microbiome of the long-term aquarium cultured high microbial abundance sponge Haliclona cnidata – Sustained bioactivity despite community shifts under detrimental conditions. Frontiers in Marine Science, 7, 266. doi.org/10.3389/fmars.2020.00266
- Gegner, H.M.; Rädecker, N.; Ochsenkühn, M.; Barreto, M.M.; Ziegler, M.; Reichert, J.; Schubert, P.; Wilke, T.; Voolstra, C.R. (2019): High levels of floridoside at high salinity link osmoadaptation with bleaching susceptibility in the cnidarian-algal endosymbiosis. Biology Open, 8, bio045591.
- Schellenberg, J.; Reichert, J.; Hardt, M.; Schmidtberg, H.; Kämpfer P.; Glaeser, S.P.; Schubert, P. & Wilke, T. (2019) The precursor hypothesis of sponge kleptocnidism: development of nematocysts in Haliclona cnidata sp. nov. (Porifera, Demospongiae, Haplosclerida). Frontiers in Marine Science, 5, 509.
- Celis, J.S.; Wibberg, D.; Ramírez-Portilla, C.; Rupp, O.; Sczyrba, A.; Winkler, A.; Kalinowski, J.; Wilke, T. (2018): Binning enables efficient host genome reconstruction in cnidarian holobionts. Gigascience 7, giy075.
- Bartz, J.-O.; Blom, J.; Busse, H.-J.; Mvie, J.B.; Hardt, M.; Schubert, P.; Wilke, T.; Goessmann, A.; Wilharm, G.; Bender, J.; Kämpfer, P.; Glaeser, S.P. (2018): Parendozoicomonas haliclonae gen. nov. sp. nov. isolated from a marine sponge of the genus Haliclona and description of the family Endozoicomonadaceae fam. nov. comprising the genera Endozoicomonas, Parendozoicomonas, and Kistimonas. Syst. Appl. Microbiol. 41, 73–84.
- Reichert, J.; Schellenberg, J.; Schubert, P. & Wilke, T. (2018): Responses of reef building corals to microplastic exposure. Environmental Pollution, 237, 955-960.
- Franco, A. Busse, H.-J.; Schubert, P.; Wilke, T.; Kämpfer, P. & Glaeser, S.P. (2018): Winogradskyella pocilloporae sp. nov. isolated from healthy tissue of the coral Pocillopora damicornis. International Journal of Systematic and Evolutionary Microbiology, 68, 1689-1696.
- Schubert, P. & Wilke, T. (2018): Coral microcosms: Challenges and opportunities for global change biology. In: Duque Beltran, C. & Tello Camacho, E. (eds.). Corals in a changing world. InTech, Rijeka, Croatia, 143-175.
- Schellenberg, J.; Busse, H.-J.; Hardt, M.; Schubert, P.; Wilke, T.; Kämpfer, P. & Glaeser, S.P. (2018): Proposal of Litorimonas haliclonae sp. nov. isolated from a marine sponge of the genus Haliclona. International Journal of Systematic and Evolutionary Microbiology, 68, 835-843.
- Schellenberg, J.; Busse, H.-J.; Hardt, M.; Schubert, P.; Wilke, T.; Kämpfer, P. & Glaeser, S.P. (2017): Winogradskyella haliclonae sp. nov., isolated from a marine sponge of the genus Haliclona. International Journal of Systematic and Evolutionary Microbiology, 67, 4902-4910.
- Reichert, J.; Backes, A.; Schubert, P. & Wilke, T. (2017): The power of 3D fractal dimensions for comparative shape and structural complexity analyses of irregularly shaped organisms. Methods in Ecology and Evolution, 8, 1650-1658.
- Celis, J.S.; Edgell, D.R.; Stelbrink, B.; Wibberg, D.; Hauffe, T.; Blom, J.; Kalinowski, J. & Wilke, T. (2017): Evolutionary and biogeographical implications of degraded LAGLIDADG endonuclease functionality and group I intron occurrence in stony corals (Scleractinia) and mushroom corals (Corallimorpharia). PLoS ONE, 12, e0173734.
- Reichert, J.; Schellenberg, J.; Schubert, P. & Wilke, T. (2016): 3D scanning as a highly precise, reproducible, and minimally invasive method for surface area and volume measurements of scleractinian corals. Limnology and Oceanography: Methods, 14, 518-526.
- Schubert, P.; Vogt, L.; Eder, K.; Hauffe, T. & Wilke, T. (2016): Effects of feed species and HUFA composition on survival and growth of the longsnout seahorse (Hippocampus reidi). Frontiers in Marine Science, 3, 53.
- Celis, J.S.; Wibberg, D.; Winkler, A.; Wilke, T. & Kalinowski, J. (2016): Complete mitochondrial genome of the scleractinian coral Porites rus. Mitochondrial DNA, 27, 3695-3696.
- Kolberg, J.; Busse, H.-J.; Wilke, T.; Schubert, P.; Kämpfer, P. & Glaeser, S.P. (2015): Mesonia hippocampi sp. nov., isolated from the brood pouch of a diseased Barbour's Seahorse (Hippocampus barbouri). International Journal of Systematic and Evolutionary Microbiology, 65, 2241-2247.