Inhaltspezifische Aktionen

Publikationen

Siehe auch ORCID: 0000-0003-2193-8375 und Google Scholar.

 

 

Featured in:

Keller, V.H., González Miera, G., Kamat, P.V., Women Scientists at the Forefront of Energy Research: Part 6. ACS Energy Lett. 2024, 9, 1, 275–287, doi.org/10.1021/acsenergylett.3c02582.

 
12.

Kremer, S.; Rekers, R.; Sigar, U.; Becker, J.; Schubert, J.; Eckhardt, J.K.; Bielefeld, A.; Richter, F.H.; Janek, J. A Simple Method for the Study of Heteroionic Interface Impedances in Solid Electrolyte Multilayer Cells Containing LLZOACS Appl. Mater. Interfaces. 2024, 16, 44236. doi.org/10.1021/acsami.4c07845.

 
11.
Minnmann, P.; Schubert, J.; Kremer, S.; Rekers, R.; Burkhardt, S.; Ruess, R.; Bielefeld, A.; Richter, F.H.; Janek, J. Editors' Choice – Visualizing the Impact of the Composite Cathode Microstructure and Porosity on Solid-State Battery Performance. J. Electrochem. Soc. 2024, 171, 060514. DOI 10.1149/1945-7111/ad510e.

 

 
10.

Schlautmann, E., Weiß, A., Maus, O., Ketter, L., Rana, M., Puls, S., Nickel, V., Gabbey, C., Hartnig, C., Bielefeld, A., Zeier, W.G., Impact of the Solid Electrolyte Particle Size Distribution in Sulfide-Based Solid-State Battery Composites. Adv. Energy Mater. 2023, 2302309. doi.org/10.1002/aenm.202302309.

 
9.

Bielefeld, A., How to Develop Useful Models for Solid-State Batteries – A Plea for Simplicity and Interdisciplinary CooperationBatteries and Supercaps 2023, 6, e202300180, doi.org/10.1002/batt.202300180.

8.

Rana, M., Rudel, Y., Heuer, P., Schlautmann, E., Rosenbach, C., Ali, M.Y., Wiggers, H., Bielefeld, A., Zeier, W.G., Toward Achieving High Areal Capacity in Silicon-Based Solid-State Battery Anodes: What Influences the Rate-Performance? ACS Energy Lett. 2023, 8, 3196-3203, doi.org/10.1021/acsenergylett.3c00722.

 
7.

Minnmann, P.Strauss, F.Bielefeld, A.Ruess, R.Adelhelm, P.Burkhardt, S.Dreyer, S. L.Trevisanello, E.Ehrenberg, H.Brezesinski, T.Richter, F. H.Janek, J., Designing Cathodes and Cathode Active Materials for Solid-State BatteriesAdv. Energy Mater. 2022, 2201425, 10.1002/aenm.202201425.

 

6.

Bielefeld, A., At the Interface of Simulation and Experiment in Composite Cathodes for All-Solid-State Batteries, Dissertation 2022, 10.22029/JLUPUB-637.

 

 
5.

Bielefeld, A., Weber, D. A., Rueß, R., Glavas, V., Janek, J., Influence of Lithium Ion Kinetics, Particle Morphology and Voids on the Electrochemical Performance of Composite Cathodes for All-Solid-State BatteriesJ. Electrochem. Soc. 2022, 169, 020539, 10.1149/1945-7111/ac50df.

4.

Bielefeld, A., Weber, D. A., Janek, J., Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State BatteriesACS Appl. Int. Mater. 2020, 12, 12821-12833, 10.1021/acsami.9b22788.

3.

Ruess, R., Schweidler, S., Hemmelmann, H., Conforto, G., Bielefeld, A., Weber, D. A., Sann, J., Elm, M. T., Janek, J., Lithium Transport Kinetics in LiNi0.8Co0.1Mn0.1O2 Cathode Active Materials and the Contrasting Consequences for the Performance of Lithium-Ion Batteries with Liquid or Solid ElectrolytesJ. Electrochem. Soc. 2020, 167, 100532, 10.1149/1945-7111/ab9a2c.

 

 
2.

Bielefeld, A., Weber, D. A., Janek, J., Microstructural Modeling of Composite Cathodes for All-Solid-State BatteriesJ. Phys. Chem. C 2019, 123, 1626-1634, 10.1021/acs.jpcc.8b11043.

1.

Hördt, A., Bairlein, K., Bielefeld, A., Bücker, M., Kuhn, E., Nordsiek, S., Stebner, H., The dependence of induced polarization on fluid salinity and pH, studied with an extended model of membrane polarizationJ. Appl. Geophy. 2016, 135, 408-417, 10.1016/j.jappgeo.2016.02.007.