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major underlying 
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Soil degradation and 
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reduces population 

pressure on the 
world’s oceans.

Sustainable food 
systems reduce 
greenhouse gas 

emissions. 

Responsible food 
consumption and 

production reduces 
food waste and loss.

Sustainable cities require 
integrated urban and 

rural food systems. 

Reducing current 
nutrition inequalities 

will lessen income 
inequalities. 

Enhanced nutrition through 
the lifespan supports 

learning and later 
innovation potential. 

Without a sufficiently 
nutritious diet, learning 
ability and focus are 
greatly impaired. 

Good nutrition results in 
higher labour productivity, 
greater mental capacity and 
longer, healthier lives.  

Improving the nutrition of 
girls, women and children 
improves schooling, reducing 
gender inequalities.  

Ensuring good 
nutrition requires 
access to safe water 
and sanitation.  

Good nutrition for all 
increases demand for healthy 
food, requiring clean, 
renewable energy sources.  

Malnutrition in all its forms 
lowers economic productivity 
and unnecessarily increases 
healthcare costs. 

SOURCE: WHO Department of Nutrition for Health and Development, 2018. 
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Undernourished people 

THE STATE OF FOOD SECURITY AND NUTRITION IN THE WORLD 2018

that the decreasing trend that characterized Asia 
until recently may have come to an end.  
The projected PoU for Asia in 2017 points to a 
situation in which 11.4 percent of the population 
is estimated to be undernourished, which 
represents more than 515 million people, 
confirming it as the region with the highest 
number of undernourished people in the world.  

A closer look at the subregions of Asia reveals 
that Western and South-eastern Asia are among 
those contributing to this slowdown in the 
decreasing trend, ref lecting the fact that 
countries in South-eastern Asia have been 
affected by adverse climate conditions with 

impacts on food availability and prices, while 
countries in Western Asia have been affected by 
prolonged armed conf licts. 

In Africa, the situation is more pressing in the 
region of sub-Saharan Africa where an estimated 
23.2 percent of the population – or between one 
out of four and one out of f ive people in the 
region – may have suffered from chronic food 
deprivation in 2017. An increase in the 
prevalence of undernourishment has been 
observed in all subregions of sub-Saharan Africa 
except for Eastern Africa. A further slight 
increase is seen in Southern Africa, while a 
significant uptick is seen in Western Africa, 

* Projected values, illustrated by dotted lines and empty circles. 
SOURCE: FAO.

FIGURE 1
THE NUMBER OF UNDERNOURISHED PEOPLE IN THE WORLD HAS BEEN ON THE RISE 
SINCE 2014, REACHING AN ESTIMATED 821 MILLION IN 2017
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Annual rate of population change
2050

Source: UN, 2019

13

TREND 1  · Population growth, urbanization and ageing

3 In addition to these 13 African 
countries, a few Asian ones also 
currently have annual population 
growth rates above 2.5 percent: 
they are Afghanistan, Iraq, 
Lebanon and several small states 
in the Persian Gulf.

Figure 1.2 Population growth to 2100, by region (medium variant)

Source: UN, 2015. 

growth rates of 3.75 percent expected between 2015 and 2050, and 2.12 
percent thereafter. Following the medium variant, Niger’s population would 
expand from 20 million people today to 72 million by 2050, and 209 million 
people by 2100. Annual growth rates of more than 2.5  percent to 2050 
are also projected for Angola, Burundi, Chad, the Democratic Republic of 
the Congo, Gambia, Malawi, Mali, Senegal, Somalia, the United Republic 
of Tanzania, Uganda and Zambia. All these countries are located in sub- 
Saharan Africa, with many of them in the central and eastern areas of the 
continent. The combined population of these countries reached 320 million 
people in 2015, and it will nearly double by 2050 and more than redouble by 
2100 to reach a projected total of 1.8 billion.3 

Should these population projections materialize, the increases could 
seriously jeopardize the overall development prospects of these countries. 
As all of these countries rely significantly on agriculture for employment 
and income generation, it would also hamper prospects for improving food 
security and nutrition. This holds particularly true for those agriculture-
dependent countries with limited land and water resources, such as Niger 
and Somalia. Based on current trends, if these countries were to rely 
exclusively on domestic production for their food supply, they could be 
confronted with a neo-Malthusian future. 

Rapid population growth changes the population structure, with younger 
generations making up an increasing share of the overall population. 
Between 2015 and 2050, in low- and middle-income countries, the number 
of people between 15 and 24 years of age is expected to rise from about 
1 billion to 1.2 billion. Most of these young people are expected to live in 
sub-Saharan Africa and South Asia, particularly in rural areas, where jobs 
will likely to be difficult to find.

Without sufficient employment opportunities, this population trend may 
lead to a more rapid rate of outmigration. The impacts of outmigration are 
already being felt in some emigration destinations, not only at the national 
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PART 1 FOOD SECURITY AND NUTRITION AROUND THE WORLD IN 2018

BOX 2
(CONTINUED)

FOOD INSECURITY BASED ON THE FIES: WHAT DOES IT MEAN?

SOURCE: Created by FAO Statistics Division for this report.

This person has:

Uncertainty regarding 
ability to obtain food.

Compromising on food 
quality and variety.

Reducing food quantity,
skipping meals.

No food for a day 
or more

FOOD SECURITY
TO MILD FOOD INSECURITY

MODERATE
FOOD INSECURITY

SEVERE
FOOD INSECURITY

This person has:
• insufficient money or resources
 for a healthy diet;
• uncertainty about the ability 
 to obtain food;
• probably skipped meals or 
 run out of food occasionally.

This person has:
• run out of food;
• gone an entire day without
 eating at times during 
 the year.

FIGURE 2
SEVERE FOOD INSECURITY IS HIGHER IN 2017 THAN IT WAS IN 2014 IN EVERY REGION EXCEPT 
NORTHERN AMERICA AND EUROPE, WITH NOTABLE INCREASES IN AFRICA AND LATIN AMERICA 

0

5

10

15

20

25

30

2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017

WORLD AFRICA ASIA LATIN AMERICA NORTHERN AMERICA 
AND EUROPE

PE
RC

EN
TA

GE

REGIONS

8.9 8.4 8.9 10.2

22.3 22.4
25.4

29.8

7.3 6.6 6.5 6.9 7.6 6.3 7.6 9.8 1.5 1.5 1.2 1.4

SOURCE: FAO.

| 8 |

Severe food insecurity 

PART 1 FOOD SECURITY AND NUTRITION AROUND THE WORLD IN 2018

BOX 2
(CONTINUED)

FOOD INSECURITY BASED ON THE FIES: WHAT DOES IT MEAN?

SOURCE: Created by FAO Statistics Division for this report.

This person has:

Uncertainty regarding 
ability to obtain food.

Compromising on food 
quality and variety.

Reducing food quantity,
skipping meals.

No food for a day 
or more

FOOD SECURITY
TO MILD FOOD INSECURITY

MODERATE
FOOD INSECURITY

SEVERE
FOOD INSECURITY

This person has:
• insufficient money or resources
 for a healthy diet;
• uncertainty about the ability 
 to obtain food;
• probably skipped meals or 
 run out of food occasionally.

This person has:
• run out of food;
• gone an entire day without
 eating at times during 
 the year.

FIGURE 2
SEVERE FOOD INSECURITY IS HIGHER IN 2017 THAN IT WAS IN 2014 IN EVERY REGION EXCEPT 
NORTHERN AMERICA AND EUROPE, WITH NOTABLE INCREASES IN AFRICA AND LATIN AMERICA 

0

5

10

15

20

25

30

2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017 2014 2015 2016 2017

WORLD AFRICA ASIA LATIN AMERICA NORTHERN AMERICA 
AND EUROPE

PE
RC

EN
TA

GE

REGIONS

8.9 8.4 8.9 10.2

22.3 22.4
25.4

29.8

7.3 6.6 6.5 6.9 7.6 6.3 7.6 9.8 1.5 1.5 1.2 1.4

SOURCE: FAO.

| 8 |

Source: FAO, SOFI 2018



Introduction

Source: FAO, 2019



Introduction
Sustainable Agriculture 

efficient
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Damages and losses in agriculture 

PART 2 THE IMPACT OF CLIMATE ON FOOD SECURITY AND NUTRITION

for populations dependent on these subsectors 
for their livelihoods and food. Fisheries, an 
important source of food production for many 

countries, are most affected by tsunamis and 
storms. Studies have shown that climate 
variability affects f isheries directly, as f ish 

NOTES: FAO, based on Post Disaster Needs Assessments (PDNA), 2006–2016. The sectors of fisheries, aquaculture and forestry often are under-reported. Impact of disasters on forestry 
is generally acknowledged in assessments, although rarely quantified in monetary terms. 
SOURCE: FAO. 2018. The impact of disasters and crises on agriculture and food security 2017. Rome.

FIGURE 30
CROP AND LIVESTOCK SUB-SECTORS INCUR THE HIGHEST DAMAGES AND LOSSES IN 
AGRICULTURE DUE TO CLIMATE-RELATED DISASTERS, OF WHICH DROUGHT IS THE MOST 
DESTRUCTIVE, 2006–2016
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Drought and changes in the undernourished people 

THE STATE OF FOOD SECURITY AND NUTRITION IN THE WORLD 2018

2011–2016 (Figure 24 ). Most striking is that the 
frequency (number of years exposed in a f ive-
year period) and intensity (multiple types of 
climate extremes in a f ive-year period) of 
exposure to climate extremes have both increased 
too. Considering the frequency, or number of 
years exposed in each subperiod, countries’ 
exposure increased by more than 30 percent 
between 1996–2000 and 2011–2016. In terms of 
increasing intensity, 36 percent of countries were 
exposed to three or four types of climate 
extremes (extreme heat, drought, f loods or 
storms) in 2011–2016, compared with 18 percent 
in 1996–2000. In other words, the number has 
doubled in the last 20 years (see Annex 2 for 
definitions and methodology). 

Looking at the regional level, the analysis reveals 
even greater increases in the intensity of climate 

extremes compared to the global averages. For 
instance, the occurrence of three or more 
different types of climate extremes has increased 
by 160 percent for countries in Africa, from 
10 percent in 1996–2000 to 25 percent in 
2011–2016. Similarly, the percentage of Asian 
countries experiencing multiple shocks more than 
doubled to 51 percent in 2011–2016, up from 
23 percent in 1996–2000. The intensity of climate 
extremes in Latin America and the Caribbean 
also more than doubled (from 26 percent in 
1996–2000 to 56.5 percent in 2011–2016). 

Many countries – especially in Africa and Asia – 
are also now more exposed to interseasonal 
climate variability, either in terms of early or 
delayed onset of growing seasons, decreased 
length of the growing seasons, or both. Fifty-one 
low- and middle-income countries experienced 

NOTE: The number of countries with change points of prevalence of undernourishment (PoU) which occurred in correspondence with severe drought conditions by year, between 2006 and 
2015. See Annex 3 for methodology and list of countries with PoU change points related to severe drought conditions.
SOURCE: C. Holleman, F. Rembold and O. Crespo (forthcoming). The impact of climate variability and extremes on agriculture and food security: an analysis of the evidence and case studies. FAO 
Agricultural Development Economics Technical Study 4. Rome, FAO.

FIGURE 23
PoU CHANGE POINTS ASSOCIATED WITH THE OCCURRENCE OF SEVERE AGRICULTURAL 
DROUGHT
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agriculture GHG emissions 

822822

Agriculture, Forestry and Other Land Use (AFOLU)

11

Chapter 11

11.2.1 Supply and consumption trends in 
 agriculture and forestry

In 2010 world agricultural land occupied 4889 Mha, an increase of 
7 % (311 Mha) since 1970 (FAOSTAT, 2013). Agricultural land area has 
decreased by 53 Mha since 2000 due to a decline of the cropland area 
(Organisation for Economic Co-operation and Development (OECD)-
1990, Economies in Transition (EIT)) and a decrease in permanent 
meadows and pastures (OECD-1990 and Asia). The average amount of 
cropland and pasture land per capita in 1970 was 0.4 and 0.8 ha and 
by 2010 this had decreased to 0.2 and 0.5 ha per capita, respectively 
(FAOSTAT, 2013).

Changing land-use practices, technological advancement and varietal 
improvement have enabled world grain harvests to double from 1.2 to 
2.5 billion tonnes per year between 1970 and 2010 (FAOSTAT, 2012). 
Average world cereal yields increased from 1600 to 3030 kg / ha over 
the same period (FAOSTAT, 2012) while there has also been a 233 % 
increase in global fertilizer use from 32 to 106 Mt / yr, and a 73 % 
increase in the irrigated cropland area (FAOSTAT, 2013).

Globally, since 1970, there has been a 1.4-fold increase in the num-
bers of cattle and buffalo, sheep and goats (which is closely linked to 
the trend of CH4 emissions in the sector; Section 11.2.2), and increases 
of 1.6- and 3.7-fold for pigs and poultry, respectively (FAOSTAT, 2013). 
Major regional trends between 1970 and 2010 include a decrease in 
the total number of animals in Economies in Transition (EIT) and OECD-
1990 (except poultry), and continuous growth in other regions, particu-
larly Middle East and Africa (MAF) and Asia (Figure 11.3, bottom panel). 
The soaring demand for fish has led to the intensification of freshwater 
and marine fisheries worldwide, and an increased freshwater fisheries 
catch that topped 11 Mt in 2010, although the marine fisheries catch 
has slowly declined (78 Mt in 2010; FAOSTAT, 2013). The latter is, how-

ever, compensated in international markets by tremendous growth of 
aquaculture production to 60 Mt wet weight in 2010, of which 37 Mt 
originate from freshwater, overwhelmingly in Asia (FAOSTAT, 2013).

Between 1970 and 2010, global daily per capita food availability, 
expressed in energy units, has risen from 10,008 to 11,850 kJ (2391 to 
2831 kcal), an increase of 18.4 %; growth in MAF (10,716 kJ in 2010) 
has been 22 %, and in Asia, 32 % (11,327 kJ in 2010; FAOSTAT, 2013). 
The percentage of animal products in daily per capita total food con-
sumption has increased consistently in Asia since 1970 (7 to 16 %), 
remained constant in MAF (8 %) and, since 1985, has decreased in 
OECD-1990 countries (32 to 28 %), comprising, respectively, 1,790, 
870 and 3,800 kJ in 2010 (FAOSTAT, 2013).

11.2.2 Trends of GHG emissions from 
 agriculture 

Organic and inorganic material provided as inputs or output in the 
management of agricultural systems are typically broken down 
through bacterial processes, releasing significant amounts of CO2, CH4, 
and N2O to the atmosphere. Only agricultural non-CO2 sources are 
reported as anthropogenic GHG emissions, however. The CO2 emitted 
is considered neutral, being associated to annual cycles of carbon fixa-
tion and oxidation through photosynthesis. The agricultural sector is 
the largest contributor to global anthropogenic non-CO2 GHGs, 
accounting for 56 % of emissions in 2005 (U. S. EPA, 2011). Other 
important, albeit much smaller non-CO2 emissions sources from other 
AFOLU categories, and thus not treated here, include fertilizer applica-
tions in forests. Annual total non-CO2 GHG emissions from agriculture 
in 2010 are estimated to be 5.2 – 5.8 GtCO2eq / yr (FAOSTAT, 2013; Tubi-
ello et al., 2013) and comprised about 10 – 12 % of global anthropo-
genic emissions. Fossil fuel CO2 emissions on croplands added another 

Figure 11.4 | Data comparison between FAOSTAT (2013), U. S. EPA (2006), and EDGAR (JRC / PBL, 2013) databases for key agricultural emission categories, grouped as agricultural 
soils, enteric fermentation, manure management systems, and rice cultivation, for 2005 | Whiskers represent 95 % confidence intervals of global aggregated categories, computed 
using IPCC guidelines (IPCC, 2006) for uncertainty estimation (from Tubiello et al., 2013).
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What about organics? 

Organic retail sales are growing much faster than organic 
area*. As shown in the previous graph, there are huge yield 
gaps between organic and conventional production of common 
wheat (over 70 % in some Member States and less than 35 % 
in others). All in all, the organic area remains small. In 2016, 
2.3 % of the common wheat area was organic (or under 
conversion). 

Cereals are needed for both food and feed, so the projected 
growth in organic animal production also creates good 
prospects for organic cereal production. Unlike conventional 
bread consumption, organic bread consumption is increasing. 

* Sanders et al., 2016.  

 

Main growth in exports and industrial uses  

EU cereal demand is expected to increase by 4 % by 2030 
compared with the 2016-2018 average. The feed market 
remains the most important outlet in volume terms, but overall 
growth is expected to be limited (only 0.2 % per year) given low 
growth in animal production and further improvements in 
feed-conversion ratios for non-ruminants. Due to its favourable 
price, maize will be preferred over the other main cereals, with 
annual growth of 0.5 %. 

Wheat is used to a similar extent for food and feed. It remains 
the most important staple crop. In the EU, bread consumption 
decreased from over 66 kg per capita in 2007 to below 60 kg 
in 2017 (Euromonitor data). However, consumption of 
processed food, such as cakes, pastries, cereal bars and pizzas, 
is increasing, leading to overall fairly stable flour consumption. 
Over the outlook period, stable wheat food consumption is 
projected, with slight gains for durum wheat (used for pasta). 

GRAPH 2.21 Demand for EU cereals (million t) 

 
Note: 2006*=average(2006-2008); 2018*=average(2016-2018) 

Industrial use is expected to see the most dynamic growth. 
Currently, more than 800 biorefineries have been identified in 
the EU, of which 507 produce bio-based chemicals, 363 liquid 
biofuels and 141 bio-based composites and fibres29. They are 
mainly located in the north-west of the EU. More details on 
industrial uses of cereals in selected Member States can be 
found in the next section. With the expected surge of the bio-
economy, industrial uses (mainly through the starch industry) 
will increase further, giving impetus to demand for both wheat 
and maize. Maize will also benefit from moderate growth in 
isoglucose demand (see section on sugar). Industrial uses for 
barley relate mainly to malting barley and, with stable to 
declining beer consumption, not much growth is expected there. 
Demand for cereals for the production of ethanol is expected to 
stabilise over the outlook period (see section on biofuels) at 
around 14 million t, with maize most dynamic given the lower 
prices. The overall share of ethanol in total domestic demand 
for cereals is expected to remain limited to less than 5 %. 

The prospects for EU cereal exports are positive, with a further 
35 % increase over the 2016-2018 average and particular 
export opportunities for wheat in the Mediterranean, 
sub-Saharan Africa and the Gulf. However, further competition 
from the Black Sea region is to be expected. 

GRAPH 2.22 Total imports and exports (million t) for  wheat, by 
main importing/exporting region 

 
Note: SSA=sub-Saharan Africa; NA=North Africa; ME= Middle East; 
RUS=Russia; UKR & KAZ=Ukraine and Kazakhstan; ARG=Argentina; 
AUS=Australia; CAN=Canada 

Traditional wheat-producing countries such as the US, Australia 
and Canada are expected to stabilise their exports. Meanwhile, 
Russia, Ukraine and Kazakhstan are expected to continue their 
recent expansion, driven by large investments in both 
production and logistics. Russia will expand its share in global 
exports further, from around 20 % in 2018 to 23 % in 2030. 
Still, the quality of the grain remains an issue in those regions, 
where production (and thus exports) is mainly of 
low- to-medium protein content. Nevertheless, quality is also 

……………… 
29  Parisi, C. (2018), Research brief: Biorefineries distribution in the EU, 

European Commission - Joint Research Centre. 
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BOX 2.4 Price uncertainty in the medium-term outlook  

The baseline assumes normal weather conditions, allowing for 
stable yield development and a specific macroeconomic 
environment, but the reality might differ considerably. To 
account for uncertainty about future yields and 
macroeconomic indicators, alternative baseline projections are 
produced following a partial stochastic simulation (see 
Chapter 8). This approach enables us to illustrate different 
potential price paths around the core baseline, as 
demonstrated for common wheat in the graph below. The 
different paths can be interpreted as alternative prospects 
under different production and macroeconomic conditions. 

GRAPH 2.24 Possible price paths for common wheat in the EU 
(EUR/t) 

 

The average of the potential price paths is situated around the 
baseline price (in light blue). As an example, the grey lines 
show 10 out of almost 1 000 possible different price paths 
derived from the uncertainty analysis. These vary strongly 
between marketing years.  

Two additional lines are included to present the 2.5th and 
97.5th percentiles. Each year, 5 % of the stochastically 
simulated prices lie below or above the dashed lines, but these 
low/high price levels are determined by extreme 
macroeconomic assumptions or rather unlikely high/low yields. 
However, as not all sources of uncertainty are included in this 
assessment, one cannot exclude the possibility of the price 
moving outside this range under particular shocks. 
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improving rapidly. Argentina is also expected to expand 
production and gain market share. Given its competitive prices, 
the EU is projected to increase its share of global wheat exports 
further, from 14 % in 2016-2018 to around 17 % in 2030. 
Barley exports are also expected to expand further, albeit more 
slowly than in the past, with China and Saudi Arabia expected 
to remain key markets. With small rises in cereal production, in 
tune with the growth in exports and domestic demand, imports 
of cereals, mainly maize, are expected to stabilise over the 
outlook period. 

Starting from a fairly high stock-to-use ratio of 26 % in 
2017/2018, EU maize stocks are expected to fall again to 
around 20 % of total maize use over the outlook period. The 
actual stock levels will of course vary depending on production 
shortfalls and surpluses here or abroad. Wheat and barley 
stock-to-use ratios are projected at around 12 % and 16 % 
respectively. These levels are higher than the 2012 low, but 
remain well below pre-2010 levels. 

Competition weighs on EU prices 

GRAPH 2.23 Development of cereal prices (EUR/t) 

 

EU cereal prices are expected to remain below the peaks of five 
years ago, but above the long-term average, at EUR 168-180/t 
in 2030. In the early years of the outlook period, prices are 
expected to be lower than in the longer term, especially for 
maize and barley, driven by ample global supply, low energy 
and input costs, and a relatively weak euro. Barley and maize 
prices are expected to remain closely aligned. Due to good 
export demand, it is assumed that common wheat prices will 
remain above coarse grain prices over the outlook period. 
However, from 2020 they are expected to be affected more by 
an expected re-appreciation of the euro against the US dollar. 
Generally, all prices show an upward path from 2022 onwards. 
This may be related to the increasing energy and input costs 
assumed in the second half of the outlook period. The relatively 
low stock-to-use ratios indicate that prices may react to any 
unexpected production shortfall in the EU or major supplying 
regions. 
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with mean differences not exceeding 0.6 t ha−1. It results in lower mean
yield in Austria, Hungary, Slovakia, the Czech Republic, Poland and
Sweden with mean differences not exceeding 0.8 t ha−1. In the water-
limited simulations significant differences are identified only in 5
countries out of 28, all showing higher mean yield when driven by
AgMERRA, especially in Spain, Luxembourg and Slovakia (Fig. S6 in the
Supplementary material).

ERA-I driven simulations are also very well correlated with the
MarsMet-driven ones for both potential and water-limited conditions
(Fig. S7 in the Supplementary material). In terms of mean differences,
the ERA-I driven water-limited simulations are not statistically different
from the MarsMet-driven ones, except in Greece and Bulgaria (Fig. S8 in
the Supplementary material). While, they are significantly higher
(w.r.t. the Mars-Met mean yield values) in western, central and south-
eastern Europe (Fig. S8 in the Supplementary material).

When compared to the FAO reported yield values, the AgMERRA
driven simulations in the EU28 countries perform reasonably well
(w.r.t. the MarsMet driven simulations), except for Germany, Denmark,
Austria, Slovakia and the Czech Republic (Fig. 8). While, AgMERRA
outperforms MarsMet in Poland, Lithuania and Latvia. ERA-Interim also
performs well when compared to MarsMet in reproducing the FAO re-
ported yield time series, except for Germany, Denmark and Greece.
Moreover, it is characterised by (weak) significant correlations also in
Ireland, the Netherlands and Lithuania (Fig. S9 in the Supplementary
material).

3.3. Maize

The results for maize yield simulations are very similar to the wheat
ones. At NUTS3 level, correlations between AgMERRA and MarsMet
driven simulations are good in almost all countries for both potential
and water-limited conditions (Fig. 9). 11 and 15 countries (for potential

Fig. 2. Taylor diagram of the monthly mean temperature (left panel) and cumulated precipitation (right panel) derived from AgMERRA with respect to MarsMet,
here used as time-varying reference in the period 1980–2010. Each point in the diagram reports the comparison of the AgMERRA monthly variables in a specific
month with the MarsMet variables of the same month. Colours are associated with the four meteorological seasons. Blue, green, yellow and violet represent,
respectively, winter, spring, summer and autumn. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 3. Taylor diagram of the SPEI-1 derived from AgMERRA with respect to the
MarsMet SPEI-1, here used as time-varying reference in the period 1980–2010.
Each point in the diagram reports the comparison of AgMERRA SPEI-1 in a
specific month with MarsMet SPEI-1 of the same month.
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Blue, green, yellow and violet represent, respectively, winter, spring, summer and autumn  

Source: Toreti et al., 2019
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ported yield time series, except for Germany, Denmark and Greece.
Moreover, it is characterised by (weak) significant correlations also in
Ireland, the Netherlands and Lithuania (Fig. S9 in the Supplementary
material).
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ones. At NUTS3 level, correlations between AgMERRA and MarsMet
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and water-limited conditions (Fig. 9). 11 and 15 countries (for potential

Fig. 2. Taylor diagram of the monthly mean temperature (left panel) and cumulated precipitation (right panel) derived from AgMERRA with respect to MarsMet,
here used as time-varying reference in the period 1980–2010. Each point in the diagram reports the comparison of the AgMERRA monthly variables in a specific
month with the MarsMet variables of the same month. Colours are associated with the four meteorological seasons. Blue, green, yellow and violet represent,
respectively, winter, spring, summer and autumn. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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MarsMet SPEI-1, here used as time-varying reference in the period 1980–2010.
Each point in the diagram reports the comparison of AgMERRA SPEI-1 in a
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similar skill throughout all spatial scales, whereas
slightly lower performance is identified for ERA-I. The
skill of ERA-I-Land is below the skill of all the other
reanalyses, most probably due to sudden change after
1990, as described in the previous subsection. It should
be emphasized that before that year the skill of ERA-I-
Land is higher than the ones estimated for both ERA-I
and JRA-55, especially when considering the 75th
percentile threshold.
Results suggest that skillful spatial scale is temporally

varying. A scale of 2.258 appears to be a skillful scale for
AgMERRA using the 75th percentile threshold. For
ERA-I and JRA-55, the skillful spatial scale varies
between 2.258 between 1990 and 2000 and 3.758 during
the rest of the analyzed period. Considering the 90th
percentile, the skillful spatial scale of 3.758 prevails in

ERA-I, JRA-55, and AgMERRA; ERA-I-Land has a
comparable skillful spatial scale before 1989, but it
drops substantially after that year.

d. Drought

In termsof interannualdrought variability,APHRODITE
and CHIRPS tend to agree except over Myanmar,
Cambodia, and the northwestern part of the domain
(not shown). Consistency between drought-affected
areas can be found for events such as the one in 1987
(northwestern India, Pakistan, and the Tibetan Pla-
teau), 1997 (central India, central-western part of
China, and parts of southeastern Asia), and 2002
(northwestern India, Pakistan, central China, and the
North China Plain) (e.g., Zou et al. 2005; Wang 2006).
The drought events shown by APHRODITE in 1999

FIG. 7. Mean zonal differences in the summer accumulated precipitation of the four reanalyses w.r.t. (top) APHRODITE and (bottom)
CHIRPS. Values (in mm) are presented for period between 1981 and 2007.

FIG. 8. Distributional comparison of daily rescaled summer precipitation of the four different reanalyses w.r.t. (top) APHRODITE and
(bottom) CHIRPS. Shown is the statisticA [Eq. (3)]. Higher values are associated with large differences in the distributions. White areas
denote nonsignificant differences.
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Mean zonal summer precipitation in Monsoon Asia 
Source: Ceglar et al., 2017
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Main wheat producing regions of the world 
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for low-dimensional problems14, while copula-based approaches have also been applied to characterise com-
pound events15. Often, the term ‘compound’ has been used to identify the concomitant (within an a priori cho-
sen temporal lag) occurrence of events (extremes or not) leading to harmful events (considered as extreme) of 
socio-economic relevance. The summer of 2010 in Russia may be taken as an example of such an event, where dry 
conditions, fires, pollution and anomalous heat contributed to the extreme event in question. However, a broader 
definition of compound climate events has recently been proposed16. Here, we focus on a class of extremes that 
could be seen as a subset of compound events, i.e. concurrent extremes. These events are represented by extremes 
of different types occurring within a specific temporal lag, either in different locations or at the same one, as well 
as by extremes of the same type occurring in two different locations within a specific time period. Concurrent 
climate extremes pose a serious threat in terms of potential impacts in key socio-economic sectors which are 
highly interconnected at the global scale.

To achieve a better understanding of concurrent extremes, while avoiding any a priori strict assumptions of 
(in)dependence, complete randomness behaviour and homogeneity of the risk of an event, we propose an innova-
tive non-parametric statistical approach. Then, we use this approach to investigate two types of extremes (namely 
large-scale heat stress and drought) that have occurred in the 8 key wheat producing regions of the world between 
1980 and 2010 (Fig. 1 and Table 1 in the Supplementary material). We analyse the dependence of both heat stress 
and drought events within each of the eight regions, the dependence among different regions and finally their 
inter-dependence. Thus, the outcomes of this investigation provides insight into the probability of experiencing: 
heat stress/drought events when one has already occurred within a region, heat stress/drought events in a region 
when one has already occurred in another one.

Despite the specific case study shown here, we stress that this approach can be directly applied to a vast range 
of problems where concurrent extremes play an important role.

The proposed approach
Consider nR ≥ 2 spatially separated reference regions with labels in / = … n{1, , }R  (e.g. the key wheat producing 
regions) and for each, consider a collection of nC ≥ 1 spatio-temporal measurement functions 

∩∈ ∈Z x t x W t{ ( , ): , }c r r,
2* * , ∈ = …c n{1, , }C� , /∈r , with * denoting the real line and Wr denoting the 

spatial region with label r. These functions describe spatio-temporal evolutions of some measured quantities, e.g. 
heat accumulation and precipitation anomalies. In many applications, these quantities are likely to be dependent. 
Given a threshold zc for each label �∈c  (i.e. setting a threshold to identify local extreme events), we can then study 
exceedances over time in a specific region Wr, and quantify the corresponding temporally evolving spatial extension, 

Figure 1. Panel (a): Identified large-scale heat stress events (red circles) and drought (yellow stars) from 1980 to 
2010. Panel (b): Wheat production of the 8 key regions of the world from 1980 to 2016 (data from FAOSTAT). 
Panel (c): Spatial overview of the main wheat producing areas of the world (Data from MIRCA2000).

Source: Toreti et al., 2019
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Figure S2: planting months according to MIRCA2000, for each cropping category. 640 
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Figure S3: harvesting months according to MIRCA2000, for each cropping category. 643 
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Sowing and harvesting 
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Figure S2: planting months according to MIRCA2000, for each cropping category. 640 
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Figure S3: harvesting months according to MIRCA2000, for each cropping category. 643 
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Source: Zampieri et al., 2017



More would be needed… 

Agronomic data

Source: Ceglar et al., in preparation



Agronomic data

wheat yields as a function of average daily Tmax in grain filling in 3 time periods: 1980-9 (blue), 1990-9 
(gold), 2000-9 (red) 

however, improvements are still needed in the representation of the effects associated with climate extremes such as heat waves (e.g.
Rezaei et al., 2015; Liu et al., 2016).

Projected Climate Changes: A Brief Overview

Global mean temperature trend of the last century is such that the 1986–2005 average has been estimated to likely be 0.61 !C
warmer than the pre-industrial period (and likely to be comprised between 0.55–0.8 !C). The 2015 was the first year with global
mean temperature exceeding 1 !C the preindustrial levels (Hawkins et al., 2017). This warming is projected to continue in the
coming decades and by the end of the 21st century it is estimated with high confidence to (with respect to the period 1850–
900; IPCC, 2013): likely exceed 1.5 !C under three scenarios (RCP6.0, RCP4.5 and RCP8.5); likely exceed 2 !C under two scenarios
(RCP6.0 and RCP8.5). Precipitation is projected to significantly change as well by the end of the century; however, its changes will
be seasonal and regional dependent. For instance, regions in the mid-to-north latitudes of the Northern Hemisphere are projected to
experience an increase in winter precipitation, while the Mediterranean and Northern Africa regions as well as Central America are
projected to be affected by a reduction in winter precipitation (Knutti and Sedlacek, 2013). Extremes events are also projected to
intensify and occur more often in the coming decades. By the end of the century, heat waves such as the Russian one of 2010
will become the norm (Russo et al., 2014). Heavy precipitation events are projected to intensify (more than 20% under the
RCP8.5 scenario) in all seasons in the middle and high latitudes of both hemispheres by the end of the century (Toreti et al.,
2013). Finally, Mediterranean-climate regions of the world and the Amazon region are projected to become hot-spot for drought
risk (Carrao et al., 2018).

Impacts on Crop Yields

Wheat, maize, rice and soybean are the most important crops of the world in terms of human caloric intake; their global production
in 2016 (FAOSTAT, 2018) reached, respectively:"750Mtonnes ("220 Mha harvested area),"1060Mtonnes ("187 Mha harvested
area), "741 Mtonnes ("160 Mha harvested area), "335 Mtonnes ("122 Mha harvested area). Therefore, many studies have
focused on investigating climate change impacts on those four crops. Understanding and modelling the impacts of climate change
is a complex task as critical crop processes, such as photosynthesis and respiration, respond nonlinearly to climate conditions during
their growing period (Porter and Semenov 2005) and extremes, such as heat waves, can compromise pollen viability, induce
sterility, leaf senescence and thus reduction in both grain number and size (Rezaei et al., 2015, Siebert and Ewert, 2014 and refer-
ences therein). At the same time, high temperatures can contribute to water stress by enhancing soil water demand and reducing soil
water supply (Lobell et al., 2014b).

The crop dependence on temperature and the effects of high temperatures in the critical phase from flowering till harvesting is
shown in Fig. 1. Wheat yields (as collected from all the producing regions of the world) have an exponential link with the average
maximum daily temperature of the period from flowering to harvesting (as represented by MIRCA, 2000; Portmann et al., 2010).
Exceptions clearly exist and are usually associated with intense irrigation practices. Fig. 1 clearly shows how sensitive wheat is on
temperature shift towards warmer conditions (and more intense extremes) as projected by climate models. The comparison of the
different periods shown in Fig. 1 highlights the impact of agronomical development and the related potential for adaptation to

Figure 1 Wheat yields (tonnes/ha) from all the producing regions of the world as a function of the average maximum daily temperature (!C) in the
period from flowering to harvesting (as given by MIRCA, 2000; Portmann et al., 2010). Colors and shapes are associated with the three selected
decadal time slices: 1980–9 (blue triangles), 1990–9 (gold squares), 2000–10 (red circles). Data from FAOSTAT (2018).

224 Climate Change and Crop Yields

Encyclopedia of Food Security and Sustainability, 2019, 223–227

Author's personal copy

Source: Toreti et al. 2019,

wheat yields in different climatic regions of the world 
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Evaluating climate models is not an 
easy task…means are usually not 
enough 
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Figure 1. Spearman-based correlation matrix of scale parameters estimated for the
eight GCMs and the gridded observations E-OBS in the period 1966-2005. The colours
and the shape of the ellipses are associated with the correlation values. The last column
refers to the same analysis without the southern part of the domain (south of 38.25
degrees North).

to hold between all models, but it is much weaker when simulations and observations

are compared (Fig. 1). However, as shown in Figure 1, better results are achieved if

the southern part of the domain (south of 38.25 degrees North) is not included in the

assessment. This e↵ect might be caused by some issues of the interpolation procedure

used for E-OBS in areas where not so many stations are available. Besides the scaling

relationship, a further look to the model-observation comparison (Fig. 2) shows that

remarkable spatial di↵erences as well as similarities among models exist for the rescaled

tails. For instance, tails in the southern part of the domain are over-simulated by

all models, while the rest of the domain shows under-simulated tails, with some local

exceptions such as in Southern Spain and France (Fig. 2). Similar findings can be

observed in Figure S1 obtained by replacing the Anderson-Darling method with the

divergence method ofNaveau et al (2013)

Concerning the projections for the 21th century, Figure 3 highlights that for both

future periods (2020-2059 and 2060-2099), a slight increase (w.r.t the period 1966-2005

and higher for the end of the the current century) characterizes the estimated scale

Evaluating climate model simulated extremes
Andrea Toreti

European Commission, Joint Research Centre (JRC), Ispra, Italy

Climate extremes heavily affect all key socio-economic sectors causing losses, damages and fatalities. Understanding their dynamics and their 
projected changes is of upmost importance.  Tailored statistical methods need to be developed and applied to evaluate model simulations 

Contact: Andrea Toreti
andrea.toreti@ec.europa.eu

Assessing the reliability of estimated extremes

TORETI ET AL.: CMIP5 PRECIPITATION EXTREMES

Figure 1. Ensemble mean 50 year return levels (mm) estimated for the period 1966–2005 in boreal (a) winter and
(b) summer. Blue colored areas identify grid points where at least 75% of the models pass the goodness-of-fit test (reliable
points). Taylor diagrams for estimated 50 year return levels in winter and summer over (c, d) northern Eurasia and (e, f)
North America. The full symbols denote models with at least 75% of reliable grid points in the region.

(position and shape) of the Intertropical Convergence Zone
[Huang et al., 2004; Dai, 2006; Richter and Xie, 2008; Good
et al., 2009].

[14] For the middle and high latitudes, six out of eight
models show a spatially homogeneous tail behavior with
slightly negative and positive values of the shape parameter
(not shown). This means that the probability of precipita-
tion extremes either has a finite upper bound or decreases
approximately exponentially or slightly slower toward zero.
Nevertheless, a glance at the individual simulations reveals
remarkable intermodel differences as well as areas with
a larger probability of higher extremes. In the Euro-
Mediterranean area, northern Eurasia, and North America,
the simulations show lower intermodel variability and higher
correlation with the observations in boreal winter (Figures 1
and S1). Conversely, for Australia, southern Asia, and the
Middle East, all seasons are characterized by larger inter-
model variability and lower correlation with the observa-
tions (Figures S1 and S2).

[15] For the period 2020–2059, both scenarios reveal
reliable and consistent changes only for scattered areas in
the middle and high latitudes of both hemispheres (Figures 2
and S3). A similar global pattern with regional differences
is estimated for the other seasons (not shown). It is worth
noting that the intensity reduction over the northern tropical

Atlantic is strongly seasonally dependent as it almost dis-
appears in boreal summer and is less pronounced in spring
and autumn.

[16] Toward the end of the 21st century (2060–2099),
a similar pattern but with more pronounced changes com-
pared to the middle of the century is projected under the
RCP8.5 scenario. For the RCP4.5 scenario, for which the
radiative forcing stabilizes in the second half of the 21st
century, changes in extremes are less pronounced. Con-
sistent and reliable increases of precipitation extremes are
obtained for all seasons over the middle and high lati-
tudes of both hemispheres mainly for the RCP8.5 scenario.
In the SH, the spatial pattern of consistent and reliable
areas does not show a marked seasonal dependence. In
the NH within the zone showing consistency and relia-
bility, different areas can be highlighted for each season
(potentially connected with sea ice changes [e.g., Budikova,
2009; Screen et al., 2013]), for instance, northern Eurasia
in boreal winter and the North Pacific and northwestern
Atlantic/Arctic Ocean in boreal summer (Figure 2). Merid-
ional differences are clearer in the zonal means (Figures 3
and S4). They show more pronounced increases over the
high latitudes of both hemispheres in all seasons, with the
exception of the NH in the mid-century boreal summer,
associated with larger intermodel variability. Over the SH,
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Extremes can be characterised and analysed by using tools derived within the Extreme 
Value Theory, Daily exceedances (w.r.t. a high threshold) can be modelled by using the 
Generalised Pareto Distribution. The goodness-of-fit can be assessed by applying a 
Modified Anderson-Darling Statistic combined with a bootstrap procedure (Babu and 
Toreti, 2016; Toreti et al., 2013)

Estimated 50-year return levels of winter daily precipitation. Ensemble of 
8 GCMs from CMIP5, 1966-2005. Source: Toreti et al., 2013.

Evaluating model simulations w.r.t. observations and 
assessing projected changes

Bottom-Left Panel: Spearman-based correlation matrix of scale parameters estimated for 8 CMIP5 GCMs and E-
OBS in the period 1966-2005. Main panel: Rescaled-tail comparison w.r.t E-OBS. Colours are associated with 

the values of the 2-sample modified Anderson-Darling statistic with the sign given by the estimated KLD-
divergence. Blank areas are associated with non-significant values. Source: Toreti and Naveau (2015).

Complex projected changes in extremes and/or different representation of 
extremes w.r.t. observations can be identified by using a non-parametric 
approach based on modified 2-sample Anderson-Darlin statistic and direct 
divergence applied to rescaled tails. The comparison of the estimated 
scaling factors can give also important insight into the representation of 
climate extremes and information on their changes (Toreti and Naveau, 
2015).  

Characterising the spatio-temporal occurrence of extremes

a) Projections of the 2018-like drought events till 2100 
under RCP8.5 in seven climate model runs

b) Estimated frequency of occurrence of the 
projected 2018-like drought events 

c) Estimated spatio-temporal frequency of the 
projected severe drought events
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a) Projections of the 2018-like drought events till 2100 
under RCP8.5 in seven climate model runs

b) Estimated frequency of occurrence of the 
projected 2018-like drought events 

c) Estimated spatio-temporal frequency of the 
projected severe drought events
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Estimated frequency of occurrence of 2018-like drought events in Central Europe. 
HELIX model simulations . Source: Toreti et al. 2019

Estimated spatio-temporal frequency of extreme drought events in Central Europe. HELIX 
model simulations . Source: Toreti et al. 2019.

Point process theory can be applied to characterise the spatio-temporal 
evolution of climate extremes and also for concurrent climate events. The 
spatio-temporal intensity function can be estimated with a resample-
smoothed Voronoi estimator  (Toreti et al., 2019; Moradi et al., 2019). 
While concurrent climate extremes (in both space and time) can be 
analysed by using multi-type point processes with no dependence and 
homogeneity assumptions (Toreti, Cronie and Zampieri, 2019). 

a) Projections of the 2018-like drought events till 2100 
under RCP8.5 in seven climate model runs

b) Estimated frequency of occurrence of the 
projected 2018-like drought events 

c) Estimated spatio-temporal frequency of the 
projected severe drought events

0

2

4
6

8

r1

r2

r3

r4

r5

r6

r7

• Babu GJ, Toreti A. 2016. A goodness-of-fit test for heavy tailed distributions with 
unknown parameters and its application to simulated precipitation extremes in the 
Euro-Mediterranean region. Journal of Statistical Planning and Inference 174, 11–19.

• Toreti A et al. 2013. Projections of global changes in precipitation extremes from CMIP5 
models. Geophysical Research Letters, 40, 4887–4892.

• Toreti A, Naveau P. 2015. On the evaluation of climate model simulated precipitation 
extremes. Environmental Research Letters 10, 014012. 

• Toreti A et al. 2019. The exceptional 2018 European water seesaw calls for action on 
adaptation. Earth’s Future, in review.

• Moradi MM et al. 2019. Resample-smoothing of voronoi intensity estimators. Statistics 
and Computing. doi: 10.1007/s11222-018-09850-0.

•  Toreti A, Cronie O, and Zampieri M. 2019. Concurrent climate extremes in the key 
wheat producing regions of the world. Scientific Report, in press.  

References

Source: Toreti and Naveau, 2015



Climate projections
Bias Adjustment 

Source: Dosio, 2016

8 

variability (shown as the maximum and minimum models’ values) is also very large (up to 
6ᵒ C), with the coldest RCM underestimating TX up to 5ᵒ C over, e.g., IP.  

After bias-adjustment results are, on average, very similar to the observations; notably, 
however, the extreme heat wave observed in 2003 lies outside the range of both original 
and bias-adjusted results over the Alps and France. In addition, the statistically significant 
(at 5%) trend over, e.g., Eastern Europe (EA, 0.07ᵒ C/year) is not captured by all models: 
only 3 runs show a significant trend close to the observed one, with values ranging between 
0.06ᵒ C/year and 0.07ᵒ C/year. Crucially, bias-adjusted results are very similar to the 
original ones, as bias-adjustment does not alter significantly the trend. 

Figure 1. Yearly evolution of present-day (1981-2010) summer maximum temperature (modified 
from Dosio, 2016). Observed (black), original (blue) and bias-adjusted models’ results (red) are 

shown for each sub-domain. Units: degree K. 

RCMs tend to generally overestimate present-climate daily rainfall, especially over the Alps, 
France, and Scandinavia (Figure 2), a feature that was already observed for the European 
Union FP6 project ENSEMBLES set of simulations (e.g., Dosio and Paruolo, 2011). In 
addition, it is important to note that the models’ error is distributed differently across the 
range of precipitation intensities, with higher precipitation intensities (e.g., larger than 10 
mm/d) being usually overestimated (Dosio, 2016). As expected, bias-adjusted results are 
closer, on average, to the observed values, although individual events, such as the high 
intensity precipitation over IP in 1996 may not be entirely captured.  
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Bias Adjustment is not an easy task… 
especially when more variables are needed 

2. One workshop, four questions

In May 2017 a workshop was organized at the European
Commission Joint Research Centre, in Ispra, Italy, to discuss the role
and effect of climate data B-A on crop models as introduced above. The
discussion developed around four crucial research questions:

Q1: What is the impact on crop models of independent B-As of
coupled variables?

Q2: What can B-A offer to suit crop models specifically?
Q3: What can B-A not solve?
Q4: What next?
The result of the discussion and possible answers to the questions

are presented hereafter. The latter may not be definitive or generally
agreed upon but yet they can be the stimuli for a more general dis-
cussion within the widespread community of climate scientists, agri-
cultural modelers and statisticians. Each of the next four section titles
addresses a question and includes a synthetic answer to it.

3. Q1: What is the impact on crop models of independent B-As of
coupled variables? A sensitivity yet to be quantified.

The susceptibility of crops to unfavorable weather conditions and
extreme events during the growing season is very well known (e.g.
Lobell et al., 2011; Lesk et al., 2016). Crop models typically require data
on soil, crop characteristics, daily (or sub-daily) precipitation, down-
welling short- and long-wave radiation, air temperature, relative hu-
midity/partial water vapor pressure, wind speed (e.g. Zampieri et al.,
2017a; Ewert et al., 2015; Boote et al., 2013), and information on crop
management. Errors in the mean, extreme values, and time variability
of climate parameters greatly affect crop models regardless of the
spatial resolution of RCMs or dynamical downscaling of GCMs.

An example of the effect of independent adjustment of variables is
presented in Fig. 1, where the observed, biased, and bias-adjusted va-
lues of Heat-Degree-Days (HDD), defined as the time integral of tem-
peratures above 30 °C during the summer period, vs precipitation in
Romania are shown. The univariate B-A (Dosio, 2016) slightly corrects
the offset of the simulation from the observation, while the decoupled
treatment of the variable produces an almost constant reduction

throughout the precipitation range. Precipitation and temperature are
key factors for crop growth (Ceglar et al., 2018) and one can expect
important consequences when these data are used within a crop model.
Similar problems may arise when direct radiation affecting the plant
growth and correspondingly the air temperature, or soil moisture and
precipitation are not adjusted jointly.

Alongside the bias adjustment of coupled variables, another critical
and very relevant point in relation to climate and crop models was
raised during the discussion. It relates to the capacity of the climate
models to capture large-scale weather features and extremes and their
effects during different phases of the crop growth (Casanueva et al.,
2014; Ceglar et al., 2017; Zampieri et al., 2017a). In fact, capturing the
conditions preceding and during the growing season plays a role in
surface-related processes like soil moisture. Summer heat waves in
Europe, for example, were shown to be often preceded by dry springs
(Zampieri et al., 2009; Mueller and Seneviratne, 2012; Prodhomme
et al., 2016) which affect crop yields (Ceglar et al., 2018). This issue
was outlined as relevant to B-A for agricultural applications and in
many cases an issue to be addressed prior to B-A of climate data (see
Section 5).

Although several studies have been performed in the past to de-
termine the importance of B-A in crop modeling (e.g. Liu et al., 2014;
Hawkins et al., 2013; Ceglar and Kajfež-Bogataj, 2012), few efforts have
systematically assessed the existing B-A methods and the impact of the
treatments of the data on crop models. The need to systematically and
quantitatively estimate the impact of these two issues on crop models
has therefore been recognized and acknowledged, as well as the need to
organize community activities involving statisticians, climate modelers,
and crop modelers to address them.

4. Q2: What can B-A offer to suit crop models specifically?
Classification and characterization of B-A methods

Having identified B-A of coupled variables as a potentially im-
portant issue for agricultural use of climate model results, the workshop
provided an opportunity to survey the existing B-A methodologies and
categorize them in relation to agricultural applications.

Bias-adjustment of climate variables for crop modeling has a multi-
dimensional character that can be treated in different ways, namely:

• Multi-variable B-A: in addition to adjusting the marginal distribution
of each variable, the dependencies between variables can also be
adjusted.• Multi-site B-A: climate variables are often needed at multiple loca-
tions; one could therefore correct not only the marginal distributions
of a variable at the various sites, but also the spatial (inter-site)
dependence structure.• Multi-variable and multi-site B-A: in addition to correcting both the
spatial and inter-variable dependency structures, the cross-de-
pendencies of a variable at different locations could also be corrected.

For crop model applications one may also need to include temporal
dependencies in the adjustment, whether in univariate B-A (Johnson
and Sharma, 2012), a multi-site B-A (Mehrotra and Sharma, 2015), or a
multi-variable B-A (Mehrotra and Sharma, 2016). Most of the B-A
methods currently used work in a univariate context, wherein the dis-
tribution of a univariate time series at a single spatial location is ad-
justed independently from every other variable and location. Recently a
few multivariate methodologies have been proposed and applied to
climate model data (e.g., Bardossy and Pegram, 2012; Piani and
Haerter, 2012; Mao et al., 2015; Vrac and Friederichs, 2015; Cannon,
2016, 2018; Dekens et al., 2017; Li et al., 2017; Vrac, 2018). The in-
creased detail in treating multiple variables and locations by any mul-
tivariate B-A method can modify the temporal sequencing and prop-
erties of the adjusted data and, depending on the method, may produce
a loss of coherence with the driving climate model or observations.

Fig. 1. Loess-fit of observed and simulated summer HDD and Precipitation.
HDD is defined as the time integral of temperatures over 30 °C. RCA4 regional
climate model, driven by MPI-M-MPI-ESM-LR GCM, provided data over the
period between 1981 and 2010.
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drought, and it could be used to benchmark other
models.

Nevertheless, our results demonstrate the feasi-
bility of the development of an operational early
warning system in Europe. Due to inherent and large
uncertainties in seasonal forecasts (both empirically
or dynamically based), predictions need to be
expressed probabilistically. Our probabilistic verifi-
cation results suggest that operational forecasts of
summer drought in Europe can be attempted, but
users need to be well trained on how to best interpret
and use these forecasts, given the not-optimal
reliability here shown. For instance, from the users
perspective, it is important to assess whether these
forecasts can predict the occurrence of drought
events and it is important to know if the predicted
probabilities correspond to the observed probability
of the events. A calibration of probability forecasts
might be necessary in the opposite case to make the
forecasts reliable (e.g. by using the variance inflation
technique as applied in [51]). Although these kind of
predictions (S4 or ESP) are fine when there is an
already established drought, additional studies are
needed to forecast the onset and the end of these
events [15], for which other systems, based on
shorter accumulation scales, have been already
evaluated [52].

This work has provided the first assessment of
meteorological drought seasonal prediction in Europe,
and can also serve as a baseline study for future
analyses including other dynamical forecast systems,
more sophisticated empirical methods [53], more
complex estimation of the PET [54, 55], other
hydrological variables (e.g. [56, 57]), and higher
resolution.

The results described here are obtained by
following a solid, relatively simple and transparent
statistical methodology that can also be applied to
other areas. In order to ease the reproducibility of the
methods and results, and to facilitate the applicability
of these predictions, all the scripts used for this study
and the SPEI data (observed and predicted) are freely
available for research purposes by contacting the
corresponding author. In this context, it is worth
noting that the ability to generalize the methods
themselves is technically straightforward, but the
development of a prototype of an operational forecast
system is feasible only where/when reliable observed
climate variables are available in near-real time.
Indeed, a large obstacle to apply these methods in
other areas may be in the uncertainties of the observed
near-real time data used for drought monitoring and
to develop and evaluate the predictions [16, 58]. Thus,
it is recommended that, before implementing our
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to the observed CSIlow events, the Equitable Threat Score (ETS) is calculated for CSIlow forecasts in each country. 
Figure 4a shows the derived ETS assuming that an event is correctly forecast each time at least 60% of ensemble 
members predict CSIlow (Fig. S5 provides similar graphs for other thresholds). In most of the cases the forecasts 
based on realistic land-surface initialisation outperform the ones based on climatological initialisation, confirm-
ing the aforementioned overall results. Additionally, INIT06 generally outperforms INIT05. However, it should be 
noted that also in the case of INIT06, the best ETS (identified in south-eastern Europe) still indicates rather mod-
erate forecast skill, as the CSIlow events are correctly predicted in approximately one third of the cases (regardless 
of the choice of the probability threshold defining the event).

In 2003, the observed yield anomalies are in the lower quartile range in all countries but Macedonia and 
Romania (Fig. 4b). INIT05 predicts an anomalous event already in May in all countries with probability higher 
than 50% (70% in western Europe and several central European countries). The forecast probability of low yield 
event increases using the forecast initialised in June in south-eastern Europe, however the event is not anymore 
predicted in France and Belgium. While drought and heat wave are correctly forecast in Romania (not shown), 
their magnitude is overestimated, leading to the CSI forecast in the lower quartile range. The role of soil moisture 
initialisation in 2003 has been extensively studied32 and it is also confirmed by these findings.

In 2007, south-eastern Europe experienced severe summer drought and heat wave events33, resulting in sub-
stantially negative maize yield anomalies (Fig. 1a). CLIM06 fails to predict yields being in the lower quartile range 
in south-eastern Europe, while the opposite signal is given by INIT06 (Fig. 4c). Indeed at the time of forecast 
initialisation in May and June, the soil moisture levels were depleted due to the persisting drought from the 
preceding winter in most of central and south-eastern Europe. This example clearly demonstrates the impor-
tance of realistic land-surface initialisation for agricultural forecasting in south-eastern Europe. These findings 
are supported by previous assessments of realistic versus climatological soil moisture initialisations, indicating 
that forecast systems better simulate the warmest summers over south-eastern Europe when these events follow 
pronounced dry initial anomalies18. Considering the rest of Europe, CLIM06 generally fails to predict yield anom-
alies, except in France where high yield anomaly is forecast. INIT06 correctly captures the high yield anomaly in 
France, but not in Poland. Moreover, low yield anomalies in Slovakia and Macedonia are not accurately forecast.

Conclusions
This study does not only provide a predictability assessment of both drought and heat stress events relevant 
for maize yields in Europe, but it also demonstrates how a proper land-surface initialisation in a seasonal cli-
mate forecast system can bring skill improvement in countries where a climatological land-surface initialisa-
tion fails. Given the still rather poor-to-moderate reliability of seasonal CSI forecasts, further efforts are clearly 
necessary to increase the skill of relevant agro-climatological predictors in Europe during summer. However, 
this study can serve as a baseline for future analyses including other experimental efforts to improve seasonal 
climate forecasts, such as increase in spatial resolution16. Additionally, other types of predictor variables, such as 

Figure 2. Effects of land-surface initialisation in the seasonal climate forecast. (a) Pearson correlation 
between the CSI derived from E − OBS observational data and different seasonal forecast experiments 
using climatological (CLIM05 and CLIM06 for May and June runs, respectively) and realistic land-surface 
initialisation (INIT05 and INIT06 for May and June runs, respectively). The forecast CSI is calculated from 
initial condition ensemble average for each experiment. The significance of correlation is indicated by the size of 
symbols; larger size indicates significant correlations (p < 0.05), whereas smaller size indicates non-significant 
correlations. (b) same as (a) but correlation is calculated between the forecasted CSI and the observed 
standardised maize yield anomalies (Ystd,*).

Source: Ceglar et al., 2018
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rainfed winter wheat production (see online supple-
mentary figure S1), characterized by a standard
deviation of the production anomalies of about 12
MTons corresponding to the 25% of the mean
national production of 48 MTons per year (2000–2015
average).

Wheat production interannual variabilities of EU
(rainfed, mainly winter wheat), China (mainly rainfed
and irrigated winter wheat) and USA (rainfed winter
wheat) are following in decreasing order. Standard
deviations consist of about 7 MTons that correspond
to the 5%, 6% and 11% of the averaged national
productions of 140, 107 and 57 MTons, respectively.
Ukraine (rainfed winter wheat), Australia (rainfed
winter wheat), Canada (rainfed spring wheat) and
India (all agro-management types) are characterized
by decreasing standard deviations (between 5 and
3 MTons) corresponding to the 27%, 19%, 14% and
4% of the averaged productions of 22, 24, 25 and
80 MTons, respectively.

These eight countries and regional aggregations
together produced, on average, 495 MTons of wheat,
corresponding to the 77% of the global amount of
640 MTons. The associated standard deviation almost
equals the global value of 22 MTons, which is 3.4% of
the total production (and the 4.4% of the sum of the 8
producers). Quantitative analysis of the fluctuations
attributable to the individual regions displayed in
figure 1(a) reveals that concurrent anomalies of two of
these producers are able to explain more than 50% of
the global inter-annual fluctuations in almost all years

considered, if no compensating anomalies of the
opposite sign are present.

Figure 1(a) also shows the occurrence of climatic
extremes in the wheat cropping regions, as represented
by the CSI. During the period 1980–2010, significant
negative production departures from the mean global
tendency are often captured by the CSI, especially in
the years 1987–1988, 1994, 2003, 2006–2007 and 2010,
coinciding with the observed spikes in cereal prices
(see figures 7-3 in IPCC-WG2). We observed a
significant level of consistency also in the years
characterized by positive production anomalies and
less frequent damaging climatic extreme events, like in
1986, 1992–1993, 1997, 2004–2005 and 2008–2009.
The abundant wheat production in 1990, being
characterized by moderate climate conditions, repre-
sents an outsider in our analysis. That was the last year
of intensive fertilization in Russia (Lioubimtseva et al
2015), which is the main contribution of the recorded
production anomaly.

Overall, most of the largest anomalies that could
be related to climate variability are induced by the
major producers, while smaller and/or compensating
positive and negative anomalies characterize the
‘normal’ years. This is partly expected because the
single CSI anomalies are weighted by the national
productions in figure 1(a). However, the ranking of
the anomalies contributions by region slightly differs
from the one of production: the largest contributor to
the variance of the CSI is Europe, followed by the US,
China, Russia and India.
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Figure 1. (a) Time-series of global wheat production (FAOSTAT data) and combined stress indicator (CSI). In both time-series the
sum of all the negative and positive country-scale anomalies is shown; the proportions attributed to the 8 major producing regions are
highlighted in colors: Europe (EU28) in cyan, China in yellow, India in light green, Russia in red, USA in blue, Canada in dark green,
Ukraine in orange and Australia in violet. The contribution of all remaining countries is represented by the white areas. The CSI is
weighted with the average national production values to ease the comparison between the two time-series. (b) Linear correlations
between the combined stress indicator and the national yield data over wheat planted areas (regions with small correlations, or not
passing a 10% two-sided correlation test are displayed in grey); (c) portion of the explained variability by heat anomalies alone (i.e. the
heat sensitivity parameter); (d) role of the water stress as accounted in the combined model (i.e. the sign of the soil moisture sensitivity
parameter, see Data and Methods for explanations).
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When will current climate extremes affecting maize production become the new 
normal?  
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Key Points: 

x Since 1980s, climate has become more favorable for maize in the U.S., balancing the 
increase of heat stress and drought observed in the other regions 

x Global warming will affect maize production severely in most of the world, including the 
U.S., when the 2K global warming level is reached 

x Several major and most minor producers that depend primarily on maize will be affected 
already at the 1.5K global warming level or even earlier 

 
 

 

Graphical abstract: Global 
FAOSTAT maize production (black 
dots). The colored bars represent the 
production anomalies diagnosed in 
the U.S., China, the sum of Brazil and 
Argentina, Europe, the sum of 
Ukraine and Russia, and the sum of 
all the other countries. The grey dots 
indicates the global maize production 
that would have been observed if 
there were no heat stress and drought. 
The pie chart shows the regional 
production shares. The bottom panel 
represents the maize losses by heat 
stress and drought estimated from an 
ensemble of high resolution global 
climate simulations in the historical 
period and under the rcp8.5 emission 
scenario. The orange bar indicates the 
median timing when the past severe 
losses due to heat stress and drought 
become normal; the yellowish region 
indicates the ensemble spread of these 
estimated timings. Vertical lines 
indicate the median timings when 
1.5°C, 2°C and 3°C global warming 
levels compared to the preindustrial 
period are reached in the simulations 
ensemble.  

Maize and climate  
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Fig. 6. As Fig. 4  but for winter wheat.

Fig. 7. Identified meteorological variables and their significant influence on  inter-annual variability of winter wheat and grain maize yields.

The results of this study can contribute to  the improvement of
operational crop yield forecasting systems, such as the one used
by the Joint Research Centre (MCYFS, 2015 ). This study can also
contribute to the development/improvement of long-term (e.g.
seasonal) crop yield forecast. The derived statistical models could
be easily integrated in a seasonal crop yield forecasting system by
using the probabilistic weather forecasts of the identified mete-
orological variables. The proposed approach can be  also used for
climate change studies, providing a  robust framework to assess the
impact of climate change, as projected by climate models, on crop
yields. Finally, we  envision that similar analysis of dynamic crop
model results could reveal important information on the accuracy
of the dominant processes included in mechanistic crop models to
model yields at regional level. The proposed statistical framework
could be applied for evaluating dynamic crop model simulations by
building an emulator of dynamic crop model. A similar approach
to analyse the impact of intra-seasonal climate variability on crop
yields can also be  extended to other regions of the world, pro-
vided sufficient length of crop yield and explanatory meteorological
variables time series.

6. Conclusions

We  have assessed the impact of intra-seasonal climate variabil-
ity on regional crop yields by analyzing multi-annual time series
of winter wheat and grain maize yields in France at département
level. Partial least square regression has been used to identify the

key intra-seasonal meteorological factors driving inter-annual crop
yield variability. For both crops, apparent spatial differences have
been observed in  the timing of impact as well as in the meteoro-
logical variables having (air temperature, precipitation and solar
radiation) the highest relevance. A graphical summary of the main
findings is  presented in Fig. 7 .

In  the case of grain maize, crop yields are mainly influenced by
weather in  July and August, even in  irrigated regions. In  large parts
of southern, eastern and north-eastern France, summer tempera-
ture has been identified as the most important factor, with positive
temperature anomalies leading to  reduction in crop yields. Global
radiation in the early growing season is the main factor over the
westernmost part of France. Grain maize yields in eastern France
are not strongly affected by climate conditions in August. The rain-
fall effect on crop yield is difficult to detect in irrigated regions.
Indeed, global radiation and temperature are the dominant cli-
matic variables affecting inter-annual maize yield variability over
extensively irrigated areas of south-western and southern France.
Less irrigated regions in  south-western, western-most and central
parts of France are more sensitive to rainfall and global radiation
variations.

Winter wheat in  most regions is more sensitive to  weather con-
ditions in  late autumn/early winter (with the exception of some
départements located in central and northern France), spring and
in some cases early summer. The exact timing of the sensitivity,
however, is highly variable across the country. Weather in autumn
affects the preparation of seedbed and subsequent sowing, when
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variations.

Winter wheat in  most regions is more sensitive to  weather con-
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in some cases early summer. The exact timing of the sensitivity,
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Fig. 1. Different production levels as determined by growth defining, limiting and reducing factors (a). Yield potential (Yp) of irrigated crops without limitations due to  water
deficiency or surplus is  determined by  solar radiation (R), temperature regime (T), and growth duration from planting to  maturity. For crops grown under rainfed conditions,
the  water-limited yield (Yw) represents the ceiling yield (Van Ittersum and Rabbinge, 1997). The exploitable yield gap (b) represents the difference between average yields
and  80% of Yp or Yw,  as explained in the text (modified from Lobell et al.,  2009).

Both Yp and Yw are defined by crop species, cultivar, climate,
soil type (Yw), and water supply (Yw), and thus both Yp and Yw are
highly variable across and within regions. However, it is impossible
for a large population of farmers to  achieve the perfection in crop
and soil management required to achieve Yp or Yw, and generally
it is not cost-effective to do  so because yield response to applied
inputs follows diminishing returns when farm yields approach ceil-
ing yields (Koning et al., 2008; Lobell et al., 2009). Also, there may
be valid reasons from a resource use efficiency point of view (De
Wit, 1992) to aim for closing yield gaps at a  lower yield level thresh-
old relative to  Yp or Yw under conditions with greater uncertainty
in factors governing these ceiling yields—such as high tempera-
tures, variable rainfall, high winds that promote lodging, and so
forth. Because average farm yields tend to plateau when they reach
75–85% of Yp or Yw, the exploitable yield gap is smaller than Yg
(Van Ittersum and Rabbinge, 1997; Cassman, 1999; Cassman et al.,
2003 ). Taken together, Yp, Yw, Yg, and WP  determine crop pro-
duction potential of current cropping systems with available land

and water resources. A schematic representation of  these critical
parameters is presented in  Fig. 1.

We note, that Yp, Yw, Ya and Yg must be estimated for a defined
geographical unit and time frame. They can be  quantified for indi-
vidual farmers’ fields for a given year, or for larger areas and longer
time periods, by accounting for their spatial and temporal variation
using appropriate upscaling procedures (Ewert et al., 2011). And
while climate change may  alter Yp, Yw,  Ya, and Yg, through direct
changes in temperature and water availability or farmers’ adap-
tations in  terms of planting dates and cultivar maturities, and also
(Ya and Yg) indirectly through effects on prevalence and severity of
pests and diseases, this manuscript focuses on quantifying current
values of the various yield levels for two  reasons. First, because
current values provide the basis for identifying causes of yield
constraints and magnitude of potential yield increases. Second,
because accurate estimations of today’s Yp and Yw are essential
to  benchmark effects of climate change on future yields and food
security.

different approaches used to simulate the response of photosyn-
thesis and transpiration to increasing [CO2] have been reviewed
before (Tubiello and Ewert, 2002) and are not repeated here.
Presently, most crop models account to some degree for the effect
of increasing [CO2]. All cropmodels consider temperature effects on
various eco-physiological processes, including phenology, light

utilization/photosynthesis/respiration processes and evapotrans-
piration. Only a few consider heat stress effects (occurring when
maximum temperatures surpass critical thresholds) on acceler-
ating leaf senescence andmaturity of wheat (Asseng et al., 2011), or
affecting floret mortality/spikelet fertility of various cereals,
groundnut, sunflower etc. for periods of even a few hours around
flowering (Matsui et al., 1997; Challinor et al., 2005;Moriondo et al.,
2011; S!anchez et al., 2014; van Oort et al., 2014). While many
models contain optimum temperature ranges for photosynthesis,
none explicitly consider damage done to the photosynthetic pro-
cess by high temperatures (e.g. Al-Khatib and Paulsen, 1999).

As discussed, cropmodels include soilwater balance calculations
at various degrees of detail and consider the impact of crop water
shortage. However, there are distinct differences in how models
distribute roots over depth, calculate soil water dynamics and es-
timate crop water extraction from soil (Wu and Kersebaum, 2008).
Water shortage stress is generally simulated by using a stress index
that can be the ratio of supply to demand rate, constrained to a
maximum value of 1 (Ritchie, 1985) or a fraction of available soil
water in the rooted soil (Stapper, 1984; Amir and Sinclair, 1991;
Bindi et al., 2005; Steduto et al., 2009). The stress index is then
applied in various ways to reduce biomass production by limiting
leaf area expansion or accelerating leaf senescence, and/or, to
reduce the photosynthetic rate or radiation use efficiency. Only a
fewmodels consider excess water and oxygen deficiency in the root
zone, soil salinity and aluminium toxicity impacts on root and crop
growth (Supit et al., 1994; Asseng et al., 1995; Kersebaum, 2007).

Globally, the 1980's witnessed decreasing trends of solar radi-
ation and alterations in the proportion of its' diffuse and direct
components (Stanhill and Cohen, 2001). The decrease has been
largely attributed to increases in aerosols (Stanhill and Cohen,
2001; Liang and Xia, 2005). However, there are indications that in
the 1990's the trend was reversed for most world regions where
adequate observational facilities exist (Wild et al., 2005). As a
consequence of variations in direct solar radiation, the diffused

Table 1
Requirements and appropriateness of crop models to simulate effects of relevant
climate change factors.

Requirements Representation by major crop models

Ambient [CO2]
effect

All major crop models include [CO2] effect
but often in simplified form and based
on old experimental data or not tested

Temperature All major crop models represent
temperature effects at different levels
of detail, though often not tested

Heat stress Specific heat stress impacts
(e.g. floret mortality leaf senescence)
not considered explicitly (except for
a few of the major models) and not
tested yet

Early/Late frost
damage

Some models consider frost damage
but are not tested

Tropospheric
O3 effect

Few of the major models explicitly
includes O3 stress (except, AFRCWHEAT2-O3,
LINTULCC)

Drought stress
and excess water

All crop models include effect of water
and drought stress. Lack of oxygen
in the root zone is only considered by
a few models (HERMES, MONICA,
Lintul, WOFOST)

Diffuse radiation Only considered in a few crop models
(CERES, SUCROS)

Effect of snow
and hail

Rarely taken into account, exceptions
are available

Lodging due to strong
winds and rain

Detailed models for cereal lodging
exist, but rarely integrated in
crop models

Fig. 3. Crop management is influenced by bio-physical, socio-economic and subjective factors (preferences/perceptions), many of which are sensitive to some degree, either directly
or indirectly, to climate and weather.
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Figure 1 |Wheat model–observation comparisons. a, Global map of wheat production30 showing experimental sites (stars) representative of CIMMYT
mega-environments (ME, broadly indicated by ovals, http://wheatatlas.cimmyt.org). b, Observed (cross mark) and simulated (box plots) grain yields from
single-year experiments for the Netherlands (NL), Argentina (AR), India (IN) and Australia (AU). Simulated yields are from 27 different wheat crop
models. Partially calibrated simulated yields (larger boxes)—researchers had no access to observed grain yields and growth dynamics (blind test).
Calibrated simulated yields (smaller boxes)—researchers had access to observed grain yields and growth dynamics. In each box plot, vertical lines
represent, from left to right, the 10th percentile, 25th percentile, median, 75th percentile and 90th percentile of simulations. Standard deviation for
observed yields (based on measurements of four replicates) is shown as an error bar if known. c, Number of models within mean field experimental
variation (13.5%; ref. 19) for partially calibrated (open bars) and fully calibrated models (grey bars) for single locations (NL, AR, IN and AU for each
country) and combinations of locations. d, Relative r.m.s.e. of simulation–observation comparisons for partially calibrated (open bar) and fully calibrated
models (grey bars) of grain yield components across all four locations. LAI, leaf area index; ET, evapotranspiration.
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variation (13.5%; ref. 19) for partially calibrated (open bars) and fully calibrated models (grey bars) for single locations (NL, AR, IN and AU for each
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The agro-ecological zone methodology (used here by GAEZ-
IMAGE) was developed to assess agricultural resources and
potential at regional and global scales and has been embedded
into integrated assessment models for global environmental
change (6, 23).

3.2 Model Processes. Crop processes simulated in all or some of
the GGCMs include leaf area development, light interception
and utilization, yield formation, crop phenology, root distribu-
tion responsiveness to water availability at soil depth, water and
heat stress, soil–crop–atmosphere water cycle dynamics, evapo-
transpiration, soil carbon and nitrogen cycling, and the effect of
[CO2] (SI Appendix, Table S1). All of the GGCMs explicitly
simulate the effects of temperature and water on crop growth;
fewer models simulate, for example, the effects of specific heat
stress at critical stages of crop development or the effects of
water-logging on root function. GGCMs differ as to their simu-
lation of some processes in individual crops, such as which
models simulate rice phenology as sensitive to day length as well
as temperature.
Thus the GGCMs vary in their interactive responses to in-

creasing [CO2], rising temperature, and changes in water avail-
ability, which are the core characteristics of projected climate
changes in agricultural regions around the world (32). How the
GGCMs handle these factors and their interactions with nutrient
availability (especially N) has significant impacts on the results (41).
This GGCM intercomparison focuses on long-term yield levels

affected by inputs (climate, [CO2], water, nutrients) rather than
on short-term shocks. The effects of pests and diseases are not
included explicitly; pest vulnerability may be implicitly included
through calibration to observed yields in some of the models.
LPJmL and PEGASUS, for instance, reflect the level of farming
intensification and technological inputs (such as the use of
pesticides). However this method does not allow for estimation
of how the effects of pests and diseases may change under
changing climate conditions, an important area for future model
development.
Climate change influences on short-term temperature extremes,

monsoon dynamics, and the frequency and intensity of pre-
cipitation may also play a substantial role in the nature of future
agricultural impacts. GCMs do not fully resolve these features,
and the representation of corresponding stresses remains an active
area of GGCM development.

3.3 Model Inputs. A key contrast among the GGCMs is in nutrient
response in regard to underlying soil properties and to nutrients
applied (nitrogen, phosphorus, and potassium), amount, and
timing. Disparities in the resulting nutrient stress may affect the
sensitivity of yields to climate change because climate stresses and
benefits may also interact with (or be overwhelmed by) nutrient
stresses. Alternate approaches in the GGCMs’ fertilization and
nutrient schemes therefore need to be taken into account in
interpreting crop yield responses to [CO2] and other variables.
GGCM differences in the simulation of water availability and

the application of irrigation also have a direct effect on climate
sensitivity in irrigated regions. While the GGCMs deviate in how
water availability is determined, the effects of these deviations
were reduced by testing two irrigation scenarios: 1) no irrigation,
and 2) full irrigation (assuming water is available to fully irrigate
crops) (see SI Appendix). In GEPIC, full irrigation was set as a
complete elimination of water stress of crops. In other GGCMs,
full irrigation does not necessarily eliminate water stress com-
pletely, as irrigation events are triggered by model-specific soil
moisture thresholds (rainfed and irrigated production responses
are shown in Fig. S5). In some cases, the ability of the crop plant
to transpire water may not be sufficient to satisfy the atmospheric
demand (i.e., stomata may close despite full irrigation).

3.4 Model Procedures.An important disparity in GGCM outputs is
whether the models calculate actual or potential yields as the
primary output. The GAEZ-IMAGE and LPJ-GUESS results

represent potential yields, unlimited by nutrient or management
constraints and without calibration of growth parameters to repro-
duce historical yields. They are best suited to studies that are de-
signed to advance scientific understanding of the plant-atmosphere
processes being represented and their sensitivity to climatic stresses,
rather than for economic forecasts or sensitivity to soil edaphic
conditions. LPJmL is similar to LPJ-GUESS in that nitrogen
stress is not explicitly represented; however, growth parameters
in the model are calibrated so that simulations over the historical
period reproduce realistic average yield patterns (see SI Appendix
for details). GEPIC, PEGASUS, and pDSSAT used historical
patterns of fertilizer application rates, while EPIC used stan-
dardized low-, moderate-, and high-input management systems
with thresholds that trigger fertilizer and irrigation automatically.
All four of these models explicitly represent nitrogen stress. The
issue of actual vs. potential yields is further complicated by the
presence of numerous other “yield gap” factors, including varia-
tions in cultivars and farmer management, as well as soil char-
acteristics, pests, diseases, and weeds (38).

4. Current and Future Yield Simulations
4.1 Simulation of Current Crop Yields. The seven GGCMs largely
reproduce relative patterns of current crop yields (39) at multi-
national regional scales but are dissimilar in the levels of their
base yields (maize: Fig. 2; wheat, rice, and soybean results in SI
Appendix, Figs. S2–S4). PEGASUS displayed the largest regional
variation in simulated yields, whereas GAEZ-IMAGE displayed
the least. Each model has regions where crop yield simu-
lations vary markedly from the patterns observed in the ref-
erence period.
LPJmL and LPJ-GUESS vary in reproducing current maize

yields, even though they both have a common base model, as do
EPIC and GEPIC. Each of these two GGCM pairs vary in pa-
rameter settings, assumptions, inputs (e.g., management, fertil-
izer), processes (e.g., carbon allocation), and model procedures

EPIC

GEPIC

pDSSAT

M3-Observations

LPJ-GUESS

LPJmL

PEGASUS

IMAGE

Baseline Maize Yield (t/ha)

>1050

A B

C D

E F

G H

Fig. 2. Average reference period (1980–2010) GGCM maize yield (A–F, H),
rescaled to a common global average to make the spatial patterns more
apparent, and historical yield M3 observation set (G) (39). Note that because
some models are calibrated and others are not and because some models
simulate potential rather than actual yields, it is not advisable to compare
the absolute yields in the ensemble with observations.
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Environ. Res. Lett. 9 (2014) 034011
D Deryng et al

Figure 2. Maps of median 1Y (%) across the 18 GCMs ensemble for RCP 8.5 in the 2080s relative to the 1980s for maize (a), spring wheat
(d) and soybean (g). Maps ((b)–(e)–(h)) show corresponding 1Y differences (%) between CCw/o HSA and CC simulations (green areas
show important yield gains without HSA). Similarly, maps (c-f-i) show corresponding 1Y differences between CCw/o CO2 and CC
simulations (red to black areas show important yield losses without CO2 fertilization).

In contrast, spring wheat and soybean present disparate results
owing to contradictory effects resulting from beneficial CO2

fertilization and detrimental extreme heat stress, the latter
playing a critical role in some regions (figures 2(d) and (g)
respectively). The number of simulations agreeing in the sign
of change in yield is also higher for maize than for the other
crops (see figure S1 in the SI (available at stacks.iop.org/ER
L/9/034011/mmedia), which presents corresponding maps of
ensemble simulations and their agreement).

Comparison between maps from top (CC) and middle
(CCw/o HSA) rows in figure 2, indicates crop harvested areas
at risk of HSA. In the case of maize (figures 2(a) and (b)),
greater HSA sensitivity occurs in the American corn-belt, the
Middle-East, west and south Asia, and northeast China. Within
the top-five producing countries (figure 3), Brazil, Mexico and
Argentina experience large decreases in national production,
exacerbated by HSA (blue and yellow bars). The United States
also faces a notable decrease in all simulations. China’s small
gain owing to CO2 fertilization effects is cancelled out by HSA.
These losses among the top-five producing countries (i.e.,
accounting for 80% of global maize production) could play a
major role in future world supply of maize, with consequences

for stability of international crop markets and higher risks of
future food insecurity as already experienced during the 2008
global food crisis [31, 32].

In the case of spring wheat (figures 2(d) and (e)), all
current cultivated areas experience heat stress damage: the
most severely impacted regions are again the mid and low
latitudes, including the northern part of the United States, the
Near-East and eastern part of Australia. In fact, all top-five
producing countries exhibit drastic reductions in anticipated
production increases due to HSA (figure 3). Note country
ranking is estimated according to PEGASUS spring wheat
harvested area [30], which does not include winter wheat and
hence differs from country rankings that include both winter
and spring wheat (see Methods).

Finally, in the case of soybean (figures 2(g) and (h)),
the United States, Brazil and India (accounting for more than
60% of global soybean production) are the most affected
among the top-five producing countries (figure 3). In contrast,
Argentina, the third largest soybean producing country, shows
a large increase in its production, which could increase
its ranking to second in terms of world production, before
Brazil. China also displays large gains in production but only

5

With heat stress at anthesis + CO2 
effect

Without heat stress at anthesis w.r.t. 
HSA+CO2

Without CO2 effect w.r.t. HSA+CO2

RCP8.5 2080s yield changes (% w.r.t. 1980s).

Maize Spring Wheat Soybean

Source: Deryng et al., 2014
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Engage users and co-design targeted sectorial climate services 

Adapting to climate change

CLIMATE SERVICES FOR THE 
DURUM WHEAT AND PASTA SECTOR

Durum wheat, and thus, pasta production is influenced by weather and climate conditions and is highly affected by
climate extremes. Thereby, its vulnerability and exposure as well as the potential adaptation strategies under
changing climate conditions must be assessed. MED-GOLD will use agro-climatic services deploying climate
information at the medium (next 6-13 months) and long-term (2-30 years). To provide the highest value for decision-
making, the services will be co-developed with professional users from the sector.

Durum wheat producers face diverse challenges affecting several decision processes in their business, such as agro-
management and stock management and strategic decisions. Some examples are presented below to show how
climate services - in this case, predictions of climate variables and bioclimatic indices - can support critical
decisions along the durum wheat food chain and win over challenges posed by climate variability and climate
change.

Decision 
type Challenges

MED-GOLD 
climate service BenefitsTime scale

Mid-term 
(e.g., 6-13  
months)

Agro-
management

• Better planning of soil 
tillage, fertilization, crop 
protection treatment and 
weed management

• Improve choice of variety 
and density at sowing

• Higher accuracy with 
sowing and harvest 
setting

• Wheat phenological
development

• Temperature

• Precipitation

• Hydrological balance

• Heavy rain during 
winter

• Useful rain for 
fertiliser activation

• Frost risk index

• Heat stress index

• Minimize exposure to weather 
extremes

• Cost reduction through 
optimal fertilization and agro-
management planning

• Maximize crop yield and 
quality

• Optimize use of fertilizers

Stock  
management

• Better contracts and 
price

• Better planning of supply 
chain

• Better planning of supply 
chain, contracts and prices

Long-
term (e.g., 
up to 30 
years)

Long-term 
strategy

• Selection of future new 
cultivation areas 

• Choice of new varieties,
breeding and genetic 
improvement activities

• Monitoring of new 
pests, pathogens, 
weeds

• Anticipation of 
purchase needs

• Projected yield 
changes

• Projected risk of 
climate extremes (i.e., 
heat stress, drought in 
critical phenological
phases…)

• Projected risk of 
quality and nutritional 
issues

• Feasible adaptation 
strategies

• Indicate suitable cultivation 
areas 

• Better estimation of 
production for market and 
food security

• Improve regional policy 
planning and development, 
national adaptation strategies 
and EU policies (e.g. CAP)

• Match adequate varieties to 
expected climate

• Prepare for crop protection 
and prevention of invasive 
species

• Better use of investments (e.g., 
machinery, irrigation)

“Facing climate change is amongst the greatest challenges 
of our times” Chiara Monotti, Barilla G&R Fratelli SPA
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CO2 effects

In near decades, relative yield changes display a lower range,
both with and without CO2 effects, but after the 2050s that range
widens considerably. LPJ-GUESS, a potential yield model that
allows for nutrient-unlimited yield increases, consistently dis-
plays the highest relative changes with CO2 effects for all crops.
The projected yield changes both with and without CO2 effects

for PEGASUS (an ecosystem model) are more negative than the
LPJ ecosystem models (note that PEGASUS does not simulate
rice), which is likely due to its utilization of radiation use effi-
ciency (RUE) instead of leaf-level photosynthesis (40) for CO2
effects and the inclusion of explicit heat stress. RUE-based
models simulate a universal saturating response to CO2 and af-
fect water efficiency via adjustment of canopy conductance. In
the leaf-level models, stomatal opening controls both photo-
synthesis (CO2 availability) and transpiration. Recently, Free-Air
CO2 Enrichment (FACE) experiment results (40) are being used
more intensively to calibrate and test crop models in AgMIP.

4.4 Quantifying Uncertainty from GCMs and RCPs. GCMs and RCPs
contribute substantially to the uncertainties of the results (Fig.
5). Uncertainty is higher for soybean and rice than for maize and
wheat, because they have more concentrated production areas
and are therefore more sensitive to regional differences in GCM
projections. Uncertainties are greater in the later decades of the
century, where GCM inputs and GGCM results can lead to
uncertainties several times larger in the highest RCP8.5 than in
the lowest RCP2.6. Uncertainty is higher for all crops when CO2
effects are included, especially in soybean (which is not directly
limited by nitrogen) and in the end of the century when [CO2] is
highest. Note that the RCP nomenclature is misleading for earlier
decades, because RCP4.5 actually has slightly higher [CO2] than
RCP6.0 until ∼2060 (42).

5. Discussion and Conclusions
The models used in this GGCM intercomparison are tools to
analyze the response of crops to climate change, and to better
understand risks and opportunities in regard to food production
and food security. For this information to be useful for decision
makers, it needs to include analysis of sources of uncertainty due
to multiple greenhouse gas emissions pathways, climate models,
and crop impact models (44). The work presented here begins to
characterize the uncertainty cascade for GGCM simulations, in-
cluding greenhouse gas emission scenarios, global climate simu-
lations, variations in structure and implementation in crop models,
and assumptions about agricultural management, in a framework
that can be compared across sectors.

Because of such variations in model structure, processes, inputs,
assumptions, parameterizations, and outputs, the ensemble results
from the GGCM intercomparison need to be used with care and
may not be appropriate for certain studies (see recommendations
on data use in SI Appendix). Although the experimental design
and climate change scenarios were meant to harmonize simu-
lations to facilitate full comparability, several differences remain
that affect the GGCMs’ response to climate change and their
utility for different types of assessments, including economic
analyses. Particularly important are the parameterization of CO2
effects, handling of fertilizer applications, simulation of actual vs.
potential yields, and the extent of calibration. AgMIP is addressing
these in continuing work.
Given these important caveats, we can conclude that the re-

sults from the GGCMs used in this study show general agree-
ment with previous results, especially for those models that include
nitrogen stress (e.g., 6, 32, 45). They indicate negative impacts on
major crops in many agricultural regions at higher levels of
warming. The inclusion of ecosystem-based models in this analysis
has increased the range of uncertainty (previous analyses primarily
used site-based models). Relative global average model response
to climate is more similar once CO2 effects are removed, indicating
that model parameterization of CO2 effects (on both photosyn-
thesis and transpiration) remains a vital area of research.
There is ample reason to be concerned in regard to climate

change and crop production. Many regions throughout the world
are projected to experience climate change-induced reductions

Fig. 4. Relative change (%) in RCP8.5 decadal mean production for each
GGCM (based on current agricultural lands and irrigation distribution) from
ensemble median for all GCM combinations with (solid) and without (dashed)
CO2 effects for maize, wheat, rice, and soy; bars show range of all GCM com-
binations with CO2 effects. GEPIC, GAEZ-IMAGE, and LPJ-GUESS only contrib-
uted one GCM without CO2 effects.

Maize Wheat  Rice Soy

With CO2
effects

Without 
CO2 effects

A

B

Fig. 5. Absolute deviation of decadal average production changes from
ensemble median yield changes (as fraction of 1980–2010 reference period
mean production) for all GCM × GGCM combinations in RCP2.6 (dark blue),
RCP4.5 (light blue), RCP6.0 (orange), and RCP8.5 (red) for maize, wheat, rice,
and soy with (Upper) and without (Lower) CO2 effects. Simulations in A with
CO2 effects included five GCMs and seven GGCMs (35 members), whereas
GAEZ-IMAGE, GEPIC, and LPJ-GUESS ran only a single GCM without CO2

effects, resulting in 23 members in B.

3272 | www.pnas.org/cgi/doi/10.1073/pnas.1222463110 Rosenzweig et al.
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The effects depend on crop type, variety, nutrients and water availability, climate 
conditions, etc.  

CO2 effects

The root/tuber crops (potato, sugar beet, and cassava)
exhibited a small average increase in shoot biomass (5%,
Figure 3), but the error bars are wide. However, as will be
presented in the next section, for these crops the yield
comes from below ground, so a small shoot biomass
response to elevated CO2 is not necessarily a concern.
For the case of low N, the average shoot biomass response
was also small, about 6%, as expected.

Clover and soybean, both C3 legumes, had larger
increases in shoot biomass due to FACE (about 25%;
Figure 3). Consistent with it being an N-fixing legume,
clover showed no reduction in CO2 response when soil N
was limited.

The woody crops, cotton and grape, had comparatively
large shoot biomass responses to FACE, about 31% at
ample N and H2O. When water was limited, the response
tended to be slightly smaller, but not significantly so.

The single oilseed point (rape) shows a shoot biomass
response of about 23%, which is similar to the legumes.

Agricultural yield
Most of the agricultural yield responses of several crops
(Figure 4) to elevated CO2 were similar to their shoot
biomass responses (Figure 3), but several were different.
For a forage crop like perennial ryegrass, the yield is the
shoot biomass, and under ample N and H2O, its average
CO2 stimulation (10%; Figure 4) was less than the average

shoot biomass for the combined C3 grasses (about 19%;
Figure 3). Under limited N, the average ryegrass stimu-
lation to elevated CO2 was close to zero (Figure 4),
whereas the average for the shoot biomass of C3 grasses
was about 10% (Figure 3). I think the smaller response to
CO2 under low N for the ryegrass is primarily because in
most of the experiments with it, the ryegrass was grown
year after year, whereas for only a few of the experiments
with the other crops were there prior ‘N removal’ crops or
other steps to assure that soil N levels were indeed low.

The average grain yield increase due to elevated CO2 of
C3 grasses (wheat, rice, and barley) was about 19% under
ample N and H2O (Figure 4). Under limited N, it was
slightly lower (16%). Again, however, in several of the
low-N rice experiments, the ‘low’ level of N may not have
been very limiting, so the true ‘low’ value may be lower
yet. When H2O was limited, the average yield response
was slightly higher (about 22%). Although their season to
season variability was high, Fitzgerald et al. [21!!] recently
reported wheat yield stimulations ranging from "17 to
+79% under semi-arid conditions with and without sup-
plemental irrigation.

However, the most exciting and important advances in
regard to CO2 enrichment are the large yield responses of
hybrid rice (about 34%; Figure 4) reported from the
Chinese FACE project [22–24]. These results are plotted
separately in Figure 4, as well as being included in the C3

grass averages. The hybrid varieties exhibited large yields
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Agricultural yield responses to elevated CO2 (+200 ppm from FACE) for various crops at ample and limited supplies of soil water and nitrogen. The
sources from which the data were obtained for each vegetation type are listed in Table S1.
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The global [CO2] in the atmosphere is expected to reach 550 p.p.m.
in the next 40–60 years, even if further actions are taken to decrease
emissions18. At these concentrations, we find that the edible portions of
many of the key crops for human nutrition have decreased nutritional
value when compared with the same plants grown under identical
conditions but at the present ambient [CO2]. Analysis of the United
Nations’ Food and Agriculture Organization food balance sheets reveals
that in 2010 roughly 2.3 billion people were living in countries whose
populations received at least 60% of their dietary zinc and/or iron from
C3 grains and legumes, and 1.9 billion lived in countries that received at
least 70% of one or both of these nutrients from these crops (Extended
Data Table 5). Reductions in the zinc and iron content of the edible
portion of these food crops will increase the risk of zinc and iron defi-
ciencies across these populations and will add to the already considerable
burden of disease associated with them.

The implications of decreased protein concentrations in non-
leguminous C3 crops are less clear. From a study of adult men and women
in the United States, there is strong evidence that the substitution of die-
tary carbohydrate for dietary protein increased the risk of hypertension,
lipid disorders, and 10-year coronary heart disease risk19. For the devel-
oping world, minimum protein requirements for different demographic
groups are an area of active research and debate20. For countries such as
India, however, in which up to one-third of the rural population is thought
to be at risk of not meeting protein requirements21 and in which most

protein comes in the form of C3 grains21, decreased protein content in non-
leguminous C3 crops may have serious consequences for public health.

Whereas zinc and iron were significantly decreased in all C3 crops
tested, only iron in maize was observed to decrease among the C4 crops.
No changes were found in sorghum. That zinc and iron declines were
notable in C3 crops but less so in C4 crops is consistent with differences
in physiology. C4 crops concentrate CO2 internally, which results in
photosynthesis being CO2-saturated even under ambient [CO2] con-
ditions, leading to no stimulation of photosynthetic carbon assimila-
tion at elevated [CO2] levels under mesic growing conditions22. Our
finding that protein content was less affected in legumes than in other
C3 crops is also physiologically consistent with the general ability of
leguminous crops to match the stimulation of photosynthetic carbon
gain at elevated [CO2] with greater nitrogen fixation, to maintain tissue
carbon:nitrogen (C:N) ratios23. In contrast, most temperate non-legume
C3 crops are generally unable to extract and assimilate sufficient nitro-
gen from soils to maintain tissue C:N ratios24,25.

Little is known about the mechanism(s) responsible for the decline
in nutrient concentrations associated with elevated [CO2]. Some authors
have proposed ‘carbohydrate dilution’, by which CO2-stimulated carbo-
hydrate production by plants dilutes the rest of the grain components26.
To test this hypothesis, we measured concentrations of additional ele-
ments for all crops except wheat (Extended Data Table 4). Our findings
were inconsistent with carbohydrate dilution operating alone. If only
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Figure 1 | Percentage change in nutrients at elevated [CO2 ] relative to
ambient [CO2 ]. Numbers in parentheses refer to the number of comparisons
in which replicates of a particular cultivar grown at a specific site under one set
of growing conditions in one year at elevated [CO2] have been pooled and for
which mean nutrient values for these replicates are compared with mean values

for identical cultivars under identical growing conditions except grown at
ambient [CO2]. In most instances, data from four replicates were pooled for
each value, meaning that eight experiments were combined for each
comparison (see Table 1 for details of experiments). Error bars represent
95% confidence intervals of the estimates.

Table 1 | Characteristics of agricultural experiments
Crops Country Treatments used Years grown Number of replicates Number of cultivars CO2 ambient/elevated (p.p.m.)

Wheat
Site 1 Australia 2 water levels,

2 nitrogen treatments,
2 sowing times

2007–2010 4 8 382/546–550

Site 2 Australia 1 water level,
1 nitrogen treatment,
2 sowing times

2007–2009 4 1 382/546–550

Field peas Australia 2 water levels 2010 4 5 382/546–550
Rice

Site 1 Japan 1 nitrogen treatment,
2 warming treatments

2007–2008 3 3 376–379/570–576

Site 2 Japan 3 nitrogen treatments,
2 warming treatments

2010 4 18 386/584

Maize United States 2 nitrogen treatments 2008 4 2 385/550
Soybeans United States 1 treatment 2001, 2002, 2004,

2006–2008
4 7 372–385/550

Sorghum United States 2 water levels 1998–1999 4 1 363–373/556–579

‘Number of replicates’ refers to the number of identical cultivars grown under identical conditions in the same year and location but in separate FACE rings.

RESEARCH LETTER

1 4 0 | N A T U R E | V O L 5 1 0 | 5 J U N E 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

Nutritional and quality 
issues 

Source: Myers et al., 2014



FACE experiments
A2

CO2 effects

Source:Gerald Moser



Climate extremes - concurrent events

G. Fontana et al.: Early heat waves over Italy and their impacts on durum wheat yields 1633

Figure 1. Estimated intensity of the early heat waves affecting the selected 39 Italian provinces in the period 1995–2013. Values are in
degrees and colours are associated with the provinces.

sively less sensitive throughout grain filling (Stone and Nico-
las, 1995); the median of the estimated thresholds ranges
from 24 �C (first of May) to 32 �C (end of June) with a 10-
day increase of 1.4 �C; for non-irrigated fields the canopy
temperature is higher than the 2m air temperature (measured
by the available meteorological stations) and differences up
to 7 �C have been reported by Siebert et al. (2014).
In addition, the climatic water balance is also analysed

in some specific cases. It is calculated as the difference be-
tween precipitation and potential evapotranspiration at the
daily scale. Potential evapotranspiration is estimated by us-
ing the Penman–Monteith equation (Allen et al., 1998). The
climatic water balance is used to gain a better understanding
of cases with negative yield anomalies but no early heat wave
occurrence.

3 Results

The intensity of the identified early heat waves during the pe-
riod May–June (1995–2013) and the number of provinces af-
fected by heat waves for each year are shown in Figs. 1 and 2.
The 2003 peak is evident in both indicators. All provinces
considered for this study experienced the 2003 heat wave,
with an intensity that exceeded 70 �C in the provinces of Pe-
rugia and Rome (central Italy), and reached about 93 �C in
Viterbo (central-western Italy). Significant early heat waves
can also be observed for instance in 2006, 2007 and 2009. In
particular, during 2009 all provinces experienced heat waves,
but the average intensity was lower than in 2003 (an aver-
age intensity of 34 �C in 2003 versus an average intensity of
18.6 �C in 2009). No heat waves are identified in 1995, and
a very low number of events is estimated for 2000 and 2004.
In addition, very low intensities can be observed for the esti-
mated heat waves in 2011.
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Figure 2. Number of provinces affected by heat waves (red) and
significant negative yield anomalies (in blue) in the period 1995–
2013.

The number of provinces with significant negative yield
anomalies is shown in Fig. 2. A peak in 2003 is evident, as
well as the very low number of negative yield anomalies in
1998, 2004 and 2008. The boxplot of annual yield anoma-
lies across all provinces is shown in Fig. 3. A change after
2003 seems to affect the annual yields; in fact, a higher num-
ber of provinces experienced annual negative yield anomalies
during the period 1995–2003 compared to the period 2004–
2013. The factors behind this change are beyond the objec-
tives of this study; however, the adoption of new wheat vari-
eties over time might have played an important role.
The spatial analysis of the intensity of the early heat waves

is shown in Fig. 4. The average intensity of the early heat
waves is highest over the provinces in central Italy, Basilicata
and Apulia (southern and south-eastern Italy), while in Sicily
and Calabria (southern Italy) all provinces show low intensity
values.
As an example, the spatial pattern of the early 2003 heat

waves is shown in Fig. 5. The average intensity of the early

www.nat-hazards-earth-syst-sci.net/15/1631/2015/ Nat. Hazards Earth Syst. Sci., 15, 1631–1637, 2015
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Figure 5. Left panel: intensity of the early heat waves that occurred in 2003, values in degrees. Right panel: yield anomalies in 2003.

Figure 6. Number of concurrent early heat waves and significant
negative yield anomalies in the period 1995–2013 (expressed in per-
centage with respect to the total number of year with significant
negative yield anomalies).

2011; Teixeira et al., 2013) and ensemble of crop models
(Webber et al., 2015). These studies substantially agree on
the strong effect of extreme temperatures in the reduction of
final yields. However, the magnitude of reduction, the mech-
anism of the effects of extreme temperature on crops and
the identification of temperature thresholds at different crop
growing stages are still under debate (Luo, 2011).
In general, durum wheat is more tolerant to heat stress

when compared with soft wheat, as stomatal conductance
and transpiration are less affected by high temperature (Dias
et al., 2011). Nevertheless, durum wheat frequently experi-
ences heat stress in the regions where it is mainly grown
(southern Europe, western Asia, and northern Africa). In ad-
dition, there is limited literature on the effects of heat stress

on durum wheat yield compared with soft wheat (Li et al.,
2013).
A substantial new approach has been here applied: a spa-

tial characterisation of early heat waves in the crop rele-
vant period (May–June), an investigation of concurrency of
heat waves and significant negative yield anomalies of du-
rum wheat at the province level of Italy. This analysis has
confirmed, as expected, the 2003 event and has identified
other significant events, for instance in 2006, 2007 and 2009.
The development and growth of annual crops were greatly
influenced by heat stress during 2003, as shown by the very
low values of durum wheat yields in Apulia (southern Italy),
Viterbo and Grosseto (central-western Italy) and in Basilicata
(southern Italy). A very low number of provinces with nega-
tive yield anomalies and highest values in the average yields
was found in 1998, 2004 and 2008. In particular, no event
has been identified in 2004 when the second highest average
yield value was registered. The spatial analysis highlights the
high values of concurrent heat waves/annual negative yield
anomalies for the following provinces: Ferrara (northern
Italy); Pesaro–Urbino, Teramo and Chieti (central-eastern
Italy); Rome and Viterbo (central-western Italy); Benevento
(south-western Italy); Foggia, Taranto (south-eastern Italy);
and Cosenza (southern Italy). In Sicily, the concurrent heat
waves/significant negative yield anomalies are lower than
55%, mainly due to timing of early heat waves, more fre-
quent at the end of June. In this period, early heat waves
could not affect the final yields in Sicily since they occurred
after the durum wheat maturity and in some years after the
harvest. Furthermore, the analysis of the cumulated climatic
water balance in the Sicilian provinces has shown that the
significant negative yield anomalies, recorded in 2002 and
2001, are associated with prolonged water stress.
This study has also highlighted a change after 2003 in

the annual yield time series of durum wheat. The significant
2003 event seems to have marked a turning point, probably
in the choice of the variety that, together with other unknown

www.nat-hazards-earth-syst-sci.net/15/1631/2015/ Nat. Hazards Earth Syst. Sci., 15, 1631–1637, 2015
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for low-dimensional problems14, while copula-based approaches have also been applied to characterise com-
pound events15. Often, the term ‘compound’ has been used to identify the concomitant (within an a priori cho-
sen temporal lag) occurrence of events (extremes or not) leading to harmful events (considered as extreme) of 
socio-economic relevance. The summer of 2010 in Russia may be taken as an example of such an event, where dry 
conditions, fires, pollution and anomalous heat contributed to the extreme event in question. However, a broader 
definition of compound climate events has recently been proposed16. Here, we focus on a class of extremes that 
could be seen as a subset of compound events, i.e. concurrent extremes. These events are represented by extremes 
of different types occurring within a specific temporal lag, either in different locations or at the same one, as well 
as by extremes of the same type occurring in two different locations within a specific time period. Concurrent 
climate extremes pose a serious threat in terms of potential impacts in key socio-economic sectors which are 
highly interconnected at the global scale.

To achieve a better understanding of concurrent extremes, while avoiding any a priori strict assumptions of 
(in)dependence, complete randomness behaviour and homogeneity of the risk of an event, we propose an innova-
tive non-parametric statistical approach. Then, we use this approach to investigate two types of extremes (namely 
large-scale heat stress and drought) that have occurred in the 8 key wheat producing regions of the world between 
1980 and 2010 (Fig. 1 and Table 1 in the Supplementary material). We analyse the dependence of both heat stress 
and drought events within each of the eight regions, the dependence among different regions and finally their 
inter-dependence. Thus, the outcomes of this investigation provides insight into the probability of experiencing: 
heat stress/drought events when one has already occurred within a region, heat stress/drought events in a region 
when one has already occurred in another one.

Despite the specific case study shown here, we stress that this approach can be directly applied to a vast range 
of problems where concurrent extremes play an important role.

The proposed approach
Consider nR ≥ 2 spatially separated reference regions with labels in / = … n{1, , }R  (e.g. the key wheat producing 
regions) and for each, consider a collection of nC ≥ 1 spatio-temporal measurement functions 

∩∈ ∈Z x t x W t{ ( , ): , }c r r,
2* * , ∈ = …c n{1, , }C� , /∈r , with * denoting the real line and Wr denoting the 

spatial region with label r. These functions describe spatio-temporal evolutions of some measured quantities, e.g. 
heat accumulation and precipitation anomalies. In many applications, these quantities are likely to be dependent. 
Given a threshold zc for each label �∈c  (i.e. setting a threshold to identify local extreme events), we can then study 
exceedances over time in a specific region Wr, and quantify the corresponding temporally evolving spatial extension, 

Figure 1. Panel (a): Identified large-scale heat stress events (red circles) and drought (yellow stars) from 1980 to 
2010. Panel (b): Wheat production of the 8 key regions of the world from 1980 to 2016 (data from FAOSTAT). 
Panel (c): Spatial overview of the main wheat producing areas of the world (Data from MIRCA2000).

Source: Toreti et al., 2019
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Fig. 3. Simulated agroclimatic extremes and domestic wheat markets, 2018/19 

Note: With the exception of the CSI panel, which shows the exogenous shock values, the bars show % deviation 
from the baseline under 24 single region-crop-year scenarios. The probability of occurrence of each scenario in 
any particular year is 3.3% (equivalent to a return period of 30 years, assuming stationarity). Baseline projections 
are shown in appendix A (Tables A.1 and A.2). ISO3 nomenclature. 
Source: Own estimation based on European Commission (2017). 
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Fig. 6. Simulated agroclimatic extremes and international crop markets, 2018/19 

Note: Bubbles show % deviation from the baseline under single region-crop-year scenarios. Results under 
favourable (unfavourable) agrometeorology in quadrant II (IV). The probability of occurrence of each scenario in 
any particular year is 3.3% (equivalent to a return period of 30 years, assuming stationarity). Price references are 
No. 2, hard red winter wheat, US FOB, Gulf; No. 2, yellow maize, US FOB, Gulf; and US soybean, CIF 
Rotterdam. Baseline projections are shown in appendix A (Table A.2). 
Source: Own estimation based on European Commission (2017). 

Source: Chatzopoulos et al., 2019
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one and vice versa. It is worth noting that the identified dependence of drought and heat stress events between 
Australia and the EU is coherent with the recent extremes of 2018, where extreme drought and heat stress were 
observed in both regions.

Figure 3. Panel (a): estimated intensity functions of the key wheat producing regions. Bold lines represent the 
median of the ensemble, while the dotted lines identify the maximum and the minimum of the ensemble. The 
different colours are associated with the 8 key regions, as in Fig. 1. Panel (b): summary plot of the analysis on 
heat stress events. Disks represent the 8 key regions, with the size being proportional to the corresponding wheat 
production in 2016 (data from FAOSTAT). Yellow disks represent regions with temporal inhibition within the 
region itself, while red ones represent regions with temporal clustering within the region itself. Blue links represent 
estimated clustering between regions, while green links represent estimated inhibition between regions.

Figure 4. Summary plot of the analysis on concurrent drought (D) and heat stress (H) events. Disks represent 
the 8 key regions, with the size being proportional to the corresponding wheat production in 2016 (data from 
FAOSTAT). Green disks represent regions having no event (heat and drought) dependence within the region 
itself, while red ones represent regions with temporal clustering within the region itself. Blue links represent 
estimated clustering between regions, while green links represent estimated inhibition between regions. For 
instance, a blue link with D-H means that there is both drought-heat and heat-drought clustering, while D in 
one side of the link and H in the other one show estimated clustering/inhibition (according to the colour of the 
link) between drought events in one region and heat stress events in the other one.
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Australia and the EU is coherent with the recent extremes of 2018, where extreme drought and heat stress were 
observed in both regions.

Figure 3. Panel (a): estimated intensity functions of the key wheat producing regions. Bold lines represent the 
median of the ensemble, while the dotted lines identify the maximum and the minimum of the ensemble. The 
different colours are associated with the 8 key regions, as in Fig. 1. Panel (b): summary plot of the analysis on 
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Figure 4. Summary plot of the analysis on concurrent drought (D) and heat stress (H) events. Disks represent 
the 8 key regions, with the size being proportional to the corresponding wheat production in 2016 (data from 
FAOSTAT). Green disks represent regions having no event (heat and drought) dependence within the region 
itself, while red ones represent regions with temporal clustering within the region itself. Blue links represent 
estimated clustering between regions, while green links represent estimated inhibition between regions. For 
instance, a blue link with D-H means that there is both drought-heat and heat-drought clustering, while D in 
one side of the link and H in the other one show estimated clustering/inhibition (according to the colour of the 
link) between drought events in one region and heat stress events in the other one.

Source: Toreti et al., 2019
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A short overview of plant functional types
An assemblage of observable properties (traits) can be linked to 
plant biophysical and biogeochemical mechanisms that enable dif-
ferent species to cope with similar types of environment and/or 
competition, even when these are encountered in geographically 
very distant locations53–55. DGVMs take advantage of this feature 
by coining functional units, PFTs, which can be thought of as rep-
resenting groups of species with a similar expression of multiple 
traits in response to their environment53–55 (Fig.  1 and Table  1). 
Current DGVMs aim to represent the performance of plant spe-
cies, and model the dynamics of plant–environment interactions, 
by combining climatic limits to growth with a strong footing in 
ecological theory and physiological mechanisms.

DGVMs typically define around 5–15 PFTs that embody the 
enormous variety of the Earth’s plant species by collapsing diver-
sity into the most general strategies to cope with variable sets of 
conditions. A universally agreed PFT scheme for global models 
does not exist53–55, but by using a limited number of PFTs, DGVMs 
have been shown to adequately predict the formation and reforma-
tion of biomes in response to changing environments, and success-
fully reproduce patterns of terrestrial carbon and water fluxes53,56. 
Thus far, most DGVM applications have not explicitly accounted 
for human intervention in natural ecosystems, and their treatment 

of agricultural and forest management processes is immature. 
Different approaches are currently being explored57,58 and fur-
ther development of ‘land-use enabled’ DGVMs will facilitate the 
coupling of terrestrial ecosystem processes with the dynamics of 
human land-use systems. Eventually, such coupled models could 
be used to provide the scientific basis to assess trade-offs between 
immediate human requirements from ecosystems and the need to 
preserve the capacity of the terrestrial biota to supply these ecosys-
tem services over the long term59.

Towards agent functional types
Agent types are often used in constructing ABMs to represent 
real-world actors45,49,51. Agents are not autonomous; they oper-
ate within a socio-cultural context that involves interactions with 
other societal agents60. They are also not static, as they learn and 
evolve, updating their decision strategies and individual goals in 
the process60. Typologies allow generalizations of the attributes 
(traits) of individual actors to simplify model development and 
application, and to provide a more transparent representation of 
agent behaviour and decision processes. Typologies have been 
used and applied successfully in the social and economic sciences, 
whenever it is necessary to handle large datasets representing 
human attributes39,61,62.
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Figure 2 | Concept of agent functional types in global agent-based models. Human agency underpins land-use change modelling along capital gradients 
in agent-based models (top left). For a given agent, the realized niche is differentiated from the theoretically possible one due to interactions with capitals 
(human, social, financial, natural and infrastructure) and with other agents, modifying an agent’s relative abundance within an area or over time. Human 
behaviour and decision making can be represented through a limited number of AFTs that group agents with similar characteristics, occurring at locations 
with similar attributes, even though these might be found in geographically very different places (illustrated by the similar performance curves for agents 
found in multiple capital spaces, top centre). The behaviour of an AFT is underpinned by a number of factors that influence decisions such as experience, 
communicating, deliberating and acting (bottom left; see also Table 1). The mix of AFTs at a given location changes in response to endogenous perturbations 
to the capital space, as well as exogenous drivers such as climate or macro-economic change (bottom right). Land-use dynamics are driven by changes 
in societal demands for ecosystem services leading to different combinations of AFTs, moderated by the role of institutions in regulating or incentivizing 
ecosystem service supply (bottom right). Typical outputs of land-use ABMs are LUC types, and the changing mix of agents and their attributes. 
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A short overview of plant functional types
An assemblage of observable properties (traits) can be linked to 
plant biophysical and biogeochemical mechanisms that enable dif-
ferent species to cope with similar types of environment and/or 
competition, even when these are encountered in geographically 
very distant locations53–55. DGVMs take advantage of this feature 
by coining functional units, PFTs, which can be thought of as rep-
resenting groups of species with a similar expression of multiple 
traits in response to their environment53–55 (Fig.  1 and Table  1). 
Current DGVMs aim to represent the performance of plant spe-
cies, and model the dynamics of plant–environment interactions, 
by combining climatic limits to growth with a strong footing in 
ecological theory and physiological mechanisms.

DGVMs typically define around 5–15 PFTs that embody the 
enormous variety of the Earth’s plant species by collapsing diver-
sity into the most general strategies to cope with variable sets of 
conditions. A universally agreed PFT scheme for global models 
does not exist53–55, but by using a limited number of PFTs, DGVMs 
have been shown to adequately predict the formation and reforma-
tion of biomes in response to changing environments, and success-
fully reproduce patterns of terrestrial carbon and water fluxes53,56. 
Thus far, most DGVM applications have not explicitly accounted 
for human intervention in natural ecosystems, and their treatment 

of agricultural and forest management processes is immature. 
Different approaches are currently being explored57,58 and fur-
ther development of ‘land-use enabled’ DGVMs will facilitate the 
coupling of terrestrial ecosystem processes with the dynamics of 
human land-use systems. Eventually, such coupled models could 
be used to provide the scientific basis to assess trade-offs between 
immediate human requirements from ecosystems and the need to 
preserve the capacity of the terrestrial biota to supply these ecosys-
tem services over the long term59.

Towards agent functional types
Agent types are often used in constructing ABMs to represent 
real-world actors45,49,51. Agents are not autonomous; they oper-
ate within a socio-cultural context that involves interactions with 
other societal agents60. They are also not static, as they learn and 
evolve, updating their decision strategies and individual goals in 
the process60. Typologies allow generalizations of the attributes 
(traits) of individual actors to simplify model development and 
application, and to provide a more transparent representation of 
agent behaviour and decision processes. Typologies have been 
used and applied successfully in the social and economic sciences, 
whenever it is necessary to handle large datasets representing 
human attributes39,61,62.
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Figure 2 | Concept of agent functional types in global agent-based models. Human agency underpins land-use change modelling along capital gradients 
in agent-based models (top left). For a given agent, the realized niche is differentiated from the theoretically possible one due to interactions with capitals 
(human, social, financial, natural and infrastructure) and with other agents, modifying an agent’s relative abundance within an area or over time. Human 
behaviour and decision making can be represented through a limited number of AFTs that group agents with similar characteristics, occurring at locations 
with similar attributes, even though these might be found in geographically very different places (illustrated by the similar performance curves for agents 
found in multiple capital spaces, top centre). The behaviour of an AFT is underpinned by a number of factors that influence decisions such as experience, 
communicating, deliberating and acting (bottom left; see also Table 1). The mix of AFTs at a given location changes in response to endogenous perturbations 
to the capital space, as well as exogenous drivers such as climate or macro-economic change (bottom right). Land-use dynamics are driven by changes 
in societal demands for ecosystem services leading to different combinations of AFTs, moderated by the role of institutions in regulating or incentivizing 
ecosystem service supply (bottom right). Typical outputs of land-use ABMs are LUC types, and the changing mix of agents and their attributes. 
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