About SPP 1807
This DFG priority program aims at a thorough understanding and quantification of London dispersion interactions in molecular systems .
Dispersion is the driving force for molecular aggregation that plays a key role in the thermodynamic stability, molecular recognition, chemical selectivity through transition-state stabilization, protein folding, enzyme catalysis etc.. While dispersion interactions help rationalize many common phenonema such as well-established π-π interactions, the related σ-π systems have been examined much less and the concept of σ-σ attraction is in its infancy. A primary goal of this program is the development of chemical design principles that utilizes dispersion interactions in the construction of novel molecular structures and chemical reactions. This can only be achieved through a tight interplay between synthesis, spectroscopy, and theory to quantitatively determine dispersion interactions in chemical (model) systems. The chances of success in the quantification and making rational use of dispersion are excellent because only now the experimental and theoretical capabilities have reached a stage that allow a clear-cut analysis of dispersion interactions. There are many challenges to understand and to utilize dispersion forces for the preparation of novel molecular structures, to elucidate the transition from molecular to bulk properties, and catalysis through fine tuning of dispersion-energy donors for optimizing the interactions of ligands and substrates in transition states. The following subtopics will be emphasized (but are not exclusive):
- Structural studies and quantification of dispersion interactions
- Quantification of dispersion-energy donors through systematic studies
- Design and preparation of novel intra- or intermolecularly dispersion-stabilized structures
- Dispersion interactions in photoexcited states
- Dispersion effects on reactivity and in catalysis
- Transition-state stabilization through dispersion-energy donors
- Solvent-induced modulation of dispersion interactions
- Theory and spectroscopy as tools for the elucidation of dispersion interactions
- Experimental and theoretical method development to address dispersion interactions
- Molecular spectroscopy to quantify dispersion effects and validate theoretical results
PIs and associate members SPP 1807 |
||
---|---|---|
Name | Address | |
Ackermann, Lutz |
Georg-August-Universität Göttingen Institut für Organische und Biomolekulare Chemie Tammannstraße 2 37077 Göttingen Tel.: +49 551 39 33201 (33202) Fax: +49 551 39 6777 |
|
Auer, Alexander A. |
Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Tel.: +49 208 306 3581 Fax: +49 208 306 3951
|
|
Berger, Raphael Johann Friedrich
|
Paris-Lodron-University Salzburg Department of Materials Research and Physics Chemistry of Materials Hellbrunnerstraße 34 A-5020 Salzburg Tel.: +43 662 8044 5466 |
|
Berkessel, Albrecht
|
Universität zu Köln Department für Chemie Institut für Organische Chemie Greinstraße 4 50939 Köln Tel.: +49 221 470 3283 Fax: +49 221 470 5102 |
|
Bistoni, Giovanni |
Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Tel.:+49 (0)208 306 3582 Fax:+49 (0)208 306 2989 |
|
Chen, Peter
|
Eidgenössische Technische Hochschule Zürich Laboratorium für Organische Chemie Vladimir-Prelog-Weg 2 / HCI G209 CH-8093 Zürich Tel.: +41 44 632 2898 |
|
Clever, Guido
|
TU Dortmund Lehrstuhl für Bioanorganische Chemie Fakultät für Chemie und Chemische Biologie Otto-Hahn-Str. 6 44227 Dortmund Tel.: +49 231 755 8677 Fax: +49 231 755 8138 |
|
Friedrich, Bretislav
|
Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) Abteilung Molekülphysik Faradayweg 4 - 6 14195 Berlin Tel.: +49 30 8413 5739 Fax: +49 30 8413 5603 |
|
Gerhards, Markus
|
Technische Universität Kaiserslautern Fachbereich Chemie Fachrichtung Physikalische und Theoretische Chemie Erwin-Schrödinger-Straße 52 67663 Kaiserslautern Tel.: +49 631 205 2537 Fax: +49 631 205 2750 |
|
Gschwind, Ruth
|
Universität Regensburg Fakultät für Chemie und Pharmazie Institut für Organische Chemie Universitätsstraße 31 93053 Regensburg Tel.: +49 (0)941 943 4626 Fax: +49 (0)941 943 4617 |
|
Grimme, Stefan
|
Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Physikalische und Theoretische Chemie Mulliken Center for Theoretical Chemistry Beringstraße 4 53115 Bonn Tel.: 0228 73 2351 Fax: 0228 73 9064 |
|
Heßelmann, Andreas
|
Friedrich-Alexander-Universität Erlangen-Nürnberg Department Chemie und Pharmazie Institut für Theoretische Chemie Egerlandstraße 3 91058 Erlangen Tel.: +49 9131 85 25021 Fax: +49 9131 85 27736 |
|
Jansen, Georg
|
Universität Duisburg-Essen (Campus Essen) Fachbereich Chemie Theoretische Organische Chemie Universitätsstraße 5 45141 Essen Tel.: +49 201 183 4421 Fax: +49 201 183 4613 |
|
Klopper, Willem M.
|
Karlsruher Institut für Technologie (KIT) Institut für Physikalische Chemie Abteilung für Theoretische Chemie Fritz-Haber-Weg 2 / Geb. 30.44 76131 Karlsruhe Tel.: +49 721 608 47263 Fax: +49 721 608 47225 |
|
Paradies, Jan |
Universität Paderborn Department Chemie Arbeitskreis Paradies Warburger Straße 100 33098 Paderborn Tel.:+49 5251 60 5770 Fax:+49 5251 60 3245 |
|
Ludwig, Ralf
|
Universität Rostock Institut für Chemie Abteilung Physikalische Chemie Theoretische und Physikalische Chemie Dr.-Lorenz-Weg 1 18059 Rostock Tel.: +49 381 498 6517 Fax: +49 381 498 6524 |
|
Mata, Ricardo
|
Georg-August-Universität Göttingen Institut für Physikalische Chemie Tammannstraße 6 37077 Göttingen Tel.: +49 551 393149 Fax: +49 551 3922202 |
|
Mehring, Michael
|
Technische Universität Chemnitz Institut für Chemie Professur Koordinationschemie Straße der Nationen 62 09111 Chemnitz Tel.: +49 371 531 21250 Fax: +49 371 531 21219 |
|
Mitzel, Norbert W.
|
Universität Bielefeld Fakultät für Chemie Lehrstuhl für Anorganische Chemie und Strukturchemie Universitätsstraße 25 33615 Bielefeld Tel.: +49 521 106 6182 Fax: +49 521 106 6026 |
|
Nau, Werner
|
Jacobs University Bremen gGmbH Molecular Life Science Center (MOLIFE Center) Campus Ring 1 28759 Bremen
Tel.:
+49 421 200 3233
|
|
Neese, Frank
|
Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Tel.: +49 208 306 3656 Fax: +49 208 306 3951
|
|
Schnell, Melanie
|
Deutsches Elektronen-Synchrotron (DESY) Forschungszentrum der Helmholtz-Gemeinschaft Notkestraße 85 22607 Hamburg Tel.: +49 (0)40 8998 6240
|
|
Schreiner, Peter R. (Coordinator)
|
Justus-Liebig-Universität Gießen Fachbereich Biologie und Chemie Institut für Organische Chemie Heinrich-Buff-Ring 17 35392 Gießen Tel.: +49 (0)641 99 34300 Fax: +49 (0)641 99 34309 |
|
Schulz, Stephan
|
Universität Duisburg-Essen (Campus Essen) Fakultät für Chemie Anorganische Chemie Universitätsstraße 7 45141 Essen Tel.: +49 201 183 4635 Fax: +49 201 183 3830 |
|
Slenczka, Alkwin
|
Universität Regensburg Fakultät für Chemie und Pharmazie Institut für Physikalische und Theoretische Chemie Universitätsstraße 31 93053 Regensburg Tel.: +49 (0)941 943 4483 Fax: +49 (0)941 943 4488 |
|
Suhm, Martin
|
Georg-August-Universität Göttingen Institut für Physikalische Chemie Tammannstraße 6 37077 Göttingen Tel.: +49 (0)551 39 33112 Fax: +49 (0)551 39 33117 |
|
Vila Verde, Ana Project |
Universität Duisburg-Essen
47057 Duisburg Tel.: +49 (0)203 37-94716 ana.araujo-vila-verde@uni-due.de |
|
Imhof, Petra
|
Freie Universität Berlin Fachbereich Physik Institut für Theoretische Physik Arnimallee 14 14195 Berlin Tel.: +49 030 838 53037 Homepage |
|
Wegner, Hermann
|
Justus-Liebig-Universität Gießen Fachbereich Biologie und Chemie Institut für Organische Chemie Heinrich-Buff-Ring 17 35392 Gießen Tel.: +49 641 99 34341 Fax: +49 641 99 34349 |
|
Verevkin, Sergey
|
Universität Rostock Institut für Chemie Abteilung Physikalische Chemie Dr.-Lorenz-Weg 1 18059 Rostock Tel.: +49 381 498 6508 Fax: +49 381 498 6502 |
|
Biedermann, Frank Project |
Karlsruher Institut für Technologie (KIT) Institut für Nanotechnologie Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Tel.: +49 (0)721 608 26341
|
|
Hättig, Christof Project |
Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Lehrstuhl für Theoretische Chemie Universitätsstraße 150 44801 Bochum Tel.:+49 (0)234 32 28082 Fax:+49 (0)234 32 14045 Homepage |
Control of London Dispersion Interactionsin Metal-Catalyzed C-H Activation
In this project, we will explore the use of attractive London dispersion energy interactions to influence activity and selectivity in metal-catalyzed C–H functionalization chemistry. Despite of considerable recent advances in C–H functionalizations, fundamental aspects of the key C–H activation continue to be poorly understood. Thus, a systematic study on attractive London dispersion energy interactions for catalyst formation and transition-state stabilization has unfortunately as of yet proven elusive. This program will address three key challenges, namely (i) the quantification of dispersion interactions for C–H activations, (ii) the development of dispersion-energy donors DEDs for transition-metal catalysis, and (iii) the rational design of catalysts for the diastereo-, meta- and enantio-selective activation of C–H bonds through dispersion interactions. The detailed understanding of attractive dispersion interactions by experimental and computational mechanistic studies will stimulate the development of DEDs for transition-metal catalysis in C–H functionalizations and beyond. Success will entirely rely on a tight interplay between preparative chemistry, spectroscopy and theoreticians. The project will thus yield strong interactions with other activities in the collaborative network.
|
Alexander A. Auer, Mülheim and Michael Mehring, Chemnitz
Heavy main group elements as dispersion energy donors - experimental and theoretical studies of bismuth compounds with bismuth-pi-interactions as structure determining component In the framework of this project and based on our previous results we aim at achieving the following objectives: In order to assess and extend the general principles for heavy main group element···π interactions derived in the first funding period, we will systematically extend the molecular libraries of structurally related compounds. These novel compounds will be the basis for high-level electronic structure calculations in order to supplement the experimental results and rationalize the basic influences in complex structures In addition to crystal structure analysis and PXRD, spectroscopy should be used as a probe for weak molecular interactions with heavy main group elements. For this purpose, we will increase our efforts in the search for sensitive spectroscopic techniques that will complement the experimental and computational work. Here, techniques like NMR and Raman/IR spectroscopy will be explored in more detail. To further quantify the bonding energy for dispersion type interactions, dispersion-type driven control of polymorphism will be analysed. Furthermore, the dimeric, dispersion type driven structural motif of triorganobismuth compounds BiAr3 will be tested for its potential as building unit in supramolecular chemistry.
|
Raphael Johann Friedrich Berger, Salzburg and Norbert W. Mitzel, Bielefeld
Intramolecular dispersive interactions in the gas phase: experimental reference data and comparison with solid state and theory Our project focusses on applying gas electron diffraction (GED) and other methods to explore the precise geometrical structure of a range of free molecules with intramolecular dispersion interactions. The results obtained for free gas-phase molecules will be compared with data obtained in the solid state by single crystal X-ray diffraction (XRD). Such studies in different phases will clarify whether and to what extent intermolecular solid-state effects change molecular structures as well as the occurrence and strengths of dispersion interactions. Most of the experimental data on larger, more complicated systems are derived from solid-state methods, but the fundamental interactions are preferably studied by gas-phase techniques. The question of comparability is thus obvious. There is also enormous progress in quantum-chemical (QC) method development for describing increasingly larger systems including a thorough treatment of dispersion. However, such calculations are usually applied to single molecules – again different from solid-state results. Comparison of experimental data for free molecules with a range of state-of-the-art QC calculations will help to evaluate the quality of such theory-approximations. With a set of data from gas-phase and solid-state methods as well as QC, we will be able to study method- or phase-dependence of dispersion interactions. In the first project phase we have demonstrated that our approach indeed provides valuable structural and thermochemical information on the occurrence and strengths of intramolecular dispersion interactions. The objects of study stemmed from own preparative work (e.g. interactions C6H5/C6F5, Cu···Cu or Hg···Hg) and from co-operations with other SPP groups (e.g. alkyl/alkyl in large diamantyl dimers). In some cases we found severe differences between gas-phase experiments and highest-level QC calculations, in others good agreement with some QC methods. We also established new ligand systems for synthesizing volatile dinuclear gold complexes. In this way we learned to generate a range of new molecules for studying certain types of dispersion-dominated interactions in isolated form. In the second funding period we will make use of this knowledge and deepen our understanding of intramolecular dispersion interactions, as well as produce challenging new objects plus experimental data as references for dispersion-corrected QC methods. We also aim at understanding the failure of certain methods for certain types of compounds. The various types of intramolecular interactions to be studied include a) σ∙∙∙ σ interactions in hydrocarbons and organosilanes, b) arene π∙∙∙π interactions, c) σ-hole interactions (halogen and chalcogen bonds), and d) d10∙∙∙d10 (e.g. Au∙∙∙Au, Hg∙∙∙Hg) and d10∙∙∙s2 interactions (e.g. Au∙∙∙Bi). We will also undertake GED structure determinations for at least four other groups in the SPP.
|
Dispersion Interaction in Metal- and Organocatalysis - Assessment and Implementation in Salalen Ligands and N-Heterocyclic Carbenes
Understand - quantify - use: Our studies aim at the assessment and implementation of dispersion control in two areas of small-molecule homogeneous catalysis: (i) titanium-salalen complexes for the asymmetric epoxidation of non-functionalized and in particular terminal olefins with hydrogen peroxide, and (ii) N-heterocyclic carbenes for Umpolung reactions in organocatalysis and as ligands in metal-catalyzed C-H activation. By the introduction of dispersion energy donors (DEDs) into the two catalyst systems, significant experimental progress and mechanistic insight was achieved in both areas in the course of the first funding period. For the second funding period, we are intending to build on this body of information, and to provide, by rational approach, novel, readily available and broadly applicable catalyst generations. Mechanistic studies will aim at a thorough understanding of their modes of action, and in particular of the role of dispersion. This multi-level approach is intended to contribute, on one hand, to our understanding of dispersion control of molecular catalytic transformations. On the other hand, by rational incorporation of dispersion elements, we are aiming at novel catalyst generations of unprecedented activity and selectivity. The project will combine, in a synergistic manner, synthesis, spectroscopy, mechanistic analyses, and quantum-chemical computation. Several cooperations with other research groups are integral part of this endeavor.
|
Experimental dissection of dispersion energies from electrostatic contributions and solvent effects in face-to-face pi-stacking complexes
We propose a novel experimental toolbox for evaluating the binding energies of face-to-face “stacking” aromatic systems, which will be of help to separate electrostatic from dispersive contributions for typical pi-pi complexes. Our approach is complementary to existing experimental approaches, e.g. studies with association complexes of small molecules, the molecular balance technique or the double mutant cycle analysis, which have to date not been fully conclusive in scrutinizing competing theoretical models about pi-pi stacking interactions. Stable and geometrically well-defined rotaxanated complexes of the large macrocycle cucurbit[8]uril and a suitable aromatic component will serve as the receptor moiety for binding a second aromatic guest. In this design, both aromatic compounds, i.e. the rotaxanated one, and the incoming second aromatic guest, are hold in a face-to-face orientation (=> high geometric control) and are each almost completely shielded from contact with solvent molecules (=> minimization of solvation effects on the overall pi-pi stacking energy). We also propose a path how the desolvation energy cost of the binding partners can be experimentally accounted for without the need for computational treatments. Both the high geometric control and the subtraction of solvation effects are important advantages over other association-complex-based studies. Furthermore, it will be straightforward to generate a data library, because the second aromatic binding partner can be readily mixed in and does not need to be covalently tethered, as is the case for molecular-balances. In fact, our supramolecular approach also avoids probing a “non-optimal” binding geometry, which can be a shortcoming for covalent molecular-balance setups. In the proposed line of research, we will first prepare the rotaxanated complexes and will then measure by isothermal titration calorimetry (ITC) the binding enthalpies and free enthalpies of their pi-pi-complex formation with aromatic second guests. Having direct access to binding enthalpies will facilitate the comparison to computed pi-pi interaction energies, as the computationally difficult to treat entropic component can be disregarded. Having access to free energies (and thus entropies) will provide a valuable data sets to test future improved theoretical models. Information about the pi-pi stacking geometry will be obtained by structure-based methods such as NMR spectroscopy in solution and X-ray diffraction structure analysis of crystallized complexes. By systematically varying both the aromatic binding partners, including systems with typical “polar” substituents or with “dispersion donors”, we will aim towards an experimental separation of electrostatic and dispersive effects for the face-to-face pi-pi interaction motif. This study will complement the emerging picture of the importance of dispersive interactions for molecular recognition and self-assembly.
|
Large Dispersion Effects in Organic and Organometallic Thermochemistry, Stereochemistry, and Reaction Mechanisms This project investigates two structural classes of molecules, characterized in the first phase of SPP 1807, for which gas-phase bond energies and the corresponding equilibria in solution can be measured experimentally. With a wide range of substituents, the effect of dispersion on the bond strengths and equilibria can be quantified and compared to quantum chemical calculations with and without implicit solvation models. The results are general for all bond-making or bond-breaking processes, i.e. all chemical reactions, and they provide a rigorous test of the adequacy of present theoretical models.
|
Guido Clever and Ricardo Mata, Göttingen
Experimental and Computational Insights into Dispersion Interactions in Self-Assembled Supramolecular Host-Guest Systems
This project deals with the experimental and theoretical study of supramolecular host-guest systems, whereby the structural stability of the hosts and binding affinity towards guest molecules is strongly conditioned by dispersion interactions. Self-assembled coordination cages based on acridine/acridone functionalized backbones will be synthesized and characterized with a large variety of spectroscopic tools, including multidimensional NMR techniques, ion mobility mass spectrometry, X-ray crystallography and isothermal titration calorimetry. A modular synthetic approach will allow the construction of molecular cages of varying size and shape, as well as the introduction of dispersion energy donor groups in the binding pocket(s). Such structures are unique in character, as they include some of the complexity found in biomolecular systems, while exhibiting properties akin to low-dimensional models, either due to their inherent symmetry or the rigidity of the molecular assembly. The ultimate goal is to explore such properties and to dissect intra- and intermolecular dispersion interactions from other factors such as stronger non-covalent attractions, steric and solvation effects. Theoretical studies will be carried out on the synthesised supramolecular systems and/or models thereof. The objectives are two-fold. On one hand, we wish to distinguish dispersion forces in host-guest interactions and better understand the interplay with solvent exclusions effects. On the other hand, to benchmark and refine procedures to analyse interaction energies, irrespective of molecular size. In the first funding period, we have successfully identified a group of supramolecular structures with great promise for the study of comparative host stability, guest affinity and solvent effects. Theoretical tools for the quantification of dispersion have also been developed and tested in cooperation with other research units in the Priority Programme. In the second phase, we will expand the scope of our project to the study of reactivity inside supramolecular hosts and the impact of dispersion forces in intermediates and reaction products.
|
Bretislav Friedrich, Berlin and Alkwin Slenczka, Regensburg Configurations of van der Waals complexes controlled via London dispersion forces as revealed by means of Stark spectroscopy in He-nanodroplets
By means of high resolution Stark spectroscopy on electronic transitions molecular van der Waals complexes are studies which. The formation of such complexes inside helium nanodorplets is determined by long rage London dispersion forces. Combined experimental and theoretical investigations head to reveal the influence of long rage London dispersion forces on the configuration of such complexes. In addition to molecular complexes the results obtained so far show an interesting aspect of the project to study microsolvation of molecules in helium droplets. Thereby, the dispersion interaction between non-polar organic molecules and helium atoms plays a dominant role. This is an extreme example for steering by London dispersion forces.
|
Markus Gerhards, Kaiserslautern
Dispersion interactions in isolated molecules and molecular aggregates analyzed by IR/UV and Raman/UV double resonance spectroscopy
In this project we analyze a variety of molecular systems with competing structural arrangements in which London dispersion forces are important for the energetic preferences. Furthermore, dimers that are only stable if dispersion interactions are strong enough are considered, like substituted hexaphenyl ethane dimers with e.g. unusually short distances between H atoms. Both the influence and quantity of dispersion forces will be investigated with the help of spectroscopic techniques in molecular beam experiments yielding vibrational frequencies and electronic energies in comparison to quantum chemical methods. One set of systems to be investigated are ether–alcohol clusters in which the alcohol molecule can form a hydrogen bond to the ether oxygen or to a pi cloud and where a varying alcohol side-chain is able to control the docking preference due to changed amounts of dispersion interactions. Alternatively, an attached aromatic alcohol molecule can interact with different alkyl side chains, driven by the strength of dispersion interactions. A further class of investigated clusters are aggregates of asymmetric ketones (including protected amino acids) with alcohol molecules. Here, different orientations of the side-chains of the alcohol molecule with respect to the two lone pairs of the carbonyl oxygen atom are possible. All analyses, both for the ether–alcohol and ketone–alcohol clusters, describe a critical balance between nearly isoenergetic structures, i.e. difficult cases for theoretical predictions are presented, since the uncertainty with respect to energetic differences can be in the region of the difference of zero point energies. We focus our molecular beam investigations on the electronic ground state of neutral and partly ionic clusters, but also on the excited state of the neutral species by applying a variety of combined mass- and isomer-selective IR/UV techniques as well as stimulated Raman/UV techniques. Furthermore a new combined IR/Raman/UV variant which is important for isomer-selective measurements will be developed and applied. Our experimental investigations will be performed in close cooperation with other working groups in the field of complementary spectroscopic methods, theory, and synthesis. The synthetic groups also provide us with specifically deuterated or fluorinated compounds. It is a general aim to offer a variety of experimental results in comparison with theoretical predictions. By this an improvement and development of (new) theoretical methods can be achieved in order to get a better quantification of London dispersion, including especially the analysis of electronically excited states.
|
London Dispersion in Brønsted Acid Catalysis The assessment of dispersion interactions in the transition states of stereoselective catalysis is a very valuable but challenging task, which is so far mainly based on theoretical calculations. For the chiral BINOL-based phosphoric acids used in Brønsted acid catalysis strong contributions of dispersion interactions are expected in their stereodecisive transition states. However to our knowledge an experimental set-up to measure the role of these dispersion interactions is still missing. Recently, we got a detailed insight into the structures and hydrogen bond properties of the binary complexes of chiral phosphoric acids with imines. In addition, we developed the DTS-hn method (decrypting transition states with light) the first experimental access to active transition state combinations and applied it to the transferhydrogenation of imines using chiral phosphoric acids. In this project now the relative dispersion donor energies of various imine/chiral phosphoric catalyst pairs in their ground state structures shall be experimentally measured using dispersion energy balances. Three different experimental dispersion balances and accompanying theoretical calculations are planned to assess contributions from solvent effects, potential changes in the H-bonds or experimental error. The derived dispersion energy values will be compared to the synthetic results of the catalyses and interpreted with the help of the DTS-hn method and theoretical calculations. Overall this combined experimental and theoretical approach is expected to give an assessment of the importance of dispersion interactions in the transition states of Brønsted acid catalysis as well as of their potential changes between ground state and transition state structures.
|
Modeling of London Dispersion Interactions in Molecular Chemistry
The accurate account of London dispersion interactions and their 'chemical' analysis by modern quantum chemical methods are the central themes of this project. Based on our insight and experience with dispersion corrected mean-field (DFT-D/NL) methods we will continue to contribute to gaining a thorough understanding and quantification of London dispersion interactions in molecular systems with projects in the three areas: method development, joint applications with and support of other participants in theoretically difficult or non standard cases. In detail, the following topics will be considered: - automatic generation of conformation ensembles and cluster structures even for large systems by a new, separately developed composite procedure based on a robust and accurate tight-binding quantum chemical method and the new intermolecular force field, - molecular thermochemistry in solution and computation of reaction barriers and mechanisms with an emphasis on dispersion control, - energy decomposition analysis of non-covalent interactions to reveal the importance of dispersion in particular regarding dispersion energy donor (DED) vs. anti-DED (de-stabilising) behavior, - further development of the D4 model including many-body dispersion effects - coupling of the non-local VV10 density functional with excited state quantum chemistry methods and interpretation of experiments involving electronic excitation Particular attention will be paid to the effect of dispersion on the chemical property of interest. With the applied dispersion corrected density functional methods this is technically and conceptually easily possible because the electronic and dispersion energies are assumed to be additive and the correction can easily be switched on/off. In addition the proposed D4 model (in comparison to D3) will allow to investigate the charge dependence of dispersion effects in particular for metallic systems as well as a more accurate consideration of the many-body dispersion energy. The higher accuracy of the new DFT-D4 methods in combination with improved sampling techniques will lead to overall significantly increased reliability of the treatments.
|
Investigation and modelling of dispersion interactions in electronically excited states and the effects of dispersion interactions on electronic excitations
The aim of the project is to achieve a better understanding of the connection between the electronic excitations in a chromophore and its dispersion interaction with an environment. Important research questions that will be addressed are: In which chemical situations and for which kind of electronically excited states is it important to account for the change of the dispersion interaction upon electronic excitation in its quantum chemical description? Are there situations and/or chromophores where the dispersion interaction with the environment changes significantly the excitation energy or the electronic structure of the excited state or the order of the excited states? An additional object of the project is the development of the dispersion contribution to the self-consistent reaction field model PE (polarizable embedding) which accounts for the dispersion interaction during the calculation of the wavefunction parameters for the ground and electronically excited states. A posteriori corrections will thereby be avoided because they lead in general to qualitatively wrong potential energy surfaces in the vicinity of avoided crossings. This is done because we aim at a QM/MM method, which includes the dispersion interaction upon electronic excitation processes and is suitable for the calculation of excited state structures and relaxation processes. This will be implemented at the example of the PERI-ADC(2) and PERI-CC2 methods. For the computation of dispersion coefficients for larger molecules with a correlated wavefunction method we will in addition extend an existing RI-CC2 code for frequency-dependent polarizabilities in ground and excited states for imaginary frequency and for the calculation of Cauchy moments.
|
Intra- versus intermolecular forces: the influence of solute-solvent interactions on the structure and properties of extended molecules
The geometric and electronic structure of extended molecules can be significantly influenced by a solvent environment when compared with the gas phase. Since, in the vast majority of cases, the study of chemical processes takes place in the liquid phase, the knowledge about the impact of the solute-solvent interactions therefore are crucial for the interpretation and prediction of chemical structures and properties. The application of theoretical methods for this purpose, however, constitutes a highly challenging task, because the solute-solvent system can only be properly described by completely sampling the complex conformational landscape of the system. The aim of this project is to employ a combination of classical molecular dynamics (MD) force field methods and quantum chemistry methods for describing the interactions between a molecule with solvent molecules and to quantify both inter- and intramolecular interactions in the system in order to define structural changes of extended molecules induced by various solvent environments. The MD simulations will be done in order to scan the conformational space of the system, and MD quenching will then be used for extracting a set of structures (molecule plus shell of solvent molecules) which can then be studied further with accurate quantum chemistry methods. For the latter, our recently developed incremental molecular fragmentation scheme will be employed which can be used to decompose the total energy of a molecule into bonded and nonbonded energy contributions. By using symmetry-adapted intermolecular perturbation theory (SAPT) methods for the latter, the interactions in the solute-solvent system can then be characterised by individual interaction energy terms, like electrostatic and dispersion interactions. With this, a comparison between intramolecular interactions of extended dissolved molecules to the interactions in the gas phase can thus give an insight in the dependence of intramolecular dispersion interactions on the outer environment.
|
Petra Imhof and
Ana Vila Verde, Berlin
Dispersion interactions in fluorinated biopolymers
The structure and function of biopolymers are determined by the balance of different types of interactions: electrostatic, dispersion, and hydrophobic interactions. The latter are important in understanding the “hydrophobic effect” associated with aggregation of apolar solutes in aqueous environment. Dispersion interactions thus play a major role in the biopolymer structure and dynamics, leading to and stabilizing protein assemblies. Fluorination has been shown to modulate the properties of small molecules by altering the balance between electrostatic and dispersion interactions. Similar effects can be expected for peptides, proteins and other biopolymers. To explore the impact of fluorination on hydrated biopolymers, we will employ molecular simulations at atomic level detail, in comparison with Raman experiments provided by our collaboration partners. First principles simulations of fluorinated and non-fluorinated small molecules in gas phase and in solution will allow us to dissect the balance of electrostatic and dispersive interactions on an electronic structure level. These calculations will furthermore serve as reference data for the development of classical force field parameters. Using these parameters, classical molecular dynamics simulations on a larger scale will reveal the impact of fluorination on the dispersion interactions in biopolymers and their dependence on polymer length, conformation, and structural flexibility. These aspects, which are important for proteins, cannot be studied in the very small molecules typically used as analogues of amino acid side chains. However, direct dispersive interactions between hydrophobic groups in solution do depend on the distance of these groups and thus the shape and conformational dynamics of the polymer. Our simulations of selectively fluorinated biopolymers will probe whether dispersion interactions are the dominant contribution to hydrophobic attraction and may thus account for changes in protein structure and structural stability in fluorinated proteins. This understanding can ultimately be used to modify the balance of the different interactions and thereby control protein properties via specific fluor-substitution.
|
Georg Jansen and Stephan Schulz, Essen
Combined Quantum Chemical and Experimental Study on Metal-Metal Interactions of Heavy Group15 and Group16 Compounds
In this project we investigate the role of dispersion interactions in chemical compounds of the atoms Sb, Bi, and Te, combining synthesis of corresponding compounds with quantum chemical calculations and structural characterization via X-ray crystallography. In the first funding period of the project dispersion-dominated non-covalent interactions between these atoms and with pi systems of arenes were found to be decisive for the formation of crystal structures of their compounds. They also significantly contribute to the stabilization of conformers of molecules containing several non-covalently linked heavy group 15/16 metal atoms and may cause, for example bond angles below 90 degree. In the second funding period the influence of electron-donating and -withdrawing ligands of the metal atoms comes into focus. Their effects on the one hand shall be predicted with the help of quantum chemical calculations, where intermolecular perturbation theory with its possibility of quantitative computation of dispersion and further interactions will play an important role. On the other hand we will synthesize and structurally characterize promising candidates with particularly strong interactions. Furthermore we will synthesize homo and hetero bimetallic complexes with rigid aromatic ligands, which allow for a tuning of the distance between the metal atoms. Its consequences on intra- and intermolecular interactions shall be understood through structural characterization and quantum chemical calculation. An improved understanding of the anisotropy of the combination of attractive dispersion and repulsive steric forces shall be achieved through intermolecular perturbation theory calculations of the interactions of chemical compounds containing group 15 and 16 metal atoms with test particles, utilizing the results for qualitative predictions of the structures of molecules and molecular aggregates.
|
Computational determination of accurate bond energies of dispersion-dominated systems in the gas phase
The primary aim of the project is the accurate determination of ground- and excited-state dissociation energies (D0) and electronic binding energies (De) of dispersion-dominated complexes of (hetero-)aromatic molecules (denoted M) with dispersively bound solvents (denoted S) using computational methods. Examples are complexes of M = carbazole, 1-naphthol with S = Ne−Xe, N2, CO. Accurate experimental data are available from stimulated-emission pumping/resonant two-photon ionization (SEP/R2PI) spectroscopy. Computationally, a combination of (dispersion-corrected) density-functional theory and high-level coupled-cluster methods will be applied, which include explicitly-correlated wave functions in order to converge quickly to the limit of a complete basis-set expansion. The established De and D0 values will serve as benchmarks for the development of novel computational methods including explicitly-correlated symmetry-adapted perturbation theory and Green's function-based methods. It is expected that the combined experimental/theoretical benchmarks as well as the new computational methods will be useful for other projects of the Priority Programme
|
Ralf Ludwig and Sergey Verevkin, Rostock
Competition between hydrogen bonding and dispersion forces in ionic and molecular liquids by means of spectroscopic and thermodynamic methods The competition between hydrogen bonding and dispersion forces in ionic and molecular liquids will be studied by means of infrared, terahertz, several thermodynamic methods and quantum chemical calculations including dispersion correction. The important role of dispersion forces on the formation of ionic and molecular clusters will be investigated for all phases: the solid, the liquid and the gas phase. The structure of the clusters present in each phase will be determined by X-ray and spectroscopic methods whereas changes during phase transition will be probed by thermodynamic methods. For that purpose, a well selected set of ionic and molecular liquids will be synthesized that allows to control of noncovalent interactions. The special feature of the molecular liquids is that the molecules are mimics of the cations used in the ionic liquids. This way we can study the different role of dispersion forces while changing from ionic to molecular liquids and switching off the strong Coulomb interaction. Moreover, the compounds are designed such that we can increase the dispersion forces in a controlled way while weakening hydrogen bonding at the same time. The combined spectroscopic methods (MIR, FIR, THz), thermodynamic methods (calorimetry, thermogravimetry, vapour pressure measurements) and theoretical approaches (DFT and Gn) allow to study the subtle balance between Coulomb interaction, hydrogen bonding and dispersion forces in these model compounds. In particular the role of dispersion forces can be analyzed in the liquid phase, wherein most practical chemistry occurs.
|
London Dispersion Interactions inside Macrocycles
We propose to investigate the contribution of London dispersion interactions (LDI) to the molecular recognition process of macrocycles, prominently cucurbit[n|urils (CBn) and to the control of chemical reactions inside their inner cavity. CBn are water-soluble macrocyclic host molecules of the molecular container type, that is, they are able to encapsulate numerous organic guests inside their hydrophobic cavity. The driving force for binding inside the inner cavity of CBn is primarily traced back to a hydrophobic effect, but LDI present an important modulator. Out of the original six experimental lines of investigation, five will be further pursued in the second project phase: 1) Building up on our quantification of LDI in the binding of noble gases (He, Ne, Ar, Kr, and Xe) to the smallest CBn homologue, CB5, we plan to study the potential of different docking cations to modulate LDI in the resulting CB5•noble gas•cation complexes. 2) We will extend our investigation on the high-affinity binding of strongly polarizable borate clusters of the type (B12X12)2– to substituted carboranes, which in contrast to the dianionic borate clusters possess a neutral core. In order to dissect solvent effects from LDI, we will also study the solvent isotope effect for this type of complexes. 3) As an example of supramolecular catalysis, we have investigated the dimerization of cyclopentadiene inside CB7, for which we have found a million-fold rate enhancement; this study will be extended to methylcyclopentadiene to introduce chemoselectivity into the catalytic reaction. 4) We propose to assess the relative abundance of inclusion versus exclusion complexes in the gas phase as an interesting approach to study LDI. Through collaborations, we have started to investigate a series of organic ammonium ions with CB6 in the gas phase. For direct comparison, we already determined the binding constants of the ammonium ions to CB6 in water during the first phase of the priority programme. 5) The inversion process of CBn macrocycles in the gas phase will also be examined, which is thought to be driven by intramolecular LDI. Throughout the project, NMR spectroscopy, isothermal titration calorimetry, dye displacement titrations, organic synthesis and quantum-chemical calculations will be used to determine the binding affinities as well as thermodynamic parameters and, thus, to evaluate the importance of LDI.
Expired Project: The Hydrophobe Challenge
|
Stabilization of encounter complexes of intermolecular frustrated Lewis pairs by dispersion energy donors
Dispersion interactions have now been identified in all fields of chemical research giving rise to unusual physical properties, conformations, selectivity of reactions and stabilization of overcrowded molecules. One of the most fascinating aspects is that steric bulk in the form of dispersion energy donors can also lead to the thermodynamic stabilization of molecules resulting in spectacular bonding situations or in extremely short intermolecular distances. This research project focusses on the exploitation of dispersion energy donors for the stabilization of the encounter complexes of intermolecular frustrated Lewis pairs. The triaryl derivatives of phosphorus, nitrogen and boron derived Lewis bases and Lewis acids will be equipped in 3 and 5 position of the aromatic rings with dispersion energy donors. Rigid alkyl fragments such as methyl, isopropyl and tertbutyl will provide the necessary dispersion energy to stabilize the corresponding encounter complex of the Lewis acid and Lewis base. All in all, 54 combinations of dispersion energy stabilized encounter complexes are available, which will be investigated by nuclear-Overhauser enhanced NMR spectroscopic methods. The directionality of the corresponding intermolecular interactions will be analyzed offering the elaboration of solution structures. Furthermore, the association constants will be determined at different temperatures enabling for the determination of the thermodynamic parameters. Furthermore, the activity of the frustrated Lewis pairs in the hydrogen splitting will be investigated connecting dispersion stabilization of the encounter complexes to catalytic activity. The experimental data is of high value for the quantum mechanical description of dispersion interactions offering the improvement of accuracy of dispersion-corrected density functional theory. Our synthetic investigations will be complemented by quantum-mechanical calculations in strong collaboration with S. Grimme. The structure of each of the Lewis acid and Lewis base will be optimized by DFT-based methods and subsequent energy decomposition analysis will specify the role of the various energy contributions. Ultimately, this provides a qualitative and quantitative analysis of interacting dispersion energy donors on a highly systematic level. In summary, this approach to dispersion energy donor-stabilized encounter complexes of Lewis pairs strongly connects to all of the key-topics of the SPP 1807: - synthesis of novel dispersion energy donor -stabilized structure - quantitative evaluation of dispersion energy donors in connection with intermolecular complexation, - solvent dependency of dispersion energy donor-stabilized structures and - transition-state stabilization through dispersion energy donors
|
Frank Neese and
Giovanni Bistoni, Mülheim an der Ruhr
Quantifying London dispersion effects through novel local correlation techniques
During the first founding period, we developed an energy decomposition scheme within the domain-based local pair natural orbital coupled-cluster (DLPNO-CCSD(T) framework, which allows for a physically sound decomposition of the accurate DLPNO-CCSD(T) energy into additive, chemically meaningful contributions. This method, also called “Local Energy Decomposition” (LED) analysis, can be used for quantifying the elusive London dispersion component of the interaction energy between an arbitrary number of fragments or molecules. Challenging applications of this scheme will be carried out during the second funding period, with the final aim of contributing to the rational control of London dispersion effects on chemical reactivity. These applications will be carried out in collaboration with several experimental groups and include: (i) complex organocatalyzed reactions; (ii) molecular balances for the quantification of London dispersion effects in solution; (iii) the study of the coordination bond in organometallic chemistry. Moreover, further developments of the LED analysis will be carried out during the second funding period. In particular, we will implement in the ORCA code an open-shell version of this scheme that will allow for a tremendous increase on the number of systems that can be studied. In addition, a series of simple yet powerful tools for the spatial analysis of the different components of the LED analysis will be also implemented in ORCA.
|
Intra- and intermolecular dispersion forces: Understanding complex formation, aggregation, and the effect of solvation using a bottom-up approach
The goal of the research program is to significantly advance the current understanding of the role of dispersion interaction in molecular recognition and intramolecular structures by systematically exploring model systems using high-resolution rotational spectroscopy. We will continue our successful work on spectroscopically investigating and characterizing molecular systems in the gas phase to understand and quantify intra- and intermolecular interactions. In a bottom-up approach, we will study basic processes relevant for understanding molecular aggregation and finally the transition from the gas to the bulk phase, as well as the influence of solvation on dispersion. For the second funding period, we can now build on a solid, fruitful, and creative network of synthesis, spectroscopy, and theoretical chemistry groups from the SPP, as described above. We propose to work on the following aspects: In project 1, it is our goal to further investigate qualitatively and quantitatively the role of dispersion for a variety of molecular complexes. We will continue our work on ether-alcohol complexes (which already let to a number of surprises in the first funding period) and extend it to ketone-alcohol complexes as well as chiral species, in collaboration with our partner groups. We aim at gaining a complete understanding of how dispersion contributions influence the structures of complexes and which role conformational flexibility plays. In a second project, we will study aggregation of molecules, such as those with extended π systems, and we will thus explore the transition from individual molecules to the bulk on the molecular level. The anticipated results on a molecule-by-molecule build-up mechanism will also be of interest for the formation of soot particles as relevant for combustion as well as of dust grains as relevant for astrochemistry. In project 3, we will investigate how dispersion is influenced by solvation. We will study molecular complexes, such as diphenylether-methanol, and investigate how structural preferences upon clusters formation are modulated by stepwise solvation of the complex. The controlled conditions in a molecular jet are ideally suited for such experiments. We aim at understanding how the effect of solvation depends on the different molecule systems, and how this can be predicted and finally controlled.
|
London Dispersion as a design element to control molecular structures and chemical reactivity
The goal of the project is to improve our conceptual understanding of London dispersion (LD) interactions. We strive to achieve this using synthetic, spectroscopic, and computational techniques as follows: a) Synthesis and detailed structural characterization of the re-discovered Gomberg-system (i.e., dimers of trityl derivatives) that are only made possible by using LD interactions; b) determination of a relative scale of dispersion energy donors (DEDs) utilizing “molecular balances” based on hydrocarbons only (cyclooctatetraene and bifluorenylidene derivatives); c) examination of the effects of lipophilic groups (i.e., DEDs) in oligopeptide catalysts as well as substrates in organocatalytic transformations (acylation, Dakin-West reaction). Ideally, the concepts lead to improved ways of directing reactivity and selectivity, novel materials, and the improvement of high-quality quantum mechanical methods for increasingly larger systems. A good part of our work is directly connected to projects of other expert groups from theory and spectroscopy.
|
London vs. Keesom and Debye forces: From FTIR cluster spectroscopy of ambivalent alcohol complexes towards intermolecular energy balances
London dispersion forces can tip the balance between different hydrogen bond docking sites of an alcohol molecule to a multifunctional acceptor molecule. By selecting systems with low barriers between energetically nearly degenerate docking sites and by working in a supersonic jet environment, very subtle energy differences can be detected and quantified with linear infrared spectroscopy. By studying a large number of systems with varying dispersion anchors, fortuitous error cancellation can be ruled out and subtle deficiencies of quantum chemical methods in providing balanced descriptions of all intermolecular forces can be uncovered in a systematic way. By choosing chemically similar docking sites, distorting effects from anharmonic zero point energy can be minimized. By including chiral donor and acceptor molecules, chirality recognition effects mediated by dispersion forces can be studied as well. The project concentrates on carbonyl lone pair and alkene π bond face choices, along with the oxygen/π competition, which was in the focus of the first funding period. Improved nozzle and sample preparation designs will be explored. Intense experimental cooperation with UV/IR and microwave experts in the priority programme is planned. Besides testing quantum chemical predictions for intermolecular interactions, such theoretical methods will be used to separate and visualize the London dispersion contribution of substituents in cooperation with theory groups. In the end, the new concept of intermolecular energy balances to probe London dispersion interactions in the gas phase at low temperature will complement the popular intramolecular torsional balances in solution by providing energy-focused information free of bulk solvent influence.
|
Investigation of London Dispersion Interactions with Azobenzene Switches
The effect of bulky groups has been mainly considered according to their repulsive interactions. Recently, it has been realized, that the attractive part of the van-der-Waals interactions, London dispersion, can be utilized as stabilizing element in molecular and reaction design. Despite the progress made, the nature of these forces are still not fully understood. Especially the experimental evaluation of the strength in terms of dispersion of different groups (dispersion donor groups = DDGs) has only been scarcely addressed. A long disputed issue is the effect of solvation on dispersion. In the past years, we could show that the thermal back reaction of azobenzene from the Z- to the E-isomer is ideally suited to address these questions. It allows positioning two DDGs in close proximity. By examining the isomerization rate, the stability of various DDGs can be assayed based on the Bell-Evans-Polyani relationship. Herein, various DDGs ranging from alkyl to structures relevant in life science, such as peptides, nucleobases, etc. will compared according to their dispersion strength. Furthermore, the influence of different solvents on the dispersion strength of given DDGs will be investigated providing essential guidelines, how to design ideal conditions to make the best use of dispersive interactions. The studies will be completed with collaborative efforts with other groups within the SPP 1807 in the area of catalysis, supramolecular chemistry and structural analysis.
|
Publications 2023
- Maximized axial helicity in a Pd2L4 cage: inverse guest size-dependent compression and mesocate isomerism - W. M. Bloch, S. Horiuchi, J. J. Holstein, C. Drechsler, A. Wuttke, W. Hiller, R. A. Mata, G. H. Clever, Chem. Sci. , 2023 , 14, 1524-1531. DOI : 10.1039/D2SC06629G
Publications 2022
- Tilting the Balance: London Dispersion Systematically Enhances Enantioselectivities in Brønsted Acid Catalyzed Transfer Hydrogenation of Imines - J. Gramüller, M. Franta, R. M. Gschwind, J. Am. Chem. Soc. , 2022 , DOI: 10.1021/jacs.2c07563 .
- Attaching onto or Inserting into an Intramolecular Hydrogen Bond: Exploring and Controlling a Chirality-Dependent Dilemma for Alcohols - M. Lange, E. Sennert, M. A. Suhm, Symmetry , 2022 , 14(2), 357. DOI : 10.3390/sym14020357
- Sniffing out camphor: the fine balance between hydrogen bonding and London dispersion in the chirality recognition with a-fenchol - M. M. Quesada-Moreno, M. Fatima, R. Medel, C. Pérez, M. Schnell, Phys. Chem. Chem. Phys ., 2022 , 24 , 12849-12859. DOI : 10.1039/D2CP00308B
- London Dispersion Favors Sterically Hindered Diarylthiourea Conformers in Solution - L. Rummel, M. H. J. Domanski, H. Hausmann, J. Becker, P. R. Schreiner, Angew. Chem. Int. Ed. , 2022 , in press. DOI : 10.1002/anie.202204393
- Effects of Dispersion and Charge -Transfer Interactions on Structures of Heavy Chalcogenide Compounds: A Quantum Chemical Case Study for (Et 2 Bi) 2 Te - F. van der Vight, S. Schulz, G. Jansen, ChemPlusChem, 2022 , 87 , e202100487. DOI : 10.1002/cplu.202100487
- Comparing London Dispersion Pnictogen-π Interactions in Naphthyl-substituted Dipnictanes - A. Gehlhaar, E. Schiavo, C. Wölper, Y. Schulte, A. A. Auer, S. Schulz, Dalton Trans ., 2022 , 51 , 5016-5023. DOI : 10.1039/D2DT00477A
-
Bisstibane−Distibane conversion via consecutive single-electron oxidation and reduction reaction - A. Gehlhaar, H. M. Weinert, C. Wölper, N. Semleit, G. Haberhauer, S. Schulz, Chem. Commun. 2022 , in press . DOI : 10.1039/D2CC01986H
-
Computational Chemistry as a Conceptual Game Changer: Understanding the Role of London Dispersion in Hexaphenylethane Derivatives (Gomberg Systems) – S. Rösel, P. R. Schreiner, Isr. J. Chem. 2022 , 62 , e202200002. DOI: 10.1002/ijch.202200002
-
Gauging the Steric Effects of Silyl Groups with a Molecular Balance – H. F. König, L. Rummel, H. Hausmann, J. Becker, J. M. Schümann, P. R. Schreiner, J. Org. Chem. 2022 , 87, 7, 4670–4679. DOI: 10.1021/acs.joc.1c03103
- Exceptionally Close I···As and I···Sb Interactions in Trimethylpnictogen-Pentafluoroiodobenzene Cocrystals - M. Bujak, H.-G. Stammler, N. W. Mitzel, CrystEngComm , 2022 , 24 , 70–76. DOI: 10.1039/D1CE01268A
- Monitoring dynamic pre-crystallization aggregation processes in solution by VT-DOSY NMR spectroscopyv - A. Mix, J.-H. Lamm, J. Schwabedissen, E. Gebel, H.-G. Stammler, N. W. Mitzel, Chem. Commun. 2022 , 58 , 3465–3468. DOI: 10.1039/D1CC05925D
- Synthesis, structural and photophysical properties of dimethylphosphino (perfluoro-)phenylene based gold(I) dimers - F. Müller, L. Wickemeyer, J. Schwabedissen, M. Ertl, B. Neumann, H.-G. Stammler, U. Monkowius, N. W. Mitzel, Dalton Trans. 2022 , 51 , 1955. DOI: 10.1039/D1DT03658K
- Diphenyl- and dimesityl-phosphanyl-substituted 3,3,4,4,5,5-hexafluorocyclopentenyl-gold(I) dimers – syntheses and solid-state structures - F. Müller, T. Glodde, B. Neumann, H.-G. Stammler, N. W. Mitzel, Eur. J. Inorg. Chem. 2022 , in press; DOI: 10.1002/ejic.202200080
- Noncovalent Intra- and Intermolecular Interactions in Peri-Substituted Pnicta Naphthalene and Acenaphthalene Complexes - A. Gehlhaar, C. Wölper, F. van der Vight, G. Jansen, S. Schulz, Eur. J. Inorg. Chem. 2022 , accepted for publication. DOI: 10.1002/ejic.202100883
- Hydrogen Delocalization in an Asymmetric Biomolecule: The Curious Case of Alpha-Fenchol - R. Medel, J. R. Springborn, D. L. Crittenden, M. A. Suhm, Molecules 2022 , 27(1), 101. DOI : 10.3390/molecules27010101
Publications 2021
- Ternary Complex of Chiral Disulfonimides in Transfer Hydrogenation of Imines: The Relevance of Late Intermediates in Ion Pair Catalysis, M. Žabka, R. M. Gschwind, Chem. Sci. 2021 , 12 , 15263-15272. DOI : 10.1039/D1SC03724B
- Non-Covalent CH-π and π-π Interactions in Phosphoramidite Palladium(II) Complexes with Strong Conformational Preference, M. Žabka, L. Naviri, R. M. Gschwind, Angew. Chem. Int. Ed. 2021 , 60 , 25832-25838. DOI : 10.1002/ange.202106881
- Halogens in Acetophenones Direct the Hydrogen Bond Docking Preference of Phenol via Stacking Interactions - C. Zimmermann, M. Lange, M. A. Suhm, Molecules , 2021 , 26, 4883. DOI : 10.3390/molecules26164883
-
Determination of the Dispersion Forces in the Gas Phase Structures of Ionic Liquids Using Exclusively Thermodynamic Methods -
D. H. Zaitsau, R. Ludwig, S. P. Verevkin,
Phys. Chem. Chem. Phys.
,
2021
,
23(12), 7398-7406.
DOI
:
10.1039/D0CP05439A
- Three in One: The Versatility of Hydrogen Bonding Interaction in Halide Salts with Hydroxy-Functionalized Pyridinium Cations - L. Al-Sheakh, T. Niemann, A. Villinger, P. Stange, D. Zaitsau, A. Strate, R. Ludwig, ChemPhysChem , 2021 , 22, 1850-1856. DOI : 10.1002/cphc.202100424
-
Quantification and Understanding of Non-Covalent Interactions in Molecular and Ionic Systems: Dispersion Interactions and Hydrogen Bonding Analysed by Thermodynamic Methods -
S. Verevkin, S. Kondratev, D. Zaitsau, K. Zherikova, R. Ludwig,
J. Mol. Liq
.,
2021
,
343, 117547.
DOI
:
10.1016/j.molliq.2021.117547
- Rovibronic signatures of molecular aggregation in the gas phase: subtle homochirality trends in the dimer, trimer and tetramer of benzyl alcohol - R. Medel, A. Camiruaga, R. T. Saragi, P. Pinacho, C. Pérez, M. Schnell, A. Lesarri, M. A. Suhm, J. Fernández, Phys. Chem. Chem. Phys . 2021 , 23, 23610–23624. DOI : 10.1039/D1CP03508H
- Simple models for the quick estimation of ground state hydrogen tunneling splittings in alcohols and other compounds - R. Medel, Phys. Chem. Chem. Phys . 2021 , 23, 17591–17605. DOI : 10.1039/D1CP02115J
- Predicting OH stretching fundamental wavenumbers of alcohols for conformational assignment: different correction patterns for density functional and wave-function-based methods - R. Medel, M. A. Suhm, Phys. Chem. Chem. Phys . 2021 , 23 , 5629-5643. DOI : 10.1039/D1CP00342A
- C–H activation - T. Rogge, N. Kaplaneris, N. Chatani, J. Kim, S. Chang, B. Punji, L. L. Schafer, D. G. Musaev, J. Wencel-Delord, C. A. Roberts, R. Sarpong, Z. E. Wilson, M. A. Brimble, M. J. Johansson, and L. Ackermann , Nat Rev Methods Primers, 2021 , 1, 43. DOI : 10.1038/s43586-021-00041-2
- Electro-oxidative Intermolecular Allylic C (sp3)–H Aminations - Y. Wang, Z. Lin, J. C. Oliveira, and L. Ackermann, J. Org. Chem., 2021 , n/a (n/a). DOI : 10.1021/acs.joc.1c00682
- Triazole-Enabled Ruthenium (II) Carboxylate-Catalyzed C–H Arylation with Electron-Deficient Aryl Halides - T. Rogge, T. Müller, H. Simon, X. Hou, S. Wagschal, D. Broggini, and L. Ackermann, Synlett . 2021 , 32. DOI : 10.1055/a-1495-6994
- Chemodivergent manganese-catalyzed C–H activation: modular synthesis of fluorogenic probes - N. Kaplaneris, J. Son, L. Mendive-Tapia, A. Kopp, N. D. Barth, I. Maksso, M. Vendrell, and L. Ackermann, Nature communications , 2021 , 12 (1), 1-9. DOI : 10.1038/s41467-021-23462-9
- Remote C–H Functionalizations by Ruthenium Catalysis - K. Korvorapun, R. C. Samanta, T. Rogge, and L. Ackermann, Synthesis, 2021 , DOI : 10.1055/a-1485-5156
- Late-stage stitching enabled by manganese-catalyzed C─ H activation: Peptide ligation and access to cyclopeptides - N. Kaplaneris, F. Kaltenäuser, G. Sirvinskaite, S. Fan, T. De Oliveira, L. C. Conradi, and L. Ackermann, Science Advances , 2021 , 7 (9), eabe6202. DOI : 10.1126/sciadv.abe6202
- Enantioselective Ruthenium-Catalyzed C–H Alkylations by a Chiral Carboxylic Acid with Attractive Dispersive Interactions - U. Dhawa, R. Connon, J. C. Oliveira, R. Steinbock, and L. Ackermann, Organic Letters , 2021 , 23 (7), 2760-2765. DOI : 10.1021/acs.orglett.1c00615
- Insights into the Mechanism of Low-Valent Cobalt-Catalyzed C–H Activation - J. C. Oliveira, U. Dhawa, and L. Ackermann, ACS Catalysis , 2021 , 11 (3), 1505-1515. DOI : 10.1021/acscatal.0c04205
-
Do docking sites persist upon fluorination? The diadamantyl ether-aromatics challenge for rotational spectroscopy and theory. - M. M. Quesada Moreno, P. Pinacho, C. Perez, M. Sekutor, P. R. Schreiner, and M. Schnell, Chem. Eur. J. 2021, n/a (n/a). DOI: 10.1002/chem.202100078
- Understanding the unique reactivity patterns of nickel/JoSPOphos manifold in the nickel-catalyzed enantioselective C–H cyclization of imidazoles - J. B. Liu, X. Wang, A. M. Messinis, X. J. Liu, R. Kuniyil, D. Z. Chen, and L. Ackermann, Chemical Science , 2021, 12 (2), 718-729. DOI : 10.1039/D0SC04578K
- Olefin Epoxidation Catalyzed by Titanium–Salalen Complexes: Synergistic H 2 O 2 Activation by Dinuclear Ti Sites, Ligand H-Bonding, and π-Acidity - H. Engler, M. Lansing, C. P. Gordon, J.-M. Neudörfl, M. Schäfer, N. E. Schlörer, C. Copéret, A. Berkessel, ACS Catal. 2021 , 11 , n/a , 3206–3217. DOI: 10.1021/acscatal.0c05320
- Acyl Donor Intermediates in N-Heterocyclic Carbene Catalysis: Acyl Azolium or Azolium Enolate? - A. Biswas, J.-M. Neudörfl, N. E. Schlörer, and A. Berkessel, Angew. Chem. Int. Ed. 2021 133 , 9, 4557-4561. DOI: 10.1002/anie.202010348
- Weaving a web of reliable thermochemistry around lignin building blocks: Vanillin and its isomers - S. P. Verevkin, M. E. Konnova, V. N. Emel'yanenko, A. A. Pimerzin, J. Chem. Thermodyn ., 2021 , 157 , 106362, DOI: 10.1016/j.jct.2020.106362
- Vapour pressures of methoxy substituted benzaldehydes - S. P. Verevkin, V. N. Emel'yanenko, Fluid Phase Equilibr ., 2021 , 531 , 112912, DOI : 10.1016/j.fluid.2020.112912
- Ionic liquids alkyl-imidazolium thiocyanates: Comprehensive thermochemical study - D. H. Zaitsau, A. V. Yermalayeu, S. P. Verevkin, J. Mol.Liq ., 2021 , 321 , 114284, DOI: 10.1016/j.molliq.2020.114284
- London Dispersion Rather than Steric Hindrance Determines the Enantioselectivity of the Corey-Bakshi-Shibata Reduction. - C. Eschmann, L. Song, and P. R. Schreiner, Angew. Chem. Int. Ed. 2021 n/a (n/a), n/a. DOI: 10.1002/anie.202012760
- Tetrahydrothiophene‐Based Ionic Liquids: Synthesis and Thermodynamic Characterizations - A. Schmitz, M. Bülow, D. Schmidt, D. H. Zaitsau, F. Junglas, T.-O. Knedel, S. P. Verevkin, C. Held, C. Janiak, ChemistryOpen , 2021 , 10 , 153-163, DOI: 10.1002/open.202000228
- Intramolecular London Dispersion Interactions Do Not Cancel in Solution. - J. M. Schümann, J. P. Wagner, A. K. Eckhardt, H. Quanz, and P. R. Schreiner, J. Am. Chem. Soc. 2021 , 143 (1) , 41–45. DOI: 10.1021/jacs.0c09597
- Reply to a Comment on "The Nature of Chalcogen-Bonding-Type Tellurium-Nitrogen Interactions” - Y. V. Vishnevskiy, N. W. Mitzel, Angew. Chem. Int. Ed. 2021 , 60 , 13150–13157; DOI: 10.1002/anie.202104899
- The Nature of Chalcogen-Bonding-Type Tellurium–Nitrogen Interactions: A First Experimental Structure from the Gas Phase. - T. Glodde, Y. V. Vishnevskiy, L. Zimmermann, H.-G. Stammler, B. Neumann, and N. W. Mitzel , Angew. Chem. Int. Ed. 2021, 60 (3), 1519-1523. DOI: 10.1002/anie.202013480
- The Size-Accelerated Kinetic Resolution of Secondary Alcohols. - B. Pölloth, M. P. Sibi, and H. Zipse, Angew. Chem. Int. Ed. 2021, 60 (2), 774-778. DOI: 10.1002/anie.202011687
- London dispersion in alkane solvents. – M. A. Strauss, and H. A. Wegner, Angew. Chem. Int. Ed. 2021 , 60 , 779. DOI: 10.1002/anie.202012094
Publications 2020
- Quasirelativistic two-component core excitations and polarisabilities from a damped-response formulation of the Bethe-Salpeter equation - M. Kehry, Y. J. Franzke, C. Holzer, W. Klopper, Mol. Phys. 2020 , 118, e1755064. DOI : 10.1080/00268976.2020.1755064
- Quantifying how step-wise fluorination tunes local solute hydrophobicity, hydration shell thermodynamics and the quantum mechanical contributions of solute–water interactions. – J. R. Robalo, D. Mendes de Oliveira, P. Imhof, ; D. Ben-Amotz, A. Vila Verde, Phys. Chem. Chem. Phys. 2020 , 22 (40), 22997-23008. DOI: 10.1039/D0CP04205F
- Understanding benzyl alcohol aggregation by chiral modification: The pairing step – R. Medel, and M. A. Suhm, Phys. Chem. Chem. Phys. 2020 , 22 , 25538–25551. DOI: 10.1039/D0CP04825A
- Inter‐ and Intramolecular Aryl–Aryl Interactions in Partially Fluorinated Ethylenedioxy‐bridged Bisarenes - J.-H. Weddeling, Y. Vishnevskiy, B. Neumann, H. - G. Stammler, N. W. Mitzel, Chem. Eur. J. 2020 , 26 , 16111-16121. DOI : 10.1002/chem.202003259
-
Pinacolone-Alcohol Gas-Phase Solvation Balances as Experimental Dispersion Benchmarks – C. Zimmermann, T. L. Fischer, and M. A. Suhm, Molecules 2020 , 25 (21), 5095. DOI: 10.3390/molecules25215095
- Synthesis and Structural Diversity of Triaryl(phenylethyl)silanes - M. Linnemannstöns, B. Neumann, H.-G. Stammler, N. W. Mitzel, Synthesis, 2020 , 52 , 1025–1034. DOI : 10.1055/s-0039-1690785
- Molecules Forced to Interact: Benzene and Pentafluoroiodobenzene - M. Bujak, H.-G. Stammler, S. Blomeyer, N. W. Mitzel, Cryst. Growth Des . 2020 , 20 , 3217–3223. DOI : 10.1021/acs.cgd.0c00071
- A New Mechanically-Interlocked [Pd2L4] Cage Motif by Dimerization of two Peptide-based Lemniscates. – T. R. Schulte, J. J. Holstein, L. Schneider, A. Adam, G. Haberhauer, and G. H. Clever, Angew. Chem. Int. Ed. 2020 , 59 , 22489. DOI: 10.1002/anie.202010995.
- Symmetry vs. asymmetry – Enthalpic differences in imidazolium-based ionic liquids - A. V. Yermalayeu, M. A. Varfolomeev, S. P. Verevkin, J. Mol. Liq . 2020 , 317 , 114150, DOI: 10.1016/j.molliq.2020.114150
- Aryl-Aryl Interactions in (aryl-perhalogenated) 1,2-Diaryldisilanes - M. Linnemannstöns, J. Schwabedissen, B. Neumann, H.-G. Stammler, R. J. F. Berger, N. W. Mitzel, Chem. Eur. J. 2020 , 26 (10), 2169–2173. DOI : 10.1002/chem.201905727
-
The reduced cohesion of homoconfigurational 1,2-diols. – B. Hartwig, M. Lange, A. Poblotzki, R.Medel, A. Zehnacker, M. A. Suhm, Phys. Chem. Chem. Phys. 2020 , 22 , 1122–1136. DOI: 10.1039/C9CP04943F
-
Three-dimensional docking of alcohols to ketones: An experimental benchmark based on acetophenone solvation energy balances. – C. Zimmermann, H. C. Gottschalk, M. A. Suhm, Phys. Chem. Chem. Phys. 2020 , 22, 2870–2877. DOI: 10.1039/C9CP06128B
- Heat capacities of ionic liquids based on tetrahydrothiophenium cation and NTf 2 anion - D. H. Zaitsau, A. Schmitz, C. Janiak, S. P. Verevkin, Thermochim. Acta , 2020 , 686 , 178547, DOI: 10.1016/j.tca.2020.178547
-
Unveiling the Delicate Balance of Steric and Dispersion Interactions in Organocatalysis Using High-Level Computational Methods. – Yepes, D., Neese, F., List, B., & Bistoni, G, J. Am. Chem. Soc. 2020 , 142 (7), 3613-3625. DOI: 10.1021/jacs.9b13725 .
- Dispersion Forces Drive the Formation of Uranium–Alkane Adducts. – Jung, J., Löffler, S. T., Langmann, J., Heinemann, F. W., Bill, E., Bistoni, G., Scherer, W., Atanasov, M., Meyer, K., & Neese, F., J. Am. Chem. Soc. 2020 , 142 (4), 1864-1870. DOI: 10.1021/jacs.9b10620 .
- Substrate and Product Binding inside a Stimuli-Responsive Coordination Cage acting as Singlet Oxygen Photosensitizer – S. Pullen, S. Löffler, A. Platzek, J. J. Holstein, G. H. Clever, Dalton Trans. 2020 , 49 , 9404-9410 , DOI: 10.1039/D0DT01674H.
- Vaporization Thermodynamics of 1-Ethyl-3-Methylimidazolium Diethyl Phosphate, D. H. Zaitsau, S. P. Verevkin, Russ. J. Inorg. Chem ., 2020 , 65 , 699-702, DOI: 10.1134/S0036023620050277
- London dispersion-driven hetero-aryl–aryl interactions in 1,2-diaryldisilanes - M. Linnemannstöns, J. Schwabedissen, A. A. Schultz, B. Neumann, H.-G. Stammler, R. Berger, N. W. Mitzel, Chem. Commun . 2020 , 56 , 2252–2255. DOI: 10.1039/c9cc09851h
- Error or exemption to the rule? Development of a diagnostic check for thermochemistry of metal–organic compounds - K. V. Zherikova, S. P. Verevkin, RSC Adv ., 2020 , 10 , 38158-38173, DOI: 10.1039/D0RA06880B
- Dissecting intermolecular interactions in the condensed phase of ibuprofen and related compounds: the specific role and quantification of hydrogen bonding and dispersion forces - V. N. Emel'yanenko, P. Stange, J. Feder-Kubis, S. P. Verevkin, R. Ludwig, Phys. Chem. Chem. Phys ., 2020 , 22 , 4896-4904, DOI: 10.1039/C9CP06641A
-
The first microsolvation step for furans: New experiments and benchmarking strategies – Gottschalk, H. C.; Poblotzki, A.; Fatima, M.; Obenchain, D. A.; Pérez, C.; Antony, J.; Auer, A. A.; Baptista, L.; Benoit, D. M.; Bistoni, G.; Bohle, F.; Dahmani, R.; Firaha, D.; Grimme, S.; Hansen, A.; Harding, M. E.; Hochlaf, M.; Holzer, C.; Jansen, G.; Klopper, W.; Kopp, W. A.; Krasowska, M.; Kröger, L. C.; Leonhard, K.; Al-Mogren, M. M.; Mouhib, H.; Neese, F.; Pereira, M. N.; Prakash, M.; Ulusoy, I. S.; Mata, R. A.; Suhm, M. A.; Schnell, M., J. Chem. Phys. 2020, 152 (16), 164303. DOI: 10.1063/5.0004465.
- Evaluation of bismuth-based dispersion energy donors – synthesis, structure and theoretical study of 2-biphenylbismuth(iii) derivatives. –Fritzsche, A.-M.; Scholz, S.; Krasowska, M.; Bhattacharyya, K.; Toma, A. M.; Silvestru, C.; Korb, M.; Rüffer, T.; Lang, H.; Auer, A. A.; Mehring, M., Phys. Chem. Chem. Phys. 2020 , 22 (18), 10189-10211. DOI: 10.1039/C9CP06924K.
-
Enantiospecific Synthesis of Nepetalactones by One-Step Oxidative NHC Catalysis – Harnying, W.; Neudörfl, J.-M.; Berkessel, A., Org. Lett. 2020 , 22 (2), 386-390. DOI: 10.1021/acs.orglett.9b04034.
- London dispersion and hydrogen bonding interactions in bulky molecules: The case of diadamantyl ether complexes. – Quesada Moreno, M. M.; Pinacho, P.; Perez, C.; Sekutor, M.; Schreiner, P. R.; Schnell, M., Chem. Eur. J. 2020 , 26 , 10817. DOI: 10.1002/chem.202001444
- A silicon–carbonyl complex stable at room temperature. – Ganesamoorthy, C.; Schoening, J.; Wölper, C.; Song, L.; Schreiner, P. R.; Schulz, S., Nat. Chem. 2020 , 12 (7), 608-614. DOI: 10.1038/s41557-020-0456-x
- In Situ Switching of Site-Selectivity with Light in the Acetylation of Sugars with Azopeptide Catalysts. – Niedek, D.; Erb, F. R.; Topp, C.; Seitz, A.; Wende, R. C.; Eckhardt, A. K.; Kind, J.; Herold, D.; Thiele, C. M.; Schreiner, P. R., J. Org. Chem. 2020 , 85 (4), 1835-1846. DOI: 10.1021/acs.joc.9b01913
Publications 2019
- Disulfonimides versus Phosphoric Acids: The Effect of Weak Hydrogen Bonds and Multiple Acceptors on Complex Structures and Reactivity, K. Rothermel, M. Žabka, J. Hioe, R. M. Gschwind, J. Org. Chem. 2019 , 84 , 13221. DOI : 10.1021/acs.joc.9b01811
- Balancing Donor-Acceptor and Dispersion Effects in Heavy Main Group Element π Interactions: Effect of Substituents on the Pnictogen⋅⋅⋅π Arene Interaction. – Krasowska, M.; Fritzsche, A.-M.; Mehring, M.; Auer, A. A., ChemPhysChem 2019 , 20 (19), 2539-2552. DOI: 10.1002/cphc.201900747
- Vaporization thermodynamics of ionic liquids with tetraalkylphosphonium cations - D. H. Zaitsau, N. Plechkova, S. P. Verevkin, J. Chem. Thermodyn ., 2019 , 130 , 204-212, DOI: 10.1016/j.jct.2018.10.007
- Imidazolium-based ionic liquids containing FAP anion: Thermodynamic study - D. H. Zaitsau, S. P. Verevkin, J . Mol. Liq ., 2019 , 287 , 110959, DOI : 10.1016/j.molliq.2019.110959
- Halogen Bonds of Halotetrafluoropyridines in Crystals and Co-crystals with Benzene and Pyridine - J. Schwabedissen, J.-H. Lamm, P. C. Trapp, L. A. Körte, H.-G. Stammler, B. Neumann, N. W. Mitzel, Chem Eur. J . 2019 , 25 , 7339–7350, DOI: 10.1002/chem.201900334
- Arene-Free Ruthenium(II/IV)-Catalyzed Bifurcated Arylation for Oxidative C−H/C−H Functionalizations. – Rogge, T.; Ackermann, L., Angew. Chem. Int. Ed. 2019, 58 (44), 15640-15645. DOI: 10.1002/anie.201909457
- Thermochemistry of drugs: experimental and theoretical study of analgesics, R. N. Nagrimanov, M. A. Ziganshin, B. N. Solomonov, S. P. Verevkin, Struct. Chem ., 2019 , 30 , 247-261, DOI: 10.1007/s11224-018-1188-z
- Mössbauer and mass spectrometry support for iron(ii) catalysts in enantioselective C–H activation. – Loup, J.; Parchomyk, T.; Lülf, S.; Demeshko, S.; Meyer, F.; Koszinowski, K.; Ackermann, L., Dalton Trans. 2019, 48 (16), 5135-5139. DOI: 10.1039/C9DT00705A
- Enantioselective Aluminum-Free Alkene Hydroarylations through C−H Activation by a Chiral Nickel/JoSPOphos Manifold. – Loup, J.; Müller, V.; Ghorai, D.; Ackermann, L., Angew. Chem. Int. Ed. 2019, 58 (6), 1749-1753. DOI: 10.1002/anie.201813191
- Breslow Intermediates from a Thiazolin-2-ylidene and Fluorinated Aldehydes: XRD and Solution-Phase NMR Spectroscopic Characterization. – Paul, M.; Neudörfl, J.-M.; Berkessel, A., Angew. Chem. Int. Ed. 2019 , 58 (31), 10596-10600. DOI: 10.1002/anie.201904308
- Cryogenic ion vibrational predissociation (CIVP) spectroscopy of a gas-phase molecular torsion balance to probe London dispersion forces in large molecules. – Tsybizova, A.; Fritsche, L.; Gorbachev, V.; Miloglyadova, L.; Chen, P., J. Chem. Phys. 2019 , 151 (23), 234304. DOI: 10.1063/1.5124227
- Compensation of London Dispersion in the Gas Phase and in Aprotic Solvents. – Pollice, R.; Fleckenstein, F.; Shenderovich, I.; Chen, P., Angew. Chem. Int. Ed. 2019 , 58 (40), 14281-14288. DOI: 10.1002/anie.201905436
- Heterogeneous Clusters of Phthalocyanine and Water Prepared and Probed in Superfluid Helium Nanodroplets. – Fischer, J.; Schlaghaufer, F.; Lottner, E. M.; Slenczka, A.; Christiansen, L.; Stapelfeldt, H.; Karra, M.; Friedrich, B.; Mullan, T.; Schütz, M.; Usvyat, D., J. Chem. Phys. A 2019 , 123 (46), 10057-10064. DOI: 10.1021/acs.jpca.9b07302
- Dispersion-controlled docking preference: multi-spectroscopic study on complexes of dibenzofuran with alcohols and water. – Bernhard, D.; Fatima, M.; Poblotzki, A.; Steber, A. L.; Pérez, C.; Suhm, M. A.; Schnell, M.; Gerhards, M., Phys. Chem. Chem. Phys. 2019 , 21 (29), 16032-16046. DOI: 10.1039/C9CP02635E
- Relaxation Dispersion NMR to Reveal Fast Dynamics in Brønsted Acid Catalysis: Influence of Sterics and H-Bond Strength on Conformations and Substrate Hopping. – Lokesh, N.; Hioe, J.; Gramüller, J.; Gschwind, R. M., J. Am. Chem. Soc. 2019 , 141 (41), 16398-16407. DOI: 10.1021/jacs.9b07841
- Efficient structural and energetic screening of fullerene encapsulation in a large supramolecular double decker macrocycle. – Bohle, F.; Grimme, S., J. Serb. Chem. Soc. 2019 , 84 (8), 837-844. DOI: 10.2298/JSC190701079B
- A generally applicable atomic-charge dependent London dispersion correction. – Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S., J. Chem. Phys. 2019 , 150 (15), 15412. DOI: 10.1063/1.5090222
-
Explicitly Correlated Dispersion and Exchange Dispersion Energies in Symmetry-Adapted Perturbation Theory – M. Kodrycka, C. Holzer, W. Klopper, and K. Patkowski, J. Chem. Theory Comput. 2019 , 15 , 5965–5986. DOI: 10.1021/acs.jctc.9b00547 .
-
London dispersion effects in the coordination and activation of alkanes in σ-complexes: a local energy decomposition study - Q. Lu, F. Neese, G. Bistoni, Phys. Chem. Chem. Phys. 2019 , 21 (22), 11569-11577. DOI: 10.1039/C9CP01309A
-
Local Energy Decomposition of Open-Shell Molecular Systems in the Domain-Based Local Pair Natural Orbital Coupled Cluster Framework - A. Altun, M. Saitow, F. Neese, and G. Bistoni, J. Chem. Theory Comput. 2019 , 15 (3), 1616-1632. DOI: 10.1021/acs.jctc.8b01145
-
HFLD: A Nonempirical London Dispersion-Corrected Hartree–Fock Method for the Quantification and Analysis of Noncovalent Interaction Energies of Large Molecular Systems - A. Altun, F. Neese, and G. Bistoni, J. Chem. Theory Comput. 2019 , 15 , 11 , 5894–5907. DOI: 10.1021/acs.jctc.9b00425
-
Exploring London dispersion and solvent interactions at alkyl-alkyl interfaces using azobenzene switches. - M. Strauss, H. A. Wegner, Angew. Chem. Int. Ed. 2019 , 58 , 18552. DOI: 10.1002/ange.201910734
-
The Nature of Interactions of Benzene with CF3I and CF3CH2I -
M. Bujak, H.-G. Stammler, N. W. Mitzel,
Chem. Commun
.
2019
,
55
, 175–178.
DOI : 10.1039/C8CC08980A
-
Isolating the role of hydrogen bonding in hydroxyl-functionalized ionic liquids by means of vaporization enthalpies, infrared spectroscopy and molecular dynamics simulations - D. H. Zaitsau, J. Neumann, T. Niemann, A. Strate, D. Paschek, S. P. Verevkin, R. Ludwig, Phys. Chem. Chem. Phys. 2019 , 21 , 20308 – 20314. DOI: 10.1039/C9CP04337C
-
Dissecting the vaporization enthalpies of ionic liquids by exclusively experimental methods: Coulomb interaction, hydrogen bonding and dispersion forces. - D. H. Zaitsau, V. N. Emel’yanenko, P. Stange, S. P. Verevkin, R. Ludwig, Angew. Chem. Int Ed. 2019 , 58 , 8589 –8592; Angew. Chem. 2019 , 131, 8679 –8683. DOI: 10.1002/anie.201904813
- Hydrophobic but water-friendly: favourable water-perfluoromethyl interactions promote hydration shell defects. - J. R. Robalo, L. M. Streacker, D. Mendes de Oliveira, P. Imhof, D. Ben-Amotz and A. Vila Verde, J. Am. Chem. Soc. 2019 , 141 , 40 , 15856–15868 . DOI: 10.1021/jacs.9b06862
- Breslow Intermediates from a Thiazolin-2-ylidene and Fluorinated Aldehydes: XRD and Solution-Phase NMR Spectroscopic Characterization - M. Paul, J.-M. Neudörfl, and A. Berkessel, Angew. Chem. Int. Ed. 2019 , 58 , 10596 –10600 DOI: 10.1002/anie.201904308 ; german edition: Angew. Chem. 2019 . DOI: 10.1002/ange.201904308
- Resolution of Minor Size Differences in a Family of Heteroleptic Coordination Cages by Trapped Ion Mobility ESI-MS - K. E. Ebbert, L. Schneider, A. Platzek, C. Drechsler, B. Chen, R. Rudolf, and G. H. Clever, Dalton Trans. 2019 , 48, 11070-11075. DOI: 10.1039/C9DT01814J.
- Ionized, electron-attached, and excited states of molecular systems with spin-orbit coupling: Two-component GW and Bethe-Salpeter implementations - C. Holzer and W. Klopper, J. Chem. Phys. 2019 , 150 , 204116. DOI: 10.1063/1.5094244
- GW quasiparticle energies of atoms in strong magnetic fields - C. Holzer, A. M. Teale, F. Hampe, S. Stopkowicz, T. Helgaker, and W. Klopper, J. Chem. Phys. 2019 , 150 , 214112. DOI: 10.1063/1.5093396
- Role of London Dispersion Interactions in Ga-Substituted Dipnictenes - L. Song , J. Schoening , C. Wölper , S. Schulz , and P. R. Schreiner Organometallics 2019 , 3 , 87 , 1640-1647 . DOI: 10.1021/acs.organomet.9b00072
-
Rotational Signatures of Dispersive Stacking in the Formation of Aromatic Dimers - M. Fatima, A. L. Steber, A. Poblotzki, C. Pérez , S. Zinn, and M. Schnell, Angew. Chem. Int. Ed. , 2019 , 58 , 3108–3113. DOI: 10.1002/anie.201812556 /Angew. Chem., 2019 , 131 , 3140–3145. D OI: 10.1002/ange.2018125 56
-
The chiral trimer and a metastable chiral dimer of achiral hexafluoroisopropanol: A multi-messenger study - S. Oswald, N. A. Seifert, F. Bohle, M. Gawrilow, S. Grimme, W. Jäger, Y. Xu, and M. A. Suhm, Angew. Chem.Int. Ed., 2019 , 58 , 5080 –5084 DOI: 10.1002/anie.201813881
- Orthogonal Molecular Recognition of Chaotropic and Hydrophobic Guests Enables Supramolecular Architectures - W. Wang, X. Wang, C. Xiang, X. Zhou, D. Gabel, W. M. Nau, K. I. Assaf, and H. Zhang , ChemNanoMat , 2019 , 5 , 124–129. DOI: 10.1002/cnma.201800377
-
Enantioselective Aluminum-Free Alkene Hydroarylations through C-H Activation by a Chiral Nickel/JoSPOphos Manifold - J- Loup, V. Müller, D. Ghorai, and L. Ackermann, Angew. Chem. Int. Ed. , 2019 , 58 ,1749–1753. DOI: 10.1002/anie.201813191 / Angew. Chem. , 2019 , 131 , 1763–1767 . D OI: 10.1002/ange.201813191
- Microreview - Molecular Systems for the Quantification of London Dispersion Interactions - M. A. Strauss and H. A. Wegner, Eur. J. Org. Chem. , 2019 , 295–302 . |Very Important Paper| DOI : 10.1002/ejoc.201800970
- Syntheses, Structures, and Bonding Analyses of Carbene‐Stabilized Stibinidenes -
-
Origin of the Immiscibility of Alkanes and Perfluoroalkanes - R. Pollice, and P. Chen, J. Am. Chem. Soc. , 2019 , 141 (8), 3489–3506, DOI: 10.1021/jacs.8b10745
- Effect of Electron Correlation on Intermolecular Interactions: A Pair Natural Orbitals Coupled Cluster Based Local Energy Decomposition Study - A. Altun, F. Neese, and G. Bistoni, J. Chem. Theory Comput. , 2019 , 15 (1), 215-228, DOI: 10.1021/acs.jctc.8b00915
Publications 2018
-
London Dispersion Interactions in Pnictogen Cations [ECl 2 ] + and [E=E] 2+ (E=P, As, Sb) Supported by Anionic N-Heterocyclic Carbenes - L. P. Ho, A. Nasr, P. G. Jones, A. Altun, F. Neese, G. Bistoni, and M. Tamm, Chem. Eur. J., 2018 , 24 , 18922, DOI: 10.1002/chem.201804714
-
Cavitation energies can outperform dispersion interactions - S. He, F. Biedermann, N. Vankova, L. Zhechkov, T. Heine, R. E. Hoffman, A. De Simone, T. T. Duignan and W. M. Nau, Nat. Chem., 2018 , 10 , 1252–1257, DOI: org/10.1038/s41557-018-0146-0 .
- Thermodynamic properties of selenoether-functionalized ionic liquids and their use for the synthesis of zinc selenide nanoparticles - K. Klauke, D. H. Zaitsau, M. Bülow, L. He, M. Klopotowski, T.-O. Knedel, J. Barthel, C. Held, S. P. Verevkin, C. Janiak, Dalton Trans. , 2018 , 47 , 5083-5097, DOI: 10.1039/C8DT00233A
- Imidazolium-Based Ionic Liquids Containing the Trifluoroacetate Anion: Thermodynamic Study - D. H. Zaitsau, S. R. Verevkin, J. Solution Chem ., 2018 , 47 , 892-905, DOI:10.1007/s10953-018-0760-x
- Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory - J. Ingenmey, M. von Domaros, E. Perlt, S. P. Verevkin, B. Kirchner, J. Chem. Phys. , 2018 , 148 , 193822, DOI: 10.1063/1.5010791
- Thermodynamics of Imidazolium‐Based Ionic Liquids Containing the Trifluoromethanesulfonate Anion - D. H. Zaitsau, A. V. Yermalayeu, V. N. Emel'yanenko, S. P. Verevkin, Chem. Eng. Technol. , 2018 , 41 , 1604-1612, DOI:10.1002/ceat.201700454
-
The chaotropic effect as an assembly motif in chemistry - K. I. Assaf and W. M. Nau, Angew. Chem. Int. Ed. , 2018 , 57 , 13968–13981, DOI: org/10.1002/anie.201804597 .
-
Host‐guest chemistry of carboranes: synthesis of carboxylate derivatives and their binding to cyclodextrins - J. Nekvinda, B. Grüner, D. Gabel, W. M. Nau and K. I. Assaf, Chem. Eur. J. , 2018 , 24 , 12970–12975, DOI: org/10.1002/chem.201802134 .
-
Supramolecular assemblies through host–guest complexation between cucurbiturils and an amphiphilic guest molecule - K. I. Assaf, M. A. Alnajjar and W. M. Nau, Chem. Commun. 2018 , 54 , 1734-1737. DOI: 10.1039/C7CC09519H.
-
The chaotropic effect as an orthogonal assembly motif for multi-responsive dodecaborate-cucurbituril supramolecular networks - W.-J. Wang, X. Wang, J. Cao, J. Liu, B. Qi, X. Zhou, S. Zhang, D. Gabel, W. M Nau, K. I. Assaf and H. Zhang, Chem. Commun. , 2018 , 54 , 2098-2101. (This work was highlighted on the cover of this issue) DOI: 10.1039/C7CC08078F.
- Probing the Delicate Balance between Pauli Repulsion and London Dispersion with Triphenylmethyl Derivatives - S. Rösel, J. Becker, W. D. Allen and P. R. Schreiner, J. Am. Chem. Soc., 2018 , 140 , 43 , 14421-14432. DOI: 10.1021/jacs.8b09145
- Size-Dependent Rate Acceleration in the Silylation of Secondary Alcohols: the Bigger the Faster - M. Marin-Luna, B. Poelloth, F. Zott, H. Zipse, Chem. Sci., 2018 , 9, 6509 – 6515. DOI: 10.1039/C8SC01889H
-
Substituent Effects in the Silylation of Secondary Alcohols: A Mechanistic Study - M. Marin-Luna, P. Patschinski, H. Zipse, Chem. Eur. J., 2018 , 24, 15053 – 15058. DOI: 10.1002/chem.201803014
- The phenyl vinyl ether - methanol complex: A model system for quantum chemistry benchmarking – D. Bernhard, F. Dietrich, M. Fatima, C. Perez, H. C. Gottschalk, A. Wuttke, R. A. Mata, M. A. Suhm, M. Schnell, and M. Gerhards, Beilstein J. Org. Chem. , 2018 , 14, 1642-1654, Thematic Series: Dispersion Interactions. DOI: 10.3762/bjoc.14.140
- The effect of dispersion on the structure of diphenyl ether aggregates – F. Dietrich, D. Bernhard, M. Fatima, C. Perez, M. Schnell, and M. Gerhards, Angew. Chem. Int. Ed. , 2018 , 57, 9534- 9537. DOI: 10.1002/anie.201801842
- Bethe–Salpeter correlation energies of atoms and molecules – C. Holzer, X. Gui, M. E. Harding, G. Kresse, T. Helgaker, W. Klopper, J. Chem. Phys . 2018 , 149 , 144106. DOI :10.1063/1.5047030
- Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe–Salpeter Formalism – X. Gui, C. Holzer and W. Klopper, J. Chem. Theory Comput . 2018 , 14 , 2127-2136. DOI: 10.1021/acs.jctc.8b00014
-
Communication: A hybrid Bethe–Salpeter/time-dependent density-functional-theory approach for excitation energies – C. Holzer and W. Klopper, J. Chem. Phys . 2018 , 149 , 101101. DOI: 10.1063/1.5051028
-
Evaluation of dispersion type metal···π arene interaction in arylbismuth compounds – an experimental and theoretical study - A.-M. Preda, M. Krasowska, L. Wrobel, P. Kitschke, P. C. Andrews, J. G. MacLellan, L. Mertens, M. Korb, T. Rüffer, H. Lang, A. A. Auer, M. Mehring, Beilstein J. Org. Chem. 2018 , 14 , 2125-2145. DOI: 10.3762/bjoc.14.187
- Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study - A. Altun, F. Neese, G. Bistoni , Beilstein J. Org. Chem. 2018, 14, 919–929. DOI: 10.3762/bjoc.14.79
- Distal Weak Coordination of Acetamides in Ruthenium(II)-Catalyzed C–H Activation Processes - Q. Bu, T. Rogge, V. Kotek, L. Ackermann, Angew. Chem. Int. Ed. 2018 , 57, 765-768. DOI: 10.1002/anie.201711108
- C4-H Indole Functionalisation: Precedent and Prospects - J. Kalepu, P. Gandeepan, L. Ackermann, L. Pilarski, Chem. Sci. 2018 , 9 , 4203-4216. DOI: 10.1039/C7SC05336C
- Electrooxidative Rhodium-Catalyzed C–H/C–H Activation: Electricity as Oxidant for Cross-Dehydrogenative Alkenylation - Y. Qiu, W.-J. Kong, J. Struwe, N. Sauermann, T. Rogge, A Scheremetjew, L. Ackermann, Angew. Chem. Int. Ed. 2018 , 57 , 5828-5832. D OI : 1 0.1002/anie.201803342
-
Cobalt-Catalyzed C–H Cyanations: Insights into the Reaction Mechanism and the Role of London Dispersion - E. Detmar, V. Müller, D. Zell, L. Ackermann, M. Breugst,
Beilstein J. Org. Chem
.
2018
,
14
, 1537–1545.
.
DOI:
10.3762/bjoc.14.130
- Finding the best density functional approximation to describe interaction energies and structures of ionic liquids in molecular dynamics studies - E. Perlt, P. Ray, A. Hansen, F. Malberg, S. Grimme, B. Kirchner, J. Chem. Phys. 2018 , 148 , 193835. DOI: 10.1063/1.5013122
- High‐Level Ab Initio Calculations of Intermolecular Interactions: Heavy Main‐Group Element π‐Interactions -
- Formation of Agostic Structures Driven by London Dispersion - Q. Lu, F. Neese, G. Bistoni, Angew. Chem. Int. Ed., 2018 , 57,4760–4764. DOI: 10.1002/anie.201801531
- Dithiocarboxylic Acids: An Old Theme Revisited and Augmented by New Preparative, Spectroscopic and Structural Facts - J. Grote, F. Friedrich, K. Berthold, L. Hericks, B. Neumann, H.-G. Stammler, and N. W. Mitzel, Chem. Eur. J., 2018 , 24 , 2626 –2633; DOI: 10.1002/chem.201704235
-
Regiochemical Control in Triptycene Formation—An Exercise in Subtle Balancing Multiple Factors - J.-H. Lamm, Y. V. Vishnevskiy, E. Ziemann, B. Neumann, H.-G. Stammler, and N. W. Mitzel, ChemistryOpen, 2018 , 7, 111-114; DOI:
-
The furan microsolvation blind challenge for quantum chemical methods: First steps - H. C. Gottschalk, A. Poblotzki, M. A. Suhm, M. M. Al-Mogren, J. Antony, A. A. Auer, L. Baptista, D. M. Benoit, G. Bistoni, F. Bohle, R. Dahmani, D. Firaha, S. Grimme, A. Hansen, M. E. Harding, M. Hochlaf, C. Holzer, G. Jansen, W. Klopper, W. A. Kopp, L. C. Kröger, K. Leonhard, H. Mouhib, F. Neese, M. N. Pereira, I. S. Ulusoy, A. Wuttke and R. A. Mata, J. Chem. Phys. 2018 , 148 , 014301; DOI: 10.1063/1.5009011
Publications 2017
-
HYDROPHOBE Challenge: A Joint Experimental and Computational Study on the Host–Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit Evaluation of Guest Hydration Free-Energy Contributions - K. I. Assaf, M. Florea, J. Antony, N. M. Henriksen, J. Yin, A. Hansen, Z.-W. Qu, R. Sure, D. Klapstein, M. K. Gilson, S. Grimme, and W. M. Nau, J. Phys. Chem. B , 2017 , 121 , 11144-11162; DOI: 10.1021/acs.jpcb.7b09175
- Bi- and tridentate silicon based acceptor molecules - J. Horstmann, J.-H. Lamm, T. Strothmann, B. Neumann, H. G. Stammler, N.W. Mitzel, Z. Naturforsch. 2017 , 72(6)b , 383-391; DOI: 10.1515/znb-2017-0031.
- Thermodynamics of imidazolium based ionic liquids with cyano containing anions - D. H. Zaitsau, K. Pohako-Esko, S. Arlt N. Emel'yanenko, P. S. Schulz, P. Wasserscheid, A. Schulz, S. P. Verevkin, J. Mol. Liquids . 2017 , 248, 86-90; DOI: 10.1016/j.molliq.2017.10.004
-
Quasi-relativistic two-component computations of intermolecular dispersion energies — C. Holzer and W. Klopper, Mol. Phys. , 2017 , 115, 2775-2781; DOI: 10.1080/00268976.2017.1317861 .
-
Communication: Symmetry-adapted perturbation theory with intermolecular induction and dispersion energies from the Bethe–Salpeter equation — C. Holzer and W. Klopper, J. Chem. Phys . 2017 , 147 , 181101; DOI: 10.1063/1.5007929 .
- Tipping the Scales: Spectroscopic Tools for Intermolecular Energy Balances - A. Poblotzki, H. C. Gottschalk, and M. A. Suhm, J. Phys. Chem. Lett. , 2017 , 8, 5656-5665; DOI: 10.1021/acs.jpclett.7b02337
-
The role of dispersion type metal⋯π interaction in the enantiotropic phase transition of two polymorphs of tris-(thienyl)bismuthine - A.-M.
Preda, W. B. Schneider, D. Schaarschmidt, H. Lang, L. Mertens, A. A. Auer and M. Mehring, Dalton Trans. , 2017 , 46,13492-13501; DOI: 10.1039/C7DT02567J
-
Intramolecular π-π Interactions in Flexibly Linked Partially Fluorinated Bisarenes in the Gas Phase - S. Blomeyer, M. Linnemannstöns, J. H. Nissen, J. Paulus, B. Neumann, H.-G. Stammler, N. W. Mitzel , Angew. Chem. Int. Ed. 2017 , 56 , 13259-13263;
- Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions - A. A. Otlyotov, J.-H. Lamm, S. Blomeyer, N. W. Mitzel, V. V. Rybkin, Y. A. Zhabanov, N. V. Tverdova, N. I. Giricheva, G. V. Girichev , Phys. Chem. Chem. Phys., 2017 , 19 , 13093-13100. DOI: 10.1039/c7cp01781b
- Intramolecular London Dispersion Interaction Effects on Gas-Phase and Solid-State Structures of Diamondoid Dimers - A. A. Fokin, T. S. Zhuk, S. Blomeyer, C. Perez, L. V. Chernish, A. E. Pashenko, J. Antony, Y. V. Vishnevskiy, R. J. F. Berger, S. Grimme, C. Logemann, M. Schnell, N. W. Mitzel and P. R. Schreiner, J. Am. Chem. Soc. , 2017 , 139 , 16696-16707.; DOI: 10.1021/jacs.7b07884
- The structure of diphenyl ether-methanol in the electronically excited and ionic ground states: A combined IR/UV spectroscopic and theoretical study - D. Bernhard, C. Holzer, F. Dietrich, A. Stamm, W. Klopper, and M. Gerhards, Chem. Phys. Chem., 2017 , 18 , 3 634 –3 641 ; DOI: 10.1002/cphc.201700722
- Influence of Size, Shape, Heteroatom Content and Dispersive Contributions on Guest Binding in a Coordination Cage - S. Löffler, A. Wuttke, B. Zhang, J. J. Holstein, R. A. Mata, Guido H. Clever, Chem. Commun. , 2017 , 53 , 11933-11936 ; DOI: 10.1039/C7CC04855F .
-
Alkyl-imidazolium tetrafluoroborates: vapor pressure, thermodynamics of vaporization, and enthalpies of formation - D. H. Zaitsau, A. V. Yermalayeu, T. Schubert, S. P. Verevkin, J. Mol. Liq. , 2017 , 242 , 951 - 957; DOI: 10.1016/j.molliq.2017.07.09
-
Controlling the kinetic and thermodynamic stability of cationic clusters by the addition of molecules or counterions - A. Strate, T. Niemann, R. Ludwig, Phys. Chem. Chem. Phys., 2017 , 19 , 18854 – 18862; DOI: 10.1039/C7CP02227A
-
When like charged ions attract in ionic liquids: Controlling the formation of cationic clusters by the interaction strength of the counter ions - A. Strate, T. Niemann, P. Stange, D. Michalik, R. Ludwig, Angew. Chem. Int. Ed., 2017 , 56 , 496 – 500; Angew. Chem., 2017 , 129 , 510 – 514;
- Attenuation of London Dispersion in Dichloromethane Solution - R. Pollice, M. Bot, I. J. Kobylianskii, I. Shenderovich and P. Chen, J. Am. Chem. Soc. , 2017 , 139 (37), 13126 – 13140; DOI: 10.1021/jacs.7b06997
-
Temperature-dependent Dynamics of Push-Pull Rotor Systems based on Acridinylidene Cyanoacetic Esters - M. Krick, J. J. Holstein, A. Wuttke, R. A. Mata, G. H. Clever, Eur. J., Org. Chem., 2017 , 34, 5141 – 5146; DOI: 10.1002/ejoc.201700873 .
-
Extension of the D3 dispersion coefficient model - E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017 , 147 , 034112; DOI: 10.1063/1.4993215
-
A general intermolecular force field based on tight-binding quantum chemical calculations - S. Grimme, C. Bannwarth, E. Caldeweyher, J. Pisarek and A. Hansen, J. Chem. Phys. , 2017 , 147 , 161708; DOI: 10.1063/1.4991798
-
Review: Intermolecular interaction energies from Kohn-Sham Random Phase Approximation correlation methods - A. Heßelmann chapter 3, Non-covalent Interactions in Quantum Chemistry and Physics, Editor: A. Otero de la Roza und G. DiLabio, Elsevier, 2017
https://www.elsevier.com/books/non-covalent-interactions-in-quantum-chemistry-and-physics/otero-de-la-roza/978-0-12-809835-6
-
Mild Cobalt(III)-Catalyzed Allylative C-F/C-H Functionalizations at Room Temperature - D. Zell, V. Müller, U. Dhawa, M. Bursch, R.R. Presa, S. Grimme, L. Ackermann, Chem. Eur. J., 2017 , 23 (5), 12145 – 12148;
- The Relation between Vaporization Enthalpies and Viscosities: Eyring’s Theory Applied to Selected Ionic Liquids - A.-M. Bonsa, D. Paschek, D. H. Zaitsau, V. N. Emel’yanenko, S. P. Verevkin and R. Ludwig, Chem. Phys. Chem. , 2017 , 18 , 1242 – 1246; DOI: 10.1002/cphc.201700138
-
Cold Snapshot of a Molecular Rotary Motor Captured by High-Resolution Rotational Spectroscop y , , , , , and
- Hierarchical Host-Guest Supramolecular Assembly on Dodecaborate-Coated Gold Nanoparticles - K. I. Assaf, A. Hennig, D.-S. Guo and W. M. Nau, Chem. Commun ., 2017 , 53 , 4616 – 4619; DOI: 10.1039/C7CC01507K
-
Gold Nanoparticle Aggregation Facilitates a Colorimetric Enzyme Sensing - M. Nilam, A. Hennig, W. M. Nau and K. I. Assaf, Assays. Anal. Methods ; 2017 , 9 , 2784 – 2787; DOI: 10.1039/C7AY00642J
-
Visualizing dispersion interactions through the use of local orbital spaces - A. Wuttke and R. A. Mata, J. Comput. Chem. , 2017 , 38 , 15 – 23; DOI: 10.1002/jcc.24508
-
Accurate Intermolecular Potential for the C60 Dimer: The Performance of Different Levels of Quantum Theory - D. I. Sharapa, J. T. Margraf, A. Hesselmann and T. Clark, J. Chem. Theory Comput., 2017 , 13 , 274; DOI: 10.1021/acs.jctc.6b00869
-
Trifluoromethyl: an amphiphilic noncovalent bonding partner - C. Esterhuysen, A. Heßelmann and T. Clark, Chem. Phys. Chem. , 2017 , 18 , 772; DOI: 10.1002/cphc.201700027
-
Low scaling random-phase approximation electron correlation method including exchange interactions using localised orbitals - A. Heßelmann, J. Chem. Phys. , 2017 , 146 , 174110; DOI: 10.1063/1.4981817
- Trapping Experiments on a Trichlorosilanide Anion: a Key Intermediate of Halogenosilane Chemistry - J. Teichmann, M. Bursch, B. Köstler, M. Bolte, H.-W Lerner, S. Grimme and M. Wagner, Inorg. Chem., 2017 , 56 (15), 8683 - 8688; DOI: 10.1021/acs.inorgchem.7b00216
-
Chemoselectivity in Esterification Reactions – Size Matters after All - J. Helberg, M. Marin-Luna and H. Zipse, Synthesis, 2017 , 49 (15), 3460 - 3470; DOI: 10.1055/s-0036-1588854 .
-
Measuring Intermolecular Binding Energies by Laser Spectroscopy - R. Knochenmuss, S. Maity, G. Féraud and S. Leutwyler,
Chimia Int. J. Chem.,
2017
,
71
(1), 7 - 12
;
DOI:
10.2533/chimia.2017.7
- Heteroaryl Bismuthines: A Novel Synthetic Concept and Metal···π Heteroarene Interaction - A.-M. Preda, W. B. Schneider, M. Rainer, T. Rüffer, D. Schaarschmidt, H. Lang and M. Mehring , Dalton Trans. , 2017 , 46 , 8269 - 8278; DOI: 10.1039/C7DT01437F
- Heterocyclic bismuth(III) compounds with transannular N→Bi interactions as catalysts for the oxidation of thiophenol to diphenyldisulfide - A. M. Toma, C. I. Rat, O. D. Pavel, C. Hardacre, T. Rüffer, H. Lang, M. Mehring, A. D. Silvestru and V. i Pavulescu, Catal. Sci. Technol. , 2017 , Advanced Article, DOI: 10.1039/C7CY00521K
- Switch of C−H Activation Mechanism for Full Selectivity Control in Cobalt(III)-Catalyzed C−H Alkylations - D. Zell, M. Bursch, V. Müller, S. Grimme and L. Ackermann , Angew. Chem. Int. Ed. , 2017 , 129 (35), 10514 - 10518; DOI:
- Multi-spectroscopic and theoretical analyses on the diphenyl ether–tert-butyl alcohol complex in the electronic ground and electronically excited state - D. Bernhard, F. Dietrich, M. Fatima, C. Perez, A. Poblotzki, G. Jansen, M. A. Suhm, M. Schnell and M. Gerhards, Phys. Chem. Chem. Phys., 2017 , 19 , 18076 - 18088; DOI: 10.1039/C7CP02967E .
-
Synthesis, Structure and Dispersion Interactions in Bis(1,8- naphthalendiyl)distibine - C. Ganesamoorthy, S. Heimann, S. Hölscher, R. Haack, C. Wölper, G. Jansen and S. Schulz, Dalton Trans. , 2017 , 46 , 9227 - 9234; DOI: 10.1039/C7DT02165H .
- C–F/C–H Functionalization by Manganese(I) Catalysis: Expedient (Per)Fluoro-Allylations and Alkenylations - D. Zell, U. Dhawa, V. Müller, M. Bursch, S. Grimme and L. Ackermann , ACS Catal., 2017 , 7 , 4209-4213; DOI: 10.1021/acscatal.7b01208
- Ruthenium(II)-catalysed remote C–H alkylations as a versatile platform to meta-decorated arenes - J. Li, K. Korvorapun, S. De Sarkar, T. Rogge, D. J. Burns, S. Warratz and L. Ackermann, Nature Commun. 2017 , 8 , 15430; DOI: 10.1038/ncomms15430 .
- Manganese(I)-Catalyzed Dispersion-Enabled C–H/C–C Activation - T. H. Meyer,' W. Liu,' M. Feldt, A. Wuttke, R. A. Mata and L. Ackermann, Chem. Eur. J., 2017 , 23, 5443-5447;
- Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions - F. E. Held, A. A. Guryev, T. Fröhlich, F. Hampel, A. Kahnt, C. Hutterer, M. Steingruber, H. Bahsi, C. von Bojničić-Kninski, D. S. Mattes, T. C. Foertsch, A. Nesterov-Mueller, M. Marschall, S. B. Tsogoeva. Nature Commun . , 2017 , 8, 15071; DOI: 10.1038/ncomms15071
- Deeper Insight into the Six-Step Domino Reaction of Aldehydes with Malononitrile and Evaluation of Antiviral and Antimalarial Activities of the Obtained Bicyclic Products - C. M. Bock, G. Parameshwarappa, S. Bönisch, W. Bauer, C. Hutterer, M. Leidenberger, O. Friedrich, M. Marschall, B. Kappes, A. Görling, S. B. Tsogoeva, ChemistryOpen , 2017 , 6 , 364-374; DOI: 10.1002/open.201700005
- Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation -
- Treating sub-valence correlation effects in domain based pair natural orbital coupled cluster calculations: an out-of-the-box approach - G. Bistoni , C. Riplinger , Y. Minenkov , L.Cavallo , A. A. Auer , and F. Neese, J . Chem. Theory Comput. , 2017 , 13 (7), 3220 - 3227; DOI: 10.1021/acs.jctc.7b00352
- London Dispersion Enables the Shortest Intermolecular Hydrocarbon H •••H Contact - S. Rösel, H. Quanz, C. Logemann, J. Becker, E. Mossou, L. Cañadillas-Delgado, E. Caldeweyher, S. Grimme and P. R. Schreiner, J. Am. Chem. Soc. , 2017 , 139 (22), 7428–7431; DOI : 10.1021/jacs.7b01879
- Structure and Gas-Phase Thermochemistry of a Pd/Cu Complex: Studies on a Model for Transmetalation Transition States - R. J. Oeschger, P. Chen, J. Am. Chem. Soc. , 2017 , 139 , 1069; DOI : 10.1021/jacs.6b12152
- The Carbon-Nitrogen Bonds in Ammonium Compounds Are Charge Shift Bonds - R. Gershoni-Poranne, P. Chen, Chem. Eur. J., 2017 , 23 , 4659; DOI : 10.1002/chem.201605987
- A Heterobimetallic Pd-Zn Complex: Study of a d8-d10 Bond in Solid State, in Solution, and in Silico - R. J. Oeschger, P. Chen, Organometallics , 2017 , 36 (8), 1465–1468; DOI : 10.1021/acs.organomet.7b00113
- Bismuth···π arene versus bismuth···halide coordination in heterocyclic diorganobismuth(III) compounds with transannular N→Bi interaction - A. Toma, A. Pop, A. Silvestru, T. Rüffer, H. Lang, M. Mehring, Dalton Trans. , 2017 , 46 , 3953-3962 ; DOI : 10.1039/C7DT00188F
- Correcting the record: The dimers and trimers of trans-N-methylacetamide - T. Forsting, H. C. Gottschalk, B. Hartwig, M. Mons and M. A. Suhm, Phys. Chem. Chem. Phys., 2017 , 19 , 10727-10737; DOI : 10.1039/c6cp07989j [Open Access, CC BY 3.0]
- Sizing the role of London dispersion in the dissociation of all-meta tert-butyl hexaphenylethane - S. Rösel, C. Balestrieri and P. R. Schreiner, Chem. Sci. , 2017 , 8 , 405-410; DOI : 10.1039/C6SC02727J
- Understanding the role of dispersion in Frustrated Lewis Pairs and classical Lewis adducts: a Domain Based Local Pair Natural Orbital Coupled Cluster study - G. Bistoni, A. A. Auer, F. Neese, Chem. Eur. J., 2017 , 23 , 865;
- Triazolylidene Ligands Allow Cobalt-Catalyzed C–H/C–O Alkenylations at Ambient Temperature - N. Sauermann, J. Loup, D. Kootz, A. Berkessel and L. Ackermann , Synthesis , 2017 , 49 (15),3476 - 3484; DOI: 10.1055/s-0036-1590471 .
Publications 2016
- Pair-eigenstates and mutual alignment of coupled molecular rotors in a magnetic field - K. Sharma and B. Friedrich, Chem. Phys. Phys. Chem. , 2016 , 18 , 13467-13477 ; DOI: 10.1039/c6cp00390g
-
Vaporization, Sublimation Enthalpy and Crystal Structures of Imidazo[1.2-a]pyrazine and Phthalazine - J. S. Chickos, M. M. Contreras, C. Gobble, N. Rath, A. A Samarov, S. P. Verevkin , J. Chem. Eng. Data. , 2016 , 61 (1) , 370-379; DOI: 10.1021/acs.jced.5b00606
-
Dispersion and Hydrogen Bonding Rule: Why the Vaporization Enthalpies of Aprotic Ionic Liquids are Significantly Larger than those of Protic Ionic liquids - D. H. Zaitsau, V. N. Emel'yanenko, P. Stange, C. Schick, S. P. Verevkin and R. Ludwig, Angew. Chem. , 2016 , 128, 38, 11856-11860; Angew. Chem. Int. Ed. , 2016 , 55 , 11682-11686; DOI:
-
Thermodynamics of imidazolium based ionic liquids containing PF6 anion - D. H. Zaitsau, A. V. Yermalayeu, V. N. Emel´yanenko, S. Butler, T. Schubert, S. P. Verevkin, J. Phys. Chem. B , 2016 , 120 (32) ,7949–7957; DOI: 10.1021/acs.jpcb.6b06081
-
High-Affinity Host-Guest Chemistry of Large-Ring Cyclodextrins - K. I. Assaf, D. Gabel, W. Zimmermann and W. M. Nau, Org. Biomol. Chem. , 2016 , 14 , 7702-7706; DOI: 10.1039/C6OB01161F
-
Dodecaborate-Functionalized Anchor Dyes for Cyclodextrin-Based Indicator Displacement Applications - K. I. Assaf, O. Suckova, N. Al-Danaf, V. von Glasenapp, D. Gabel and W. M. Nau, Org. Lett ., 2016 , 18 , 932-935; DOI: 10.1021/acs.orglett.5b03611
-
Endohedral Dynamics of Push-Pull Rotor-functionalized Cages - M. Krick, J. J. Holstein, C. Würtele, G. H. Clever, Chem. Commun. , 2016 , 52 , 10411; DOI: 10.1039/C6CC04155H
-
Desymmetrization of an Octahedral Coordination Complex inside a Self-Assembled Exoskeleton - M. D. Johnstone; E. K. Schwarze; J. Ahrens; D. Schwarzer; J. J. Holstein; B. Dittrich; F. M. Pfeffer; G. H. Clever, Chem. Eur. J. , 2016 , 22 , 10791; DOI:
-
Molecular energies from an incremental fragmentation method - O. R. Meitei und A. Heßelmann, J. Chem. Phys. , 2016 , 144, 084109; DOI: 10.1063/1.4942189
-
Local Molecular Orbitals from a Projection onto Localized Centers - A. Heßelmann, J. Chem. Theory Comput. , 2016 , 12, 2720; DOI: 10.1021/acs.jctc.6b00321
-
On the stability of cyclophane derivates using a molecular fragmentation method - O. R. Meitei und A. Heßelmann, Chem. Phys. Chem. , 2016 , 17, 3863, DOI: 10.1002/cphc.201600942
- Water-induced structural changes in crown ethers from broadband rotational spectroscopy - C. Perez, J. C. Lopez, S. Blanco and M. Schnell, J. Phys. Chem. Lett., 2016 , 7 (20), 4053-4058; DOI : 10.1021/acs.jpclett.6b01939
- Communication: Structural locking mediated by a water wire: A high-resolution rotational spectroscopy study on hydrated forms of a chiral biphenyl derivative - S. R. Domingos, C. Perez and M. Schnell, J. Chem. Phys., 2016 , 145 , 16113 ; DOI : 10.1063/1.4966584
- Intermolecular dissociation energies of dispersively bound 1-naphthol⋅cycloalkane complexes - S. Maity, P. Ottiger, F. A. Balmer, R. Knochenmuss and S. Leutwyler, J. Chem. Phys., 2016 , 145 , 244314 ; DOI : 10.1063/1.4973013
- Accurate dissociation energies of two isomers of the 1-naphthol⋅cyclopropane complex - S. Maity, R. Knochenmuss, C. Holzer, G. Féraud, J. Frey, W. Klopper, and S Leutwyler, J. Chem. Phys., 2016 , 145 , 164304; DOI : 10.1063/1.4965821
- Uncovering Key Structural Features of an Enantioselective Peptide-Catalyzed Acylation Utilizing Advanced NMR Techniques - E. Procházková, A. Kolmer, J. Ilgen, M. Schwab , L. Kaltschnee, M. Fredersdorf, V. Schmidts, R. C. Wende, P. R. Schreiner, C. M. Thiele, Angew. Chem. Int. Ed., 2016 , 55 , 15754; DOI : 10.1002/anie.201608559
- Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework - W. B. Schneider , G. Bistoni , M. Sparta , M. Saitow , C. Riplinger , A. A. Auer and F. Neese, J. Chem. Theory Comput. , 2016 , 12 (10), 4778–4792; DOI : 10.1021/acs.jctc.6b00523
- Explicitly-correlated ring-coupled-cluster-doubles theory: Including exchange for computations on closed-shell systems - A.-S. Hehn, C. Holzer, W. Klopper, Chem. Phys. 2016 , 479 , 160-169; DOI : 10.1016/j.chemphys.2016.09.030
- Overcoming the Limitations of C−H Activation with Strongly Coordinating N-Heterocycles by Cobalt Catalysis - H. Wang, M. M. Lorion, L. Ackermann, Angew. Chem. Int. Ed. 2016 , 55 , 10386-10390; DOI :
- Mild C–H/C–C Activation by (Z)-Selective Cobalt-Catalysis - D. Zell, Q. Bu, M. Feldt, L. Ackermann, Angew. Chem. Int. Ed. , 2016 , 55 , 7408-7412; DOI :
- Ketone-Assisted Ruthenium(II)-Catalyzed C–H Imidation: Access to Primary Aminoketones by Weak Coordination - K. Raghuvanshi, D. Zell, K. Rauch, L. Ackermann, ACS Catal., 2016 , 6 , 3172–3175; DOI : 10.1021/acscatal.6b00711
- Cobalt-Catalyzed Oxidase C–H/N–H Alkyne Annulation: Mechanistic Insights and Access to anti-Cancer Agents - R. Mei, H. Wang, S. Warratz, S. A. Macgregor, L. Ackermann, Chem. Eur. J., 2016 , 22 , 6759-6763; DOI :
- A General Strategy for Nickel-Catalyzed C–H Alkylation of Anilines - Z. Ruan, S. Lackner, L. Ackermann, Angew. Chem. Int. Ed., 2016 , 55 , 3153-3157; DOI :
- Single-Component Phosphinous Acid Ruthenium(II) Catalysts for Versatile C–H Activations by Metal-Ligand Cooperation - D. Zell, S. Warratz, D. Gelman, S. J. Garden, L. Ackermann, Chem. Eur. J., 2016 , 22 , 1248-1252; DOI :
- Aromatic embedding wins over classical hydrogen bonding – a multi-spectroscopic approach for the diphenyl ether–methanol complex - C. Medcraft, S. Zinn, M. Schnell, A. Poblotzki, J. Altnöder, M. Heger, M. A. Suhm, D. Bernhard, A. Stamm, F. Dietrich and M. Gerhards, Phys. Chem. Chem. Phys., 2016 , 18 , 25975-25983; DOI : 10.1039/c6cp03557d
- Subtle solvation behaviour of a biofuel additive: the methanol complex with 2,5-dimethylfuran - A.Poblotzki, J. Altnöder and M. A. Suhm, Phys. Chem. Chem. Phys. , 2016 , 18 , 27265-27271; DOI : 10.1039/c6cp05413g (Open Access)
- Calculations of magnetically induced current densities: theory and applications - D. Sundholm, H. Fliegel, R. J. F. Berger, WIREs Comput. Mol. Sci. , 2016 , 6 , 639-678; DOI : 10.1002/wcms.1270
- Flexibility unleashed in acyclic monoterpenes: conformational space of citronellal revealed by broadband rotational spectroscopy - S. R. Domingos, C. Pérez, Ch. Medcraft, P. Pinacho and M. Schnell, Phys. Chem. Chem. Phys. , 2016 , 18, 16682-16689; DOI : 10.1039/c6cp02876d
- High-Resolution Rotational Spectroscopy Study of the Smallest Sugar Dimer: Interplay of Hydrogen Bonds in the Glycolaldehyde Dimer - S. Zinn, Ch. Medcraft, Th. Betz, and M. Schnell, Angew. Chem. Int. Ed. , 2016 , 55 , 5975-5980; DOI : 10.1002/anie.201511077
-
A boron-fluorinated tris(pyrazolyl)borate ligand ( F Tp*) and its mono- and dinuclear copper complexes [Cu( F Tp*) 2 ] and [Cu 2 ( F Tp*) 2 ]: Synthesis, structures, and DFT calculations – T. Augenstein, F. Dorner, K. Reiter, D. Garnier, W. Klopper, F. Breher, Chem. Eur. J., 2016 , 22 , 7935-7943; DOI: 10.1002/chem.201504545
-
Review:
Experimental and Theoretical Determination of Dissociation Energies
of Dispersion-Dominated Aromatic Molecular Complexes – J. A. Frey, C. Holzer, W. Klopper, S. Leutwyler,
Chem. Rev.,
2016
,
116
, 5614-5641;
DOI
: 10.1021/acs.chemrev.5b00652
- Review: Dispersion-Corrected Mean-Field Electronic Structure Methods - S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Chem. Rev., 2016 , 116 , 5105-5154; DOI : 10.1021/acs.chemrev.5b00533
- Internal Dynamics and Guest Binding of a Sterically Overcrowded Host - S. Löffler, J. Lübben, A. Wuttke, R. A. Mata, M. John, B. Dittrich, G. H. Clever, Chem. Sci. , 2016 , 7 , 4676-4684; DOI : 10.1039/C6SC00985A
- The Enantioselective Dakin–West Reaction - Raffael C. Wende, Alexander Seitz, Dominik Niedek, Sören M. M. Schuler, Christine Hofmann, Jonathan Becker, Peter R. Schreiner, Angew. Chem. Int. Ed. , 2016 , 55 , 2719–2723;
-
Generation of Complex Azabicycles and Carbobicycles from Two Simple Compounds in a Single Operation through a Metal-Free Six-Step Domino Reaction - C. M. Bock, G. Parameshwarappa, S. Bönisch, C. Neiss, W. Bauer, F. Hampel, A. Görling, S. B. Tsogoeva
Chem. Eur.
J.
,
2016
,
22
, 5189-5197;
DOI
:
10.1002/chem.201504798.
This work was highlighted on the
cover
of this issue.
- 1,4-Bis-Dipp/Mes-1,2,4-Triazolylidenes: Carbene Catalysts that Efficiently Overcome Steric Hindrance in the Redox Esterification of α- and β-Substituted α,β-Enals - V. R. Yatham, W. Harnying, D. Kootz, J.-M. Neudörfl, N. E. Schlörer, A. Berkessel, J. Am. Chem. Soc. , 2016 , 138 , 2670-2677; DOI : 10.1021/jacs.5b11796
- Keto-Enol Thermodynamics of Breslow Intermediates - M. Paul, M. Breugst, J.-M. Neudörfl, R. B. Sunoj, A. Berkessel, J. Am. Chem. Soc. , 2016 , 138 , 5044-5051; DOI : 10.1021/jacs.5b13236
- Wetting Camphor: Multi-Isotopic Substitution Identifies the Complementary Roles of Hydrogen Bonding and Dispersive Forces - Cristóbal Pérez, Anna Krin, Amanda L. Steber, Juan C. López, Zbigniew Kisiel and Melanie Schnell J. Phys. Chem. Lett ., 2016 , 7 , 154-160; DOI: 10.1021/acs.jpclett.5b02541
-
Control over the Hydrogen-Bond Docking Site in Anisole by Ring Methylation - H. C. Gottschalk, J. Altnöder, M. Heger, and M. A. Suhm, Angew. Chem. Int. Ed. , 2016 , 55 , 1921-1924; DOI : 10.1002/anie.201508481
- London Dispersion Decisively Contributes to the Thermodynamic Stability of Bulky NHC-Coordinated Main Group Compounds - J. Philipp Wagner and Peter R. Schreiner, J. Chem. Theory Comput., 2016 , 12 , 231 - 237; DOI : 10.1021/acs.jctc.5b01100
Publications 2015
- Supersymmetry and eigensurface topology of the spherical quantum pendulum - B. Schmidt and B. Friedrich, Phys. Rev. A , 2015 , 91, 022111; DOI: 10.1103/PhysRevA.91.022111
- Directional properties of polar paramagnetic molecules subject to congruent electric, magnetic and optical fields - K. Sharma and B. Friedrich, New J. Phys. , 2015 , 17 (5) , 045017; DOI: 10.1088/1367-2630/17/4/045017
- Water Structure Recovery in Chaotropic Anion Recognition: High-Affinity Binding of Dodecaborate Clusters to g-Cyclodextrin - K. I. Assaf, M. S. Ural, F. Pan, T. Georgiev, S. Simova, K. Rissanen, D. Gabel and W. M. Nau, Angew. Chem. Int. Ed. , 2015 , 54 , 6852-6856; Angew. Chem ., 2015 , 127 , 6956-6960; DOI:
-
Polarisabilities of long conjugated chain molecules with density functional response methods: the role of coupled and uncoupled response - A. Heßelmann, J. Chem. Phys. , 2015 , 142, 164102; DOI: 10.1063/1.4918680
-
Controlling the subtle energy balances in protic ionic liquids: dispersion forces compete with hydrogen bonds - K. Fumino, V. Fossog, P. Stange, R. Hempelmann, R. Ludwig Angew. Chem., 2015 , 127 , 2792-2795; Angew. Chem. Int. Ed. , 2015 , 54 , 2792-2795; DOI : 10.1002/anie.201411509
- N-Acyl Amino Acid Ligands for Ruthenium(II)-catalyzed meta -C-H tert -Alkylation with Removable Auxiliaries - J. Li, S. Warratz, D. Zell, S. De Sarkar, E. E. Ishikawa, L. Ackermann, J. Am. Chem. Soc., 2015 , 137 , 13894 - 13901; DOI : 10.1021/jacs.5b08435
-
Review: London Dispersion in Molecular Chemistry — Reconsidering Steric Effects - J. Philipp Wagner and Peter R. Schreiner, Angew. Chem. Int. Ed. , 2015 , 54 , 12274–12296; DOI : 10.1002/anie.201503476
-
1,8-Bis(phenylethynyl)anthracene – gas and solid phase structures - Jan-Hendrik Lamm, Jan Horstmann, Hans-Georg Stammler, Norbert W. Mitzel, Yuriy A. Zhabanov, Natalya V. Tverdova, Arseniy A. Otlyotov, Nina I. Giricheva and Georgiy V. Girichev, Org. Biomol. Chem. , 2015 , 13 , 8893 - 8905; DOI : 10.1039/C5OB01078K
- To π or not to π – how does methanol dock onto anisole? - Matthias Heger, Jonas Altnöder, Anja Poblotzki, and Martin A. Suhm , Phys. Chem. Chem. Phys. , 2015 , 17 , 13045-13052; DOI : 10.1039/C5CP01545F
- The effect of dispersion forces on the interaction energies and far infrared spectra of protic ionic liquids - Ralf Ludwig, Phys. Chem. Chem. Phys. , 2015 , 17 , 13790-13793; DOI : 10.1039/c5cp00885a
There are no current conferences planned.
- Prof. Bernd v. Issendorff (Albert-Ludwig-University, Freiburg, Germany)
Prof. Bernd v. Issendorff was the headliner of our 6th workshop which took place online.
Currently no job offers