Acknowledging SPP 1807
Publications 2023
- Maximized axial helicity in a Pd2L4 cage: inverse guest size-dependent compression and mesocate isomerism - W. M. Bloch, S. Horiuchi, J. J. Holstein, C. Drechsler, A. Wuttke, W. Hiller, R. A. Mata, G. H. Clever, Chem. Sci., 2023, 14, 1524-1531. DOI: 10.1039/D2SC06629G
Publications 2022
- Tilting the Balance: London Dispersion Systematically Enhances Enantioselectivities in Brønsted Acid Catalyzed Transfer Hydrogenation of Imines - J. Gramüller, M. Franta, R. M. Gschwind, J. Am. Chem. Soc., 2022, DOI: 10.1021/jacs.2c07563.
- Attaching onto or Inserting into an Intramolecular Hydrogen Bond: Exploring and Controlling a Chirality-Dependent Dilemma for Alcohols - M. Lange, E. Sennert, M. A. Suhm, Symmetry, 2022, 14(2), 357. DOI: 10.3390/sym14020357
- Sniffing out camphor: the fine balance between hydrogen bonding and London dispersion in the chirality recognition with a-fenchol - M. M. Quesada-Moreno, M. Fatima, R. Medel, C. Pérez, M. Schnell, Phys. Chem. Chem. Phys., 2022, 24, 12849-12859. DOI: 10.1039/D2CP00308B
- London Dispersion Favors Sterically Hindered Diarylthiourea Conformers in Solution - L. Rummel, M. H. J. Domanski, H. Hausmann, J. Becker, P. R. Schreiner, Angew. Chem. Int. Ed., 2022, in press. DOI: 10.1002/anie.202204393
- Effects of Dispersion and Charge -Transfer Interactions on Structures of Heavy Chalcogenide Compounds: A Quantum Chemical Case Study for (Et2Bi)2Te - F. van der Vight, S. Schulz, G. Jansen, ChemPlusChem, 2022, 87, e202100487. DOI: 10.1002/cplu.202100487
- Comparing London Dispersion Pnictogen-π Interactions in Naphthyl-substituted Dipnictanes - A. Gehlhaar, E. Schiavo, C. Wölper, Y. Schulte, A. A. Auer, S. Schulz, Dalton Trans., 2022, 51, 5016-5023. DOI: 10.1039/D2DT00477A
-
Bisstibane−Distibane conversion via consecutive single-electron oxidation and reduction reaction - A. Gehlhaar, H. M. Weinert, C. Wölper, N. Semleit, G. Haberhauer, S. Schulz, Chem. Commun. 2022, in press. DOI: 10.1039/D2CC01986H
-
Computational Chemistry as a Conceptual Game Changer: Understanding the Role of London Dispersion in Hexaphenylethane Derivatives (Gomberg Systems) – S. Rösel, P. R. Schreiner, Isr. J. Chem. 2022, 62, e202200002. DOI: 10.1002/ijch.202200002
-
Gauging the Steric Effects of Silyl Groups with a Molecular Balance – H. F. König, L. Rummel, H. Hausmann, J. Becker, J. M. Schümann, P. R. Schreiner, J. Org. Chem. 2022, 87, 7, 4670–4679. DOI: 10.1021/acs.joc.1c03103
- Exceptionally Close I···As and I···Sb Interactions in Trimethylpnictogen-Pentafluoroiodobenzene Cocrystals - M. Bujak, H.-G. Stammler, N. W. Mitzel, CrystEngComm, 2022, 24, 70–76. DOI: 10.1039/D1CE01268A
- Monitoring dynamic pre-crystallization aggregation processes in solution by VT-DOSY NMR spectroscopyv - A. Mix, J.-H. Lamm, J. Schwabedissen, E. Gebel, H.-G. Stammler, N. W. Mitzel, Chem. Commun. 2022, 58, 3465–3468. DOI: 10.1039/D1CC05925D
- Synthesis, structural and photophysical properties of dimethylphosphino (perfluoro-)phenylene based gold(I) dimers - F. Müller, L. Wickemeyer, J. Schwabedissen, M. Ertl, B. Neumann, H.-G. Stammler, U. Monkowius, N. W. Mitzel, Dalton Trans. 2022, 51, 1955. DOI: 10.1039/D1DT03658K
- Diphenyl- and dimesityl-phosphanyl-substituted 3,3,4,4,5,5-hexafluorocyclopentenyl-gold(I) dimers – syntheses and solid-state structures - F. Müller, T. Glodde, B. Neumann, H.-G. Stammler, N. W. Mitzel, Eur. J. Inorg. Chem. 2022, in press; DOI: 10.1002/ejic.202200080
- Noncovalent Intra- and Intermolecular Interactions in Peri-Substituted Pnicta Naphthalene and Acenaphthalene Complexes - A. Gehlhaar, C. Wölper, F. van der Vight, G. Jansen, S. Schulz, Eur. J. Inorg. Chem. 2022, accepted for publication. DOI: 10.1002/ejic.202100883
- Hydrogen Delocalization in an Asymmetric Biomolecule: The Curious Case of Alpha-Fenchol - R. Medel, J. R. Springborn, D. L. Crittenden, M. A. Suhm, Molecules 2022, 27(1), 101. DOI: 10.3390/molecules27010101
Publications 2021
- Ternary Complex of Chiral Disulfonimides in Transfer Hydrogenation of Imines: The Relevance of Late Intermediates in Ion Pair Catalysis, M. Žabka, R. M. Gschwind, Chem. Sci. 2021, 12, 15263-15272. DOI: 10.1039/D1SC03724B
- Non-Covalent CH-π and π-π Interactions in Phosphoramidite Palladium(II) Complexes with Strong Conformational Preference, M. Žabka, L. Naviri, R. M. Gschwind, Angew. Chem. Int. Ed. 2021, 60, 25832-25838. DOI: 10.1002/ange.202106881
- Halogens in Acetophenones Direct the Hydrogen Bond Docking Preference of Phenol via Stacking Interactions - C. Zimmermann, M. Lange, M. A. Suhm, Molecules, 2021, 26, 4883. DOI: 10.3390/molecules26164883
- Determination of the Dispersion Forces in the Gas Phase Structures of Ionic Liquids Using Exclusively Thermodynamic Methods - D. H. Zaitsau, R. Ludwig, S. P. Verevkin, Phys. Chem. Chem. Phys., 2021, 23(12), 7398-7406. DOI: 10.1039/D0CP05439A
- Three in One: The Versatility of Hydrogen Bonding Interaction in Halide Salts with Hydroxy-Functionalized Pyridinium Cations - L. Al-Sheakh, T. Niemann, A. Villinger, P. Stange, D. Zaitsau, A. Strate, R. Ludwig, ChemPhysChem, 2021, 22, 1850-1856. DOI: 10.1002/cphc.202100424
- Quantification and Understanding of Non-Covalent Interactions in Molecular and Ionic Systems: Dispersion Interactions and Hydrogen Bonding Analysed by Thermodynamic Methods - S. Verevkin, S. Kondratev, D. Zaitsau, K. Zherikova, R. Ludwig, J. Mol. Liq., 2021, 343, 117547. DOI: 10.1016/j.molliq.2021.117547
- Rovibronic signatures of molecular aggregation in the gas phase: subtle homochirality trends in the dimer, trimer and tetramer of benzyl alcohol - R. Medel, A. Camiruaga, R. T. Saragi, P. Pinacho, C. Pérez, M. Schnell, A. Lesarri, M. A. Suhm, J. Fernández, Phys. Chem. Chem. Phys. 2021, 23, 23610–23624. DOI: 10.1039/D1CP03508H
- Simple models for the quick estimation of ground state hydrogen tunneling splittings in alcohols and other compounds - R. Medel, Phys. Chem. Chem. Phys. 2021, 23, 17591–17605. DOI: 10.1039/D1CP02115J
- Predicting OH stretching fundamental wavenumbers of alcohols for conformational assignment: different correction patterns for density functional and wave-function-based methods - R. Medel, M. A. Suhm, Phys. Chem. Chem. Phys. 2021, 23, 5629-5643. DOI: 10.1039/D1CP00342A
- C–H activation - T. Rogge, N. Kaplaneris, N. Chatani, J. Kim, S. Chang, B. Punji, L. L. Schafer, D. G. Musaev, J. Wencel-Delord, C. A. Roberts, R. Sarpong, Z. E. Wilson, M. A. Brimble, M. J. Johansson, and L. Ackermann, Nat Rev Methods Primers, 2021, 1, 43. DOI: 10.1038/s43586-021-00041-2
- Electro-oxidative Intermolecular Allylic C (sp3)–H Aminations - Y. Wang, Z. Lin, J. C. Oliveira, and L. Ackermann, J. Org. Chem., 2021, n/a (n/a). DOI: 10.1021/acs.joc.1c00682
- Triazole-Enabled Ruthenium (II) Carboxylate-Catalyzed C–H Arylation with Electron-Deficient Aryl Halides - T. Rogge, T. Müller, H. Simon, X. Hou, S. Wagschal, D. Broggini, and L. Ackermann, Synlett. 2021, 32. DOI: 10.1055/a-1495-6994
- Chemodivergent manganese-catalyzed C–H activation: modular synthesis of fluorogenic probes - N. Kaplaneris, J. Son, L. Mendive-Tapia, A. Kopp, N. D. Barth, I. Maksso, M. Vendrell, and L. Ackermann, Nature communications, 2021, 12(1), 1-9. DOI: 10.1038/s41467-021-23462-9
- Remote C–H Functionalizations by Ruthenium Catalysis - K. Korvorapun, R. C. Samanta, T. Rogge, and L. Ackermann, Synthesis, 2021, DOI: 10.1055/a-1485-5156
- Late-stage stitching enabled by manganese-catalyzed C─ H activation: Peptide ligation and access to cyclopeptides - N. Kaplaneris, F. Kaltenäuser, G. Sirvinskaite, S. Fan, T. De Oliveira, L. C. Conradi, and L. Ackermann, Science Advances, 2021, 7(9), eabe6202. DOI: 10.1126/sciadv.abe6202
- Enantioselective Ruthenium-Catalyzed C–H Alkylations by a Chiral Carboxylic Acid with Attractive Dispersive Interactions - U. Dhawa, R. Connon, J. C. Oliveira, R. Steinbock, and L. Ackermann, Organic Letters, 2021, 23(7), 2760-2765. DOI: 10.1021/acs.orglett.1c00615
- Insights into the Mechanism of Low-Valent Cobalt-Catalyzed C–H Activation - J. C. Oliveira, U. Dhawa, and L. Ackermann, ACS Catalysis, 2021, 11(3), 1505-1515. DOI: 10.1021/acscatal.0c04205
-
Do docking sites persist upon fluorination? The diadamantyl ether-aromatics challenge for rotational spectroscopy and theory. - M. M. Quesada Moreno, P. Pinacho, C. Perez, M. Sekutor, P. R. Schreiner, and M. Schnell, Chem. Eur. J. 2021, n/a (n/a). DOI: 10.1002/chem.202100078
- Understanding the unique reactivity patterns of nickel/JoSPOphos manifold in the nickel-catalyzed enantioselective C–H cyclization of imidazoles - J. B. Liu, X. Wang, A. M. Messinis, X. J. Liu, R. Kuniyil, D. Z. Chen, and L. Ackermann, Chemical Science, 2021, 12(2), 718-729. DOI: 10.1039/D0SC04578K
- Olefin Epoxidation Catalyzed by Titanium–Salalen Complexes: Synergistic H2O2 Activation by Dinuclear Ti Sites, Ligand H-Bonding, and π-Acidity - H. Engler, M. Lansing, C. P. Gordon, J.-M. Neudörfl, M. Schäfer, N. E. Schlörer, C. Copéret, A. Berkessel, ACS Catal. 2021, 11, n/a, 3206–3217. DOI: 10.1021/acscatal.0c05320
- Acyl Donor Intermediates in N-Heterocyclic Carbene Catalysis: Acyl Azolium or Azolium Enolate? - A. Biswas, J.-M. Neudörfl, N. E. Schlörer, and A. Berkessel, Angew. Chem. Int. Ed. 2021 133, 9, 4557-4561. DOI: 10.1002/anie.202010348
- Weaving a web of reliable thermochemistry around lignin building blocks: Vanillin and its isomers - S. P. Verevkin, M. E. Konnova, V. N. Emel'yanenko, A. A. Pimerzin, J. Chem. Thermodyn., 2021, 157, 106362, DOI: 10.1016/j.jct.2020.106362
- Vapour pressures of methoxy substituted benzaldehydes - S. P. Verevkin, V. N. Emel'yanenko, Fluid Phase Equilibr., 2021, 531, 112912, DOI: 10.1016/j.fluid.2020.112912
- Ionic liquids alkyl-imidazolium thiocyanates: Comprehensive thermochemical study - D. H. Zaitsau, A. V. Yermalayeu, S. P. Verevkin, J. Mol.Liq., 2021, 321, 114284, DOI: 10.1016/j.molliq.2020.114284
- London Dispersion Rather than Steric Hindrance Determines the Enantioselectivity of the Corey-Bakshi-Shibata Reduction. - C. Eschmann, L. Song, and P. R. Schreiner, Angew. Chem. Int. Ed. 2021 n/a (n/a), n/a. DOI: 10.1002/anie.202012760
- Tetrahydrothiophene‐Based Ionic Liquids: Synthesis and Thermodynamic Characterizations - A. Schmitz, M. Bülow, D. Schmidt, D. H. Zaitsau, F. Junglas, T.-O. Knedel, S. P. Verevkin, C. Held, C. Janiak, ChemistryOpen, 2021, 10, 153-163, DOI: 10.1002/open.202000228
- Intramolecular London Dispersion Interactions Do Not Cancel in Solution. - J. M. Schümann, J. P. Wagner, A. K. Eckhardt, H. Quanz, and P. R. Schreiner, J. Am. Chem. Soc. 2021, 143(1), 41–45. DOI: 10.1021/jacs.0c09597
- Reply to a Comment on "The Nature of Chalcogen-Bonding-Type Tellurium-Nitrogen Interactions” - Y. V. Vishnevskiy, N. W. Mitzel, Angew. Chem. Int. Ed. 2021, 60, 13150–13157; DOI: 10.1002/anie.202104899
- The Nature of Chalcogen-Bonding-Type Tellurium–Nitrogen Interactions: A First Experimental Structure from the Gas Phase. - T. Glodde, Y. V. Vishnevskiy, L. Zimmermann, H.-G. Stammler, B. Neumann, and N. W. Mitzel, Angew. Chem. Int. Ed. 2021, 60 (3), 1519-1523. DOI: 10.1002/anie.202013480
- The Size-Accelerated Kinetic Resolution of Secondary Alcohols. - B. Pölloth, M. P. Sibi, and H. Zipse, Angew. Chem. Int. Ed. 2021, 60 (2), 774-778. DOI: 10.1002/anie.202011687
- London dispersion in alkane solvents. – M. A. Strauss, and H. A. Wegner, Angew. Chem. Int. Ed. 2021, 60, 779. DOI: 10.1002/anie.202012094
Publications 2020
- Quasirelativistic two-component core excitations and polarisabilities from a damped-response formulation of the Bethe-Salpeter equation - M. Kehry, Y. J. Franzke, C. Holzer, W. Klopper, Mol. Phys. 2020, 118, e1755064. DOI: 10.1080/00268976.2020.1755064
- Quantifying how step-wise fluorination tunes local solute hydrophobicity, hydration shell thermodynamics and the quantum mechanical contributions of solute–water interactions. – J. R. Robalo, D. Mendes de Oliveira, P. Imhof, ; D. Ben-Amotz, A. Vila Verde, Phys. Chem. Chem. Phys. 2020, 22 (40), 22997-23008. DOI: 10.1039/D0CP04205F
- Understanding benzyl alcohol aggregation by chiral modification: The pairing step – R. Medel, and M. A. Suhm, Phys. Chem. Chem. Phys. 2020, 22, 25538–25551. DOI: 10.1039/D0CP04825A
- Inter‐ and Intramolecular Aryl–Aryl Interactions in Partially Fluorinated Ethylenedioxy‐bridged Bisarenes - J.-H. Weddeling, Y. Vishnevskiy, B. Neumann, H. - G. Stammler, N. W. Mitzel, Chem. Eur. J. 2020, 26, 16111-16121. DOI: 10.1002/chem.202003259
-
Pinacolone-Alcohol Gas-Phase Solvation Balances as Experimental Dispersion Benchmarks – C. Zimmermann, T. L. Fischer, and M. A. Suhm, Molecules 2020, 25 (21), 5095. DOI: 10.3390/molecules25215095
- Synthesis and Structural Diversity of Triaryl(phenylethyl)silanes - M. Linnemannstöns, B. Neumann, H.-G. Stammler, N. W. Mitzel, Synthesis, 2020, 52, 1025–1034. DOI: 10.1055/s-0039-1690785
- Molecules Forced to Interact: Benzene and Pentafluoroiodobenzene - M. Bujak, H.-G. Stammler, S. Blomeyer, N. W. Mitzel, Cryst. Growth Des. 2020, 20, 3217–3223. DOI: 10.1021/acs.cgd.0c00071
- A New Mechanically-Interlocked [Pd2L4] Cage Motif by Dimerization of two Peptide-based Lemniscates. – T. R. Schulte, J. J. Holstein, L. Schneider, A. Adam, G. Haberhauer, and G. H. Clever, Angew. Chem. Int. Ed. 2020, 59, 22489. DOI: 10.1002/anie.202010995.
- Symmetry vs. asymmetry – Enthalpic differences in imidazolium-based ionic liquids - A. V. Yermalayeu, M. A. Varfolomeev, S. P. Verevkin, J. Mol. Liq. 2020, 317, 114150, DOI: 10.1016/j.molliq.2020.114150
- Aryl-Aryl Interactions in (aryl-perhalogenated) 1,2-Diaryldisilanes - M. Linnemannstöns, J. Schwabedissen, B. Neumann, H.-G. Stammler, R. J. F. Berger, N. W. Mitzel, Chem. Eur. J. 2020, 26 (10), 2169–2173. DOI: 10.1002/chem.201905727
-
The reduced cohesion of homoconfigurational 1,2-diols. – B. Hartwig, M. Lange, A. Poblotzki, R.Medel, A. Zehnacker, M. A. Suhm, Phys. Chem. Chem. Phys. 2020, 22, 1122–1136. DOI: 10.1039/C9CP04943F
-
Three-dimensional docking of alcohols to ketones: An experimental benchmark based on acetophenone solvation energy balances. – C. Zimmermann, H. C. Gottschalk, M. A. Suhm, Phys. Chem. Chem. Phys. 2020, 22, 2870–2877. DOI: 10.1039/C9CP06128B
- Heat capacities of ionic liquids based on tetrahydrothiophenium cation and NTf2 anion - D. H. Zaitsau, A. Schmitz, C. Janiak, S. P. Verevkin, Thermochim. Acta, 2020, 686, 178547, DOI: 10.1016/j.tca.2020.178547
-
Unveiling the Delicate Balance of Steric and Dispersion Interactions in Organocatalysis Using High-Level Computational Methods. – Yepes, D., Neese, F., List, B., & Bistoni, G, J. Am. Chem. Soc. 2020, 142(7), 3613-3625. DOI: 10.1021/jacs.9b13725.
- Dispersion Forces Drive the Formation of Uranium–Alkane Adducts. – Jung, J., Löffler, S. T., Langmann, J., Heinemann, F. W., Bill, E., Bistoni, G., Scherer, W., Atanasov, M., Meyer, K., & Neese, F., J. Am. Chem. Soc. 2020, 142(4), 1864-1870. DOI: 10.1021/jacs.9b10620.
- Substrate and Product Binding inside a Stimuli-Responsive Coordination Cage acting as Singlet Oxygen Photosensitizer – S. Pullen, S. Löffler, A. Platzek, J. J. Holstein, G. H. Clever, Dalton Trans. 2020, 49, 9404-9410, DOI: 10.1039/D0DT01674H.
- Vaporization Thermodynamics of 1-Ethyl-3-Methylimidazolium Diethyl Phosphate, D. H. Zaitsau, S. P. Verevkin, Russ. J. Inorg. Chem., 2020, 65, 699-702, DOI: 10.1134/S0036023620050277
- London dispersion-driven hetero-aryl–aryl interactions in 1,2-diaryldisilanes - M. Linnemannstöns, J. Schwabedissen, A. A. Schultz, B. Neumann, H.-G. Stammler, R. Berger, N. W. Mitzel, Chem. Commun. 2020, 56, 2252–2255. DOI: 10.1039/c9cc09851h
- Error or exemption to the rule? Development of a diagnostic check for thermochemistry of metal–organic compounds - K. V. Zherikova, S. P. Verevkin, RSC Adv., 2020, 10, 38158-38173, DOI: 10.1039/D0RA06880B
- Dissecting intermolecular interactions in the condensed phase of ibuprofen and related compounds: the specific role and quantification of hydrogen bonding and dispersion forces - V. N. Emel'yanenko, P. Stange, J. Feder-Kubis, S. P. Verevkin, R. Ludwig, Phys. Chem. Chem. Phys., 2020, 22, 4896-4904, DOI: 10.1039/C9CP06641A
-
The first microsolvation step for furans: New experiments and benchmarking strategies – Gottschalk, H. C.; Poblotzki, A.; Fatima, M.; Obenchain, D. A.; Pérez, C.; Antony, J.; Auer, A. A.; Baptista, L.; Benoit, D. M.; Bistoni, G.; Bohle, F.; Dahmani, R.; Firaha, D.; Grimme, S.; Hansen, A.; Harding, M. E.; Hochlaf, M.; Holzer, C.; Jansen, G.; Klopper, W.; Kopp, W. A.; Krasowska, M.; Kröger, L. C.; Leonhard, K.; Al-Mogren, M. M.; Mouhib, H.; Neese, F.; Pereira, M. N.; Prakash, M.; Ulusoy, I. S.; Mata, R. A.; Suhm, M. A.; Schnell, M., J. Chem. Phys. 2020, 152 (16), 164303. DOI: 10.1063/5.0004465.
- Evaluation of bismuth-based dispersion energy donors – synthesis, structure and theoretical study of 2-biphenylbismuth(iii) derivatives. –Fritzsche, A.-M.; Scholz, S.; Krasowska, M.; Bhattacharyya, K.; Toma, A. M.; Silvestru, C.; Korb, M.; Rüffer, T.; Lang, H.; Auer, A. A.; Mehring, M., Phys. Chem. Chem. Phys. 2020, 22 (18), 10189-10211. DOI: 10.1039/C9CP06924K.
-
Enantiospecific Synthesis of Nepetalactones by One-Step Oxidative NHC Catalysis – Harnying, W.; Neudörfl, J.-M.; Berkessel, A., Org. Lett. 2020, 22 (2), 386-390. DOI: 10.1021/acs.orglett.9b04034.
- London dispersion and hydrogen bonding interactions in bulky molecules: The case of diadamantyl ether complexes. – Quesada Moreno, M. M.; Pinacho, P.; Perez, C.; Sekutor, M.; Schreiner, P. R.; Schnell, M., Chem. Eur. J. 2020, 26, 10817. DOI: 10.1002/chem.202001444
- A silicon–carbonyl complex stable at room temperature. – Ganesamoorthy, C.; Schoening, J.; Wölper, C.; Song, L.; Schreiner, P. R.; Schulz, S., Nat. Chem. 2020, 12 (7), 608-614. DOI: 10.1038/s41557-020-0456-x
- In Situ Switching of Site-Selectivity with Light in the Acetylation of Sugars with Azopeptide Catalysts. – Niedek, D.; Erb, F. R.; Topp, C.; Seitz, A.; Wende, R. C.; Eckhardt, A. K.; Kind, J.; Herold, D.; Thiele, C. M.; Schreiner, P. R., J. Org. Chem. 2020, 85 (4), 1835-1846. DOI: 10.1021/acs.joc.9b01913
Publications 2019
- Disulfonimides versus Phosphoric Acids: The Effect of Weak Hydrogen Bonds and Multiple Acceptors on Complex Structures and Reactivity, K. Rothermel, M. Žabka, J. Hioe, R. M. Gschwind, J. Org. Chem. 2019, 84, 13221. DOI: 10.1021/acs.joc.9b01811
- Balancing Donor-Acceptor and Dispersion Effects in Heavy Main Group Element π Interactions: Effect of Substituents on the Pnictogen⋅⋅⋅π Arene Interaction. – Krasowska, M.; Fritzsche, A.-M.; Mehring, M.; Auer, A. A., ChemPhysChem 2019, 20 (19), 2539-2552. DOI: 10.1002/cphc.201900747
- Vaporization thermodynamics of ionic liquids with tetraalkylphosphonium cations - D. H. Zaitsau, N. Plechkova, S. P. Verevkin, J. Chem. Thermodyn., 2019, 130, 204-212, DOI: 10.1016/j.jct.2018.10.007
- Imidazolium-based ionic liquids containing FAP anion: Thermodynamic study - D. H. Zaitsau, S. P. Verevkin, J. Mol. Liq., 2019, 287, 110959, DOI: 10.1016/j.molliq.2019.110959
- Halogen Bonds of Halotetrafluoropyridines in Crystals and Co-crystals with Benzene and Pyridine - J. Schwabedissen, J.-H. Lamm, P. C. Trapp, L. A. Körte, H.-G. Stammler, B. Neumann, N. W. Mitzel, Chem Eur. J. 2019, 25, 7339–7350, DOI: 10.1002/chem.201900334
- Arene-Free Ruthenium(II/IV)-Catalyzed Bifurcated Arylation for Oxidative C−H/C−H Functionalizations. – Rogge, T.; Ackermann, L., Angew. Chem. Int. Ed. 2019, 58 (44), 15640-15645. DOI: 10.1002/anie.201909457
- Thermochemistry of drugs: experimental and theoretical study of analgesics, R. N. Nagrimanov, M. A. Ziganshin, B. N. Solomonov, S. P. Verevkin, Struct. Chem., 2019, 30, 247-261, DOI: 10.1007/s11224-018-1188-z
- Mössbauer and mass spectrometry support for iron(ii) catalysts in enantioselective C–H activation. – Loup, J.; Parchomyk, T.; Lülf, S.; Demeshko, S.; Meyer, F.; Koszinowski, K.; Ackermann, L., Dalton Trans. 2019, 48 (16), 5135-5139. DOI: 10.1039/C9DT00705A
- Enantioselective Aluminum-Free Alkene Hydroarylations through C−H Activation by a Chiral Nickel/JoSPOphos Manifold. – Loup, J.; Müller, V.; Ghorai, D.; Ackermann, L., Angew. Chem. Int. Ed. 2019, 58 (6), 1749-1753. DOI: 10.1002/anie.201813191
- Breslow Intermediates from a Thiazolin-2-ylidene and Fluorinated Aldehydes: XRD and Solution-Phase NMR Spectroscopic Characterization. – Paul, M.; Neudörfl, J.-M.; Berkessel, A., Angew. Chem. Int. Ed. 2019, 58 (31), 10596-10600. DOI: 10.1002/anie.201904308
- Cryogenic ion vibrational predissociation (CIVP) spectroscopy of a gas-phase molecular torsion balance to probe London dispersion forces in large molecules. – Tsybizova, A.; Fritsche, L.; Gorbachev, V.; Miloglyadova, L.; Chen, P., J. Chem. Phys. 2019, 151 (23), 234304. DOI: 10.1063/1.5124227
- Compensation of London Dispersion in the Gas Phase and in Aprotic Solvents. – Pollice, R.; Fleckenstein, F.; Shenderovich, I.; Chen, P., Angew. Chem. Int. Ed. 2019, 58 (40), 14281-14288. DOI: 10.1002/anie.201905436
- Heterogeneous Clusters of Phthalocyanine and Water Prepared and Probed in Superfluid Helium Nanodroplets. – Fischer, J.; Schlaghaufer, F.; Lottner, E. M.; Slenczka, A.; Christiansen, L.; Stapelfeldt, H.; Karra, M.; Friedrich, B.; Mullan, T.; Schütz, M.; Usvyat, D., J. Chem. Phys. A 2019, 123 (46), 10057-10064. DOI: 10.1021/acs.jpca.9b07302
- Dispersion-controlled docking preference: multi-spectroscopic study on complexes of dibenzofuran with alcohols and water. – Bernhard, D.; Fatima, M.; Poblotzki, A.; Steber, A. L.; Pérez, C.; Suhm, M. A.; Schnell, M.; Gerhards, M., Phys. Chem. Chem. Phys. 2019, 21 (29), 16032-16046. DOI: 10.1039/C9CP02635E
- Relaxation Dispersion NMR to Reveal Fast Dynamics in Brønsted Acid Catalysis: Influence of Sterics and H-Bond Strength on Conformations and Substrate Hopping. – Lokesh, N.; Hioe, J.; Gramüller, J.; Gschwind, R. M., J. Am. Chem. Soc. 2019, 141 (41), 16398-16407. DOI: 10.1021/jacs.9b07841
- Efficient structural and energetic screening of fullerene encapsulation in a large supramolecular double decker macrocycle. – Bohle, F.; Grimme, S., J. Serb. Chem. Soc. 2019, 84 (8), 837-844. DOI: 10.2298/JSC190701079B
- A generally applicable atomic-charge dependent London dispersion correction. – Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S., J. Chem. Phys. 2019, 150 (15), 15412. DOI: 10.1063/1.5090222
-
Explicitly Correlated Dispersion and Exchange Dispersion Energies in Symmetry-Adapted Perturbation Theory – M. Kodrycka, C. Holzer, W. Klopper, and K. Patkowski, J. Chem. Theory Comput. 2019, 15, 5965–5986. DOI: 10.1021/acs.jctc.9b00547.
-
London dispersion effects in the coordination and activation of alkanes in σ-complexes: a local energy decomposition study - Q. Lu, F. Neese, G. Bistoni, Phys. Chem. Chem. Phys. 2019, 21 (22), 11569-11577. DOI: 10.1039/C9CP01309A
-
Local Energy Decomposition of Open-Shell Molecular Systems in the Domain-Based Local Pair Natural Orbital Coupled Cluster Framework - A. Altun, M. Saitow, F. Neese, and G. Bistoni, J. Chem. Theory Comput. 2019, 15 (3), 1616-1632. DOI: 10.1021/acs.jctc.8b01145
-
HFLD: A Nonempirical London Dispersion-Corrected Hartree–Fock Method for the Quantification and Analysis of Noncovalent Interaction Energies of Large Molecular Systems - A. Altun, F. Neese, and G. Bistoni, J. Chem. Theory Comput. 2019, 15, 11, 5894–5907. DOI: 10.1021/acs.jctc.9b00425
-
Exploring London dispersion and solvent interactions at alkyl-alkyl interfaces using azobenzene switches. - M. Strauss, H. A. Wegner, Angew. Chem. Int. Ed. 2019, 58 , 18552. DOI: 10.1002/ange.201910734
- The Nature of Interactions of Benzene with CF3I and CF3CH2I - M. Bujak, H.-G. Stammler, N. W. Mitzel, Chem. Commun. 2019, 55, 175–178.
DOI: 10.1039/C8CC08980A
-
Isolating the role of hydrogen bonding in hydroxyl-functionalized ionic liquids by means of vaporization enthalpies, infrared spectroscopy and molecular dynamics simulations - D. H. Zaitsau, J. Neumann, T. Niemann, A. Strate, D. Paschek, S. P. Verevkin, R. Ludwig, Phys. Chem. Chem. Phys. 2019, 21, 20308 – 20314. DOI: 10.1039/C9CP04337C
-
Dissecting the vaporization enthalpies of ionic liquids by exclusively experimental methods: Coulomb interaction, hydrogen bonding and dispersion forces. - D. H. Zaitsau, V. N. Emel’yanenko, P. Stange, S. P. Verevkin, R. Ludwig, Angew. Chem. Int Ed. 2019, 58, 8589 –8592; Angew. Chem. 2019, 131, 8679 –8683. DOI: 10.1002/anie.201904813
- Hydrophobic but water-friendly: favourable water-perfluoromethyl interactions promote hydration shell defects. - J. R. Robalo, L. M. Streacker, D. Mendes de Oliveira, P. Imhof, D. Ben-Amotz and A. Vila Verde, J. Am. Chem. Soc. 2019, 141, 40, 15856–15868. DOI: 10.1021/jacs.9b06862
- Breslow Intermediates from a Thiazolin-2-ylidene and Fluorinated Aldehydes: XRD and Solution-Phase NMR Spectroscopic Characterization - M. Paul, J.-M. Neudörfl, and A. Berkessel, Angew. Chem. Int. Ed. 2019, 58, 10596–10600 DOI: 10.1002/anie.201904308; german edition: Angew. Chem. 2019. DOI:10.1002/ange.201904308
- Resolution of Minor Size Differences in a Family of Heteroleptic Coordination Cages by Trapped Ion Mobility ESI-MS - K. E. Ebbert, L. Schneider, A. Platzek, C. Drechsler, B. Chen, R. Rudolf, and G. H. Clever, Dalton Trans. 2019, 48, 11070-11075. DOI: 10.1039/C9DT01814J.
- Ionized, electron-attached, and excited states of molecular systems with spin-orbit coupling: Two-component GW and Bethe-Salpeter implementations - C. Holzer and W. Klopper, J. Chem. Phys. 2019, 150, 204116. DOI: 10.1063/1.5094244
- GW quasiparticle energies of atoms in strong magnetic fields - C. Holzer, A. M. Teale, F. Hampe, S. Stopkowicz, T. Helgaker, and W. Klopper, J. Chem. Phys. 2019, 150, 214112. DOI: 10.1063/1.5093396
- Role of London Dispersion Interactions in Ga-Substituted Dipnictenes - L. Song, J. Schoening, C. Wölper, S. Schulz, and P. R. Schreiner Organometallics 2019, 3, 87, 1640-1647. DOI: 10.1021/acs.organomet.9b00072
-
Rotational Signatures of Dispersive Stacking in the Formation of Aromatic Dimers - M. Fatima, A. L. Steber, A. Poblotzki, C. Pérez, S. Zinn, and M. Schnell, Angew. Chem. Int. Ed., 2019, 58, 3108–3113. DOI:10.1002/anie.201812556/Angew. Chem., 2019, 131, 3140–3145. DOI:10.1002/ange.201812556
-
The chiral trimer and a metastable chiral dimer of achiral hexafluoroisopropanol: A multi-messenger study - S. Oswald, N. A. Seifert, F. Bohle, M. Gawrilow, S. Grimme, W. Jäger, Y. Xu, and M. A. Suhm, Angew. Chem.Int. Ed., 2019, 58, 5080–5084 DOI:10.1002/anie.201813881
- Orthogonal Molecular Recognition of Chaotropic and Hydrophobic Guests Enables Supramolecular Architectures - W. Wang, X. Wang, C. Xiang, X. Zhou, D. Gabel, W. M. Nau, K. I. Assaf, and H. Zhang, ChemNanoMat, 2019, 5, 124–129. DOI: 10.1002/cnma.201800377
-
Enantioselective Aluminum-Free Alkene Hydroarylations through C-H Activation by a Chiral Nickel/JoSPOphos Manifold - J- Loup, V. Müller, D. Ghorai, and L. Ackermann, Angew. Chem. Int. Ed., 2019, 58 ,1749–1753. DOI: 10.1002/anie.201813191/ Angew. Chem., 2019, 131, 1763–1767. DOI:10.1002/ange.201813191
- Microreview - Molecular Systems for the Quantification of London Dispersion Interactions - M. A. Strauss and H. A. Wegner, Eur. J. Org. Chem., 2019, 295–302. |Very Important Paper| DOI: 10.1002/ejoc.201800970
- Syntheses, Structures, and Bonding Analyses of Carbene‐Stabilized Stibinidenes -
-
Origin of the Immiscibility of Alkanes and Perfluoroalkanes - R. Pollice, and P. Chen, J. Am. Chem. Soc., 2019, 141 (8), 3489–3506, DOI:10.1021/jacs.8b10745
- Effect of Electron Correlation on Intermolecular Interactions: A Pair Natural Orbitals Coupled Cluster Based Local Energy Decomposition Study - A. Altun, F. Neese, and G. Bistoni, J. Chem. Theory Comput., 2019, 15 (1), 215-228, DOI:10.1021/acs.jctc.8b00915
Publications 2018
-
London Dispersion Interactions in Pnictogen Cations [ECl2]+ and [E=E]2+ (E=P, As, Sb) Supported by Anionic N-Heterocyclic Carbenes - L. P. Ho, A. Nasr, P. G. Jones, A. Altun, F. Neese, G. Bistoni, and M. Tamm, Chem. Eur. J., 2018, 24, 18922, DOI:10.1002/chem.201804714
-
Cavitation energies can outperform dispersion interactions - S. He, F. Biedermann, N. Vankova, L. Zhechkov, T. Heine, R. E. Hoffman, A. De Simone, T. T. Duignan and W. M. Nau, Nat. Chem., 2018, 10, 1252–1257, DOI:org/10.1038/s41557-018-0146-0.
- Thermodynamic properties of selenoether-functionalized ionic liquids and their use for the synthesis of zinc selenide nanoparticles - K. Klauke, D. H. Zaitsau, M. Bülow, L. He, M. Klopotowski, T.-O. Knedel, J. Barthel, C. Held, S. P. Verevkin, C. Janiak, Dalton Trans., 2018 ,47, 5083-5097, DOI: 10.1039/C8DT00233A
- Imidazolium-Based Ionic Liquids Containing the Trifluoroacetate Anion: Thermodynamic Study - D. H. Zaitsau, S. R. Verevkin, J. Solution Chem., 2018, 47, 892-905, DOI:10.1007/s10953-018-0760-x
- Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory - J. Ingenmey, M. von Domaros, E. Perlt, S. P. Verevkin, B. Kirchner, J. Chem. Phys., 2018, 148, 193822, DOI: 10.1063/1.5010791
- Thermodynamics of Imidazolium‐Based Ionic Liquids Containing the Trifluoromethanesulfonate Anion - D. H. Zaitsau, A. V. Yermalayeu, V. N. Emel'yanenko, S. P. Verevkin, Chem. Eng. Technol., 2018, 41, 1604-1612, DOI:10.1002/ceat.201700454
-
The chaotropic effect as an assembly motif in chemistry - K. I. Assaf and W. M. Nau, Angew. Chem. Int. Ed., 2018, 57, 13968–13981, DOI:org/10.1002/anie.201804597.
-
Host‐guest chemistry of carboranes: synthesis of carboxylate derivatives and their binding to cyclodextrins - J. Nekvinda, B. Grüner, D. Gabel, W. M. Nau and K. I. Assaf, Chem. Eur. J., 2018, 24, 12970–12975, DOI:org/10.1002/chem.201802134.
-
Supramolecular assemblies through host–guest complexation between cucurbiturils and an amphiphilic guest molecule - K. I. Assaf, M. A. Alnajjar and W. M. Nau, Chem. Commun. 2018, 54, 1734-1737. DOI:10.1039/C7CC09519H.
-
The chaotropic effect as an orthogonal assembly motif for multi-responsive dodecaborate-cucurbituril supramolecular networks - W.-J. Wang, X. Wang, J. Cao, J. Liu, B. Qi, X. Zhou, S. Zhang, D. Gabel, W. M Nau, K. I. Assaf and H. Zhang, Chem. Commun., 2018, 54, 2098-2101. (This work was highlighted on the cover of this issue) DOI:10.1039/C7CC08078F.
- Probing the Delicate Balance between Pauli Repulsion and London Dispersion with Triphenylmethyl Derivatives - S. Rösel, J. Becker, W. D. Allen and P. R. Schreiner, J. Am. Chem. Soc., 2018, 140, 43, 14421-14432. DOI:10.1021/jacs.8b09145
- Size-Dependent Rate Acceleration in the Silylation of Secondary Alcohols: the Bigger the Faster - M. Marin-Luna, B. Poelloth, F. Zott, H. Zipse, Chem. Sci., 2018, 9, 6509 – 6515. DOI:10.1039/C8SC01889H
-
Substituent Effects in the Silylation of Secondary Alcohols: A Mechanistic Study - M. Marin-Luna, P. Patschinski, H. Zipse, Chem. Eur. J., 2018, 24, 15053 – 15058. DOI:10.1002/chem.201803014
- The phenyl vinyl ether - methanol complex: A model system for quantum chemistry benchmarking – D. Bernhard, F. Dietrich, M. Fatima, C. Perez, H. C. Gottschalk, A. Wuttke, R. A. Mata, M. A. Suhm, M. Schnell, and M. Gerhards, Beilstein J. Org. Chem., 2018, 14, 1642-1654, Thematic Series: Dispersion Interactions. DOI:10.3762/bjoc.14.140
- The effect of dispersion on the structure of diphenyl ether aggregates – F. Dietrich, D. Bernhard, M. Fatima, C. Perez, M. Schnell, and M. Gerhards, Angew. Chem. Int. Ed., 2018, 57, 9534- 9537. DOI:10.1002/anie.201801842
- Bethe–Salpeter correlation energies of atoms and molecules – C. Holzer, X. Gui, M. E. Harding, G. Kresse, T. Helgaker, W. Klopper, J. Chem. Phys. 2018, 149, 144106. DOI:10.1063/1.5047030
- Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe–Salpeter Formalism – X. Gui, C. Holzer and W. Klopper, J. Chem. Theory Comput. 2018, 14, 2127-2136. DOI:10.1021/acs.jctc.8b00014
-
Communication: A hybrid Bethe–Salpeter/time-dependent density-functional-theory approach for excitation energies – C. Holzer and W. Klopper, J. Chem. Phys. 2018, 149, 101101. DOI:10.1063/1.5051028
-
Evaluation of dispersion type metal···π arene interaction in arylbismuth compounds – an experimental and theoretical study - A.-M. Preda, M. Krasowska, L. Wrobel, P. Kitschke, P. C. Andrews, J. G. MacLellan, L. Mertens, M. Korb, T. Rüffer, H. Lang, A. A. Auer, M. Mehring, Beilstein J. Org. Chem. 2018, 14, 2125-2145. DOI:10.3762/bjoc.14.187
- Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study - A. Altun, F. Neese, G. Bistoni, Beilstein J. Org. Chem. 2018, 14, 919–929. DOI:10.3762/bjoc.14.79
- Distal Weak Coordination of Acetamides in Ruthenium(II)-Catalyzed C–H Activation Processes - Q. Bu, T. Rogge, V. Kotek, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 765-768. DOI:10.1002/anie.201711108
- C4-H Indole Functionalisation: Precedent and Prospects - J. Kalepu, P. Gandeepan, L. Ackermann, L. Pilarski, Chem. Sci. 2018, 9, 4203-4216. DOI:10.1039/C7SC05336C
- Electrooxidative Rhodium-Catalyzed C–H/C–H Activation: Electricity as Oxidant for Cross-Dehydrogenative Alkenylation - Y. Qiu, W.-J. Kong, J. Struwe, N. Sauermann, T. Rogge, A Scheremetjew, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 5828-5832. DOI: 10.1002/anie.201803342
- Cobalt-Catalyzed C–H Cyanations: Insights into the Reaction Mechanism and the Role of London Dispersion - E. Detmar, V. Müller, D. Zell, L. Ackermann, M. Breugst, Beilstein J. Org. Chem. 2018, 14, 1537–1545.. DOI:10.3762/bjoc.14.130
- Finding the best density functional approximation to describe interaction energies and structures of ionic liquids in molecular dynamics studies - E. Perlt, P. Ray, A. Hansen, F. Malberg, S. Grimme, B. Kirchner, J. Chem. Phys. 2018, 148, 193835. DOI:10.1063/1.5013122
- High‐Level Ab Initio Calculations of Intermolecular Interactions: Heavy Main‐Group Element π‐Interactions -
- Formation of Agostic Structures Driven by London Dispersion - Q. Lu, F. Neese, G. Bistoni, Angew. Chem. Int. Ed., 2018, 57,4760–4764. DOI: 10.1002/anie.201801531
- Dithiocarboxylic Acids: An Old Theme Revisited and Augmented by New Preparative, Spectroscopic and Structural Facts - J. Grote, F. Friedrich, K. Berthold, L. Hericks, B. Neumann, H.-G. Stammler, and N. W. Mitzel, Chem. Eur. J., 2018, 24, 2626 –2633; DOI: 10.1002/chem.201704235
-
Regiochemical Control in Triptycene Formation—An Exercise in Subtle Balancing Multiple Factors - J.-H. Lamm, Y. V. Vishnevskiy, E. Ziemann, B. Neumann, H.-G. Stammler, and N. W. Mitzel, ChemistryOpen, 2018, 7, 111-114; DOI:
-
The furan microsolvation blind challenge for quantum chemical methods: First steps - H. C. Gottschalk, A. Poblotzki, M. A. Suhm, M. M. Al-Mogren, J. Antony, A. A. Auer, L. Baptista, D. M. Benoit, G. Bistoni, F. Bohle, R. Dahmani, D. Firaha, S. Grimme, A. Hansen, M. E. Harding, M. Hochlaf, C. Holzer, G. Jansen, W. Klopper, W. A. Kopp, L. C. Kröger, K. Leonhard, H. Mouhib, F. Neese, M. N. Pereira, I. S. Ulusoy, A. Wuttke and R. A. Mata, J. Chem. Phys. 2018, 148, 014301; DOI: 10.1063/1.5009011
Publications 2017
-
HYDROPHOBE Challenge: A Joint Experimental and Computational Study on the Host–Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit Evaluation of Guest Hydration Free-Energy Contributions - K. I. Assaf, M. Florea, J. Antony, N. M. Henriksen, J. Yin, A. Hansen, Z.-W. Qu, R. Sure, D. Klapstein, M. K. Gilson, S. Grimme, and W. M. Nau, J. Phys. Chem. B, 2017, 121, 11144-11162; DOI: 10.1021/acs.jpcb.7b09175
- Bi- and tridentate silicon based acceptor molecules - J. Horstmann, J.-H. Lamm, T. Strothmann, B. Neumann, H. G. Stammler, N.W. Mitzel, Z. Naturforsch. 2017, 72(6)b, 383-391; DOI: 10.1515/znb-2017-0031.
- Thermodynamics of imidazolium based ionic liquids with cyano containing anions - D. H. Zaitsau, K. Pohako-Esko, S. Arlt N. Emel'yanenko, P. S. Schulz, P. Wasserscheid, A. Schulz, S. P. Verevkin, J. Mol. Liquids. 2017, 248, 86-90; DOI: 10.1016/j.molliq.2017.10.004
-
Quasi-relativistic two-component computations of intermolecular dispersion energies — C. Holzer and W. Klopper, Mol. Phys., 2017, 115, 2775-2781; DOI: 10.1080/00268976.2017.1317861.
-
Communication: Symmetry-adapted perturbation theory with intermolecular induction and dispersion energies from the Bethe–Salpeter equation — C. Holzer and W. Klopper, J. Chem. Phys. 2017, 147, 181101; DOI: 10.1063/1.5007929.
- Tipping the Scales: Spectroscopic Tools for Intermolecular Energy Balances - A. Poblotzki, H. C. Gottschalk, and M. A. Suhm, J. Phys. Chem. Lett., 2017, 8, 5656-5665; DOI: 10.1021/acs.jpclett.7b02337
-
The role of dispersion type metal⋯π interaction in the enantiotropic phase transition of two polymorphs of tris-(thienyl)bismuthine - A.-M.
Preda, W. B. Schneider, D. Schaarschmidt, H. Lang, L. Mertens, A. A. Auer and M. Mehring, Dalton Trans., 2017, 46,13492-13501; DOI: 10.1039/C7DT02567J
-
Intramolecular π-π Interactions in Flexibly Linked Partially Fluorinated Bisarenes in the Gas Phase - S. Blomeyer, M. Linnemannstöns, J. H. Nissen, J. Paulus, B. Neumann, H.-G. Stammler, N. W. Mitzel, Angew. Chem. Int. Ed. 2017, 56, 13259-13263;
- Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions - A. A. Otlyotov, J.-H. Lamm, S. Blomeyer, N. W. Mitzel, V. V. Rybkin, Y. A. Zhabanov, N. V. Tverdova, N. I. Giricheva, G. V. Girichev, Phys. Chem. Chem. Phys., 2017, 19, 13093-13100. DOI: 10.1039/c7cp01781b
- Intramolecular London Dispersion Interaction Effects on Gas-Phase and Solid-State Structures of Diamondoid Dimers - A. A. Fokin, T. S. Zhuk, S. Blomeyer, C. Perez, L. V. Chernish, A. E. Pashenko, J. Antony, Y. V. Vishnevskiy, R. J. F. Berger, S. Grimme, C. Logemann, M. Schnell, N. W. Mitzel and P. R. Schreiner, J. Am. Chem. Soc., 2017, 139, 16696-16707.; DOI: 10.1021/jacs.7b07884
- The structure of diphenyl ether-methanol in the electronically excited and ionic ground states: A combined IR/UV spectroscopic and theoretical study - D. Bernhard, C. Holzer, F. Dietrich, A. Stamm, W. Klopper, and M. Gerhards, Chem. Phys. Chem., 2017, 18, 3634 –3641;DOI: 10.1002/cphc.201700722
- Influence of Size, Shape, Heteroatom Content and Dispersive Contributions on Guest Binding in a Coordination Cage - S. Löffler, A. Wuttke, B. Zhang, J. J. Holstein, R. A. Mata, Guido H. Clever, Chem. Commun., 2017, 53, 11933-11936; DOI: 10.1039/C7CC04855F.
-
Alkyl-imidazolium tetrafluoroborates: vapor pressure, thermodynamics of vaporization, and enthalpies of formation - D. H. Zaitsau, A. V. Yermalayeu, T. Schubert, S. P. Verevkin, J. Mol. Liq., 2017, 242, 951 - 957; DOI: 10.1016/j.molliq.2017.07.09
-
Controlling the kinetic and thermodynamic stability of cationic clusters by the addition of molecules or counterions - A. Strate, T. Niemann, R. Ludwig, Phys. Chem. Chem. Phys., 2017, 19, 18854 – 18862; DOI: 10.1039/C7CP02227A
-
When like charged ions attract in ionic liquids: Controlling the formation of cationic clusters by the interaction strength of the counter ions - A. Strate, T. Niemann, P. Stange, D. Michalik, R. Ludwig, Angew. Chem. Int. Ed., 2017, 56, 496 – 500; Angew. Chem., 2017, 129, 510 – 514;
- Attenuation of London Dispersion in Dichloromethane Solution - R. Pollice, M. Bot, I. J. Kobylianskii, I. Shenderovich and P. Chen, J. Am. Chem. Soc., 2017, 139 (37), 13126 – 13140; DOI: 10.1021/jacs.7b06997
-
Temperature-dependent Dynamics of Push-Pull Rotor Systems based on Acridinylidene Cyanoacetic Esters - M. Krick, J. J. Holstein, A. Wuttke, R. A. Mata, G. H. Clever, Eur. J., Org. Chem., 2017, 34, 5141 – 5146; DOI: 10.1002/ejoc.201700873.
-
Extension of the D3 dispersion coefficient model - E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 034112; DOI: 10.1063/1.4993215
-
A general intermolecular force field based on tight-binding quantum chemical calculations - S. Grimme, C. Bannwarth, E. Caldeweyher, J. Pisarek and A. Hansen, J. Chem. Phys., 2017, 147, 161708; DOI: 10.1063/1.4991798
-
Review: Intermolecular interaction energies from Kohn-Sham Random Phase Approximation correlation methods - A. Heßelmann chapter 3, Non-covalent Interactions in Quantum Chemistry and Physics, Editor: A. Otero de la Roza und G. DiLabio, Elsevier, 2017
https://www.elsevier.com/books/non-covalent-interactions-in-quantum-chemistry-and-physics/otero-de-la-roza/978-0-12-809835-6
-
Mild Cobalt(III)-Catalyzed Allylative C-F/C-H Functionalizations at Room Temperature - D. Zell, V. Müller, U. Dhawa, M. Bursch, R.R. Presa, S. Grimme, L. Ackermann, Chem. Eur. J., 2017, 23 (5), 12145 – 12148;
- The Relation between Vaporization Enthalpies and Viscosities: Eyring’s Theory Applied to Selected Ionic Liquids - A.-M. Bonsa, D. Paschek, D. H. Zaitsau, V. N. Emel’yanenko, S. P. Verevkin and R. Ludwig, Chem. Phys. Chem., 2017, 18, 1242 – 1246; DOI: 10.1002/cphc.201700138
-
Cold Snapshot of a Molecular Rotary Motor Captured by High-Resolution Rotational Spectroscopy, , , , , and
- Hierarchical Host-Guest Supramolecular Assembly on Dodecaborate-Coated Gold Nanoparticles - K. I. Assaf, A. Hennig, D.-S. Guo and W. M. Nau, Chem. Commun., 2017, 53, 4616 – 4619; DOI: 10.1039/C7CC01507K
-
Gold Nanoparticle Aggregation Facilitates a Colorimetric Enzyme Sensing - M. Nilam, A. Hennig, W. M. Nau and K. I. Assaf, Assays. Anal. Methods; 2017, 9, 2784 – 2787; DOI: 10.1039/C7AY00642J
-
Visualizing dispersion interactions through the use of local orbital spaces - A. Wuttke and R. A. Mata, J. Comput. Chem., 2017, 38, 15 – 23; DOI: 10.1002/jcc.24508
-
Accurate Intermolecular Potential for the C60 Dimer: The Performance of Different Levels of Quantum Theory - D. I. Sharapa, J. T. Margraf, A. Hesselmann and T. Clark, J. Chem. Theory Comput., 2017, 13, 274; DOI: 10.1021/acs.jctc.6b00869
-
Trifluoromethyl: an amphiphilic noncovalent bonding partner - C. Esterhuysen, A. Heßelmann and T. Clark, Chem. Phys. Chem., 2017, 18, 772; DOI: 10.1002/cphc.201700027
-
Low scaling random-phase approximation electron correlation method including exchange interactions using localised orbitals - A. Heßelmann, J. Chem. Phys., 2017, 146, 174110; DOI: 10.1063/1.4981817
- Trapping Experiments on a Trichlorosilanide Anion: a Key Intermediate of Halogenosilane Chemistry - J. Teichmann, M. Bursch, B. Köstler, M. Bolte, H.-W Lerner, S. Grimme and M. Wagner, Inorg. Chem., 2017, 56 (15), 8683 - 8688; DOI: 10.1021/acs.inorgchem.7b00216
-
Chemoselectivity in Esterification Reactions – Size Matters after All - J. Helberg, M. Marin-Luna and H. Zipse, Synthesis, 2017, 49 (15), 3460 - 3470; DOI: 10.1055/s-0036-1588854.
- Measuring Intermolecular Binding Energies by Laser Spectroscopy - R. Knochenmuss, S. Maity, G. Féraud and S. Leutwyler, Chimia Int. J. Chem., 2017, 71 (1), 7 - 12; DOI: 10.2533/chimia.2017.7
- Heteroaryl Bismuthines: A Novel Synthetic Concept and Metal···π Heteroarene Interaction - A.-M. Preda, W. B. Schneider, M. Rainer, T. Rüffer, D. Schaarschmidt, H. Lang and M. Mehring, Dalton Trans., 2017, 46, 8269 - 8278; DOI: 10.1039/C7DT01437F
- Heterocyclic bismuth(III) compounds with transannular N→Bi interactions as catalysts for the oxidation of thiophenol to diphenyldisulfide - A. M. Toma, C. I. Rat, O. D. Pavel, C. Hardacre, T. Rüffer, H. Lang, M. Mehring, A. D. Silvestru and V. i Pavulescu, Catal. Sci. Technol., 2017, Advanced Article, DOI: 10.1039/C7CY00521K
- Switch of C−H Activation Mechanism for Full Selectivity Control in Cobalt(III)-Catalyzed C−H Alkylations - D. Zell, M. Bursch, V. Müller, S. Grimme and L. Ackermann, Angew. Chem. Int. Ed., 2017, 129 (35), 10514 - 10518; DOI:
- Multi-spectroscopic and theoretical analyses on the diphenyl ether–tert-butyl alcohol complex in the electronic ground and electronically excited state - D. Bernhard, F. Dietrich, M. Fatima, C. Perez, A. Poblotzki, G. Jansen, M. A. Suhm, M. Schnell and M. Gerhards, Phys. Chem. Chem. Phys., 2017,19, 18076 - 18088; DOI: 10.1039/C7CP02967E.
-
Synthesis, Structure and Dispersion Interactions in Bis(1,8- naphthalendiyl)distibine - C. Ganesamoorthy, S. Heimann, S. Hölscher, R. Haack, C. Wölper, G. Jansen and S. Schulz, Dalton Trans., 2017, 46, 9227 - 9234; DOI: 10.1039/C7DT02165H.
- C–F/C–H Functionalization by Manganese(I) Catalysis: Expedient (Per)Fluoro-Allylations and Alkenylations - D. Zell, U. Dhawa, V. Müller, M. Bursch, S. Grimme and L. Ackermann, ACS Catal., 2017, 7, 4209-4213; DOI: 10.1021/acscatal.7b01208
- Ruthenium(II)-catalysed remote C–H alkylations as a versatile platform to meta-decorated arenes - J. Li, K. Korvorapun, S. De Sarkar, T. Rogge, D. J. Burns, S. Warratz and L. Ackermann, Nature Commun. 2017, 8, 15430; DOI: 10.1038/ncomms15430.
- Manganese(I)-Catalyzed Dispersion-Enabled C–H/C–C Activation - T. H. Meyer,' W. Liu,' M. Feldt, A. Wuttke, R. A. Mata and L. Ackermann, Chem. Eur. J., 2017, 23, 5443-5447;
- Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions - F. E. Held, A. A. Guryev, T. Fröhlich, F. Hampel, A. Kahnt, C. Hutterer, M. Steingruber, H. Bahsi, C. von Bojničić-Kninski, D. S. Mattes, T. C. Foertsch, A. Nesterov-Mueller, M. Marschall, S. B. Tsogoeva. Nature Commun., 2017, 8, 15071; DOI: 10.1038/ncomms15071
- Deeper Insight into the Six-Step Domino Reaction of Aldehydes with Malononitrile and Evaluation of Antiviral and Antimalarial Activities of the Obtained Bicyclic Products - C. M. Bock, G. Parameshwarappa, S. Bönisch, W. Bauer, C. Hutterer, M. Leidenberger, O. Friedrich, M. Marschall, B. Kappes, A. Görling, S. B. Tsogoeva, ChemistryOpen, 2017, 6, 364-374; DOI: 10.1002/open.201700005
- Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation -
- Treating sub-valence correlation effects in domain based pair natural orbital coupled cluster calculations: an out-of-the-box approach -G. Bistoni, C. Riplinger, Y. Minenkov, L.Cavallo, A. A. Auer, and F. Neese, J. Chem. Theory Comput., 2017, 13 (7), 3220 - 3227; DOI: 10.1021/acs.jctc.7b00352
- London Dispersion Enables the Shortest Intermolecular Hydrocarbon H•••H Contact - S. Rösel, H. Quanz, C. Logemann, J. Becker, E. Mossou, L. Cañadillas-Delgado, E. Caldeweyher, S. Grimme and P. R. Schreiner, J. Am. Chem. Soc., 2017, 139 (22), 7428–7431; DOI: 10.1021/jacs.7b01879
- Structure and Gas-Phase Thermochemistry of a Pd/Cu Complex: Studies on a Model for Transmetalation Transition States - R. J. Oeschger, P. Chen, J. Am. Chem. Soc., 2017, 139, 1069; DOI: 10.1021/jacs.6b12152
- The Carbon-Nitrogen Bonds in Ammonium Compounds Are Charge Shift Bonds - R. Gershoni-Poranne, P. Chen, Chem. Eur. J., 2017, 23, 4659; DOI: 10.1002/chem.201605987
- A Heterobimetallic Pd-Zn Complex: Study of a d8-d10 Bond in Solid State, in Solution, and in Silico - R. J. Oeschger, P. Chen, Organometallics, 2017, 36 (8), 1465–1468; DOI: 10.1021/acs.organomet.7b00113
- Bismuth···π arene versus bismuth···halide coordination in heterocyclic diorganobismuth(III) compounds with transannular N→Bi interaction - A. Toma, A. Pop, A. Silvestru, T. Rüffer, H. Lang, M. Mehring, Dalton Trans., 2017, 46, 3953-3962; DOI: 10.1039/C7DT00188F
- Correcting the record: The dimers and trimers of trans-N-methylacetamide - T. Forsting, H. C. Gottschalk, B. Hartwig, M. Mons and M. A. Suhm, Phys. Chem. Chem. Phys., 2017, 19, 10727-10737; DOI: 10.1039/c6cp07989j [Open Access, CC BY 3.0]
- Sizing the role of London dispersion in the dissociation of all-meta tert-butyl hexaphenylethane - S. Rösel, C. Balestrieri and P. R. Schreiner, Chem. Sci., 2017, 8, 405-410; DOI: 10.1039/C6SC02727J
- Understanding the role of dispersion in Frustrated Lewis Pairs and classical Lewis adducts: a Domain Based Local Pair Natural Orbital Coupled Cluster study - G. Bistoni, A. A. Auer, F. Neese, Chem. Eur. J., 2017, 23, 865;
- Triazolylidene Ligands Allow Cobalt-Catalyzed C–H/C–O Alkenylations at Ambient Temperature - N. Sauermann, J. Loup, D. Kootz, A. Berkessel and L. Ackermann, Synthesis, 2017, 49 (15),3476 - 3484; DOI: 10.1055/s-0036-1590471.
Publications 2016
- Pair-eigenstates and mutual alignment of coupled molecular rotors in a magnetic field - K. Sharma and B. Friedrich, Chem. Phys. Phys. Chem., 2016, 18, 13467-13477; DOI: 10.1039/c6cp00390g
-
Vaporization, Sublimation Enthalpy and Crystal Structures of Imidazo[1.2-a]pyrazine and Phthalazine - J. S. Chickos, M. M. Contreras, C. Gobble, N. Rath, A. A Samarov, S. P. Verevkin, J. Chem. Eng. Data., 2016, 61 (1), 370-379; DOI: 10.1021/acs.jced.5b00606
-
Dispersion and Hydrogen Bonding Rule: Why the Vaporization Enthalpies of Aprotic Ionic Liquids are Significantly Larger than those of Protic Ionic liquids - D. H. Zaitsau, V. N. Emel'yanenko, P. Stange, C. Schick, S. P. Verevkin and R. Ludwig, Angew. Chem., 2016, 128, 38, 11856-11860; Angew. Chem. Int. Ed., 2016, 55, 11682-11686; DOI:
-
Thermodynamics of imidazolium based ionic liquids containing PF6 anion - D. H. Zaitsau, A. V. Yermalayeu, V. N. Emel´yanenko, S. Butler, T. Schubert, S. P. Verevkin, J. Phys. Chem. B, 2016, 120 (32),7949–7957; DOI: 10.1021/acs.jpcb.6b06081
-
High-Affinity Host-Guest Chemistry of Large-Ring Cyclodextrins - K. I. Assaf, D. Gabel, W. Zimmermann and W. M. Nau, Org. Biomol. Chem., 2016, 14, 7702-7706; DOI: 10.1039/C6OB01161F
-
Dodecaborate-Functionalized Anchor Dyes for Cyclodextrin-Based Indicator Displacement Applications - K. I. Assaf, O. Suckova, N. Al-Danaf, V. von Glasenapp, D. Gabel and W. M. Nau, Org. Lett., 2016, 18, 932-935; DOI: 10.1021/acs.orglett.5b03611
-
Endohedral Dynamics of Push-Pull Rotor-functionalized Cages - M. Krick, J. J. Holstein, C. Würtele, G. H. Clever, Chem. Commun., 2016, 52, 10411; DOI: 10.1039/C6CC04155H
-
Desymmetrization of an Octahedral Coordination Complex inside a Self-Assembled Exoskeleton - M. D. Johnstone; E. K. Schwarze; J. Ahrens; D. Schwarzer; J. J. Holstein; B. Dittrich; F. M. Pfeffer; G. H. Clever, Chem. Eur. J., 2016, 22, 10791; DOI:
-
Molecular energies from an incremental fragmentation method - O. R. Meitei und A. Heßelmann, J. Chem. Phys., 2016, 144, 084109; DOI: 10.1063/1.4942189
-
Local Molecular Orbitals from a Projection onto Localized Centers - A. Heßelmann, J. Chem. Theory Comput., 2016, 12, 2720; DOI: 10.1021/acs.jctc.6b00321
-
On the stability of cyclophane derivates using a molecular fragmentation method - O. R. Meitei und A. Heßelmann, Chem. Phys. Chem., 2016, 17, 3863, DOI: 10.1002/cphc.201600942
- Water-induced structural changes in crown ethers from broadband rotational spectroscopy - C. Perez, J. C. Lopez, S. Blanco and M. Schnell, J. Phys. Chem. Lett., 2016, 7 (20), 4053-4058; DOI: 10.1021/acs.jpclett.6b01939
- Communication: Structural locking mediated by a water wire: A high-resolution rotational spectroscopy study on hydrated forms of a chiral biphenyl derivative - S. R. Domingos, C. Perez and M. Schnell, J. Chem. Phys., 2016, 145, 16113; DOI: 10.1063/1.4966584
- Intermolecular dissociation energies of dispersively bound 1-naphthol⋅cycloalkane complexes - S. Maity, P. Ottiger, F. A. Balmer, R. Knochenmuss and S. Leutwyler, J. Chem. Phys., 2016, 145, 244314; DOI: 10.1063/1.4973013
- Accurate dissociation energies of two isomers of the 1-naphthol⋅cyclopropane complex - S. Maity, R. Knochenmuss, C. Holzer, G. Féraud, J. Frey, W. Klopper, and S Leutwyler, J. Chem. Phys., 2016, 145, 164304; DOI: 10.1063/1.4965821
- Uncovering Key Structural Features of an Enantioselective Peptide-Catalyzed Acylation Utilizing Advanced NMR Techniques - E. Procházková, A. Kolmer, J. Ilgen, M. Schwab, L. Kaltschnee, M. Fredersdorf, V. Schmidts, R. C. Wende, P. R. Schreiner, C. M. Thiele, Angew. Chem. Int. Ed., 2016, 55, 15754; DOI: 10.1002/anie.201608559
- Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework - W. B. Schneider, G. Bistoni, M. Sparta, M. Saitow, C. Riplinger, A. A. Auer and F. Neese, J. Chem. Theory Comput., 2016, 12 (10), 4778–4792; DOI: 10.1021/acs.jctc.6b00523
- Explicitly-correlated ring-coupled-cluster-doubles theory: Including exchange for computations on closed-shell systems - A.-S. Hehn, C. Holzer, W. Klopper, Chem. Phys. 2016, 479, 160-169; DOI: 10.1016/j.chemphys.2016.09.030
- Overcoming the Limitations of C−H Activation with Strongly Coordinating N-Heterocycles by Cobalt Catalysis - H. Wang, M. M. Lorion, L. Ackermann, Angew. Chem. Int. Ed. 2016, 55, 10386-10390; DOI:
- Mild C–H/C–C Activation by (Z)-Selective Cobalt-Catalysis - D. Zell, Q. Bu, M. Feldt, L. Ackermann, Angew. Chem. Int. Ed., 2016, 55, 7408-7412; DOI:
- Ketone-Assisted Ruthenium(II)-Catalyzed C–H Imidation: Access to Primary Aminoketones by Weak Coordination - K. Raghuvanshi, D. Zell, K. Rauch, L. Ackermann, ACS Catal., 2016, 6, 3172–3175; DOI: 10.1021/acscatal.6b00711
- Cobalt-Catalyzed Oxidase C–H/N–H Alkyne Annulation: Mechanistic Insights and Access to anti-Cancer Agents - R. Mei, H. Wang, S. Warratz, S. A. Macgregor, L. Ackermann, Chem. Eur. J., 2016, 22, 6759-6763; DOI:
- A General Strategy for Nickel-Catalyzed C–H Alkylation of Anilines - Z. Ruan, S. Lackner, L. Ackermann, Angew. Chem. Int. Ed., 2016, 55, 3153-3157; DOI:
- Single-Component Phosphinous Acid Ruthenium(II) Catalysts for Versatile C–H Activations by Metal-Ligand Cooperation - D. Zell, S. Warratz, D. Gelman, S. J. Garden, L. Ackermann, Chem. Eur. J., 2016, 22, 1248-1252; DOI:
- Aromatic embedding wins over classical hydrogen bonding – a multi-spectroscopic approach for the diphenyl ether–methanol complex - C. Medcraft, S. Zinn, M. Schnell, A. Poblotzki, J. Altnöder, M. Heger, M. A. Suhm, D. Bernhard, A. Stamm, F. Dietrich and M. Gerhards, Phys. Chem. Chem. Phys., 2016, 18, 25975-25983; DOI: 10.1039/c6cp03557d
- Subtle solvation behaviour of a biofuel additive: the methanol complex with 2,5-dimethylfuran - A.Poblotzki, J. Altnöder and M. A. Suhm, Phys. Chem. Chem. Phys., 2016, 18, 27265-27271; DOI: 10.1039/c6cp05413g (Open Access)
- Calculations of magnetically induced current densities: theory and applications - D. Sundholm, H. Fliegel, R. J. F. Berger, WIREs Comput. Mol. Sci., 2016, 6, 639-678; DOI: 10.1002/wcms.1270
- Flexibility unleashed in acyclic monoterpenes: conformational space of citronellal revealed by broadband rotational spectroscopy - S. R. Domingos, C. Pérez, Ch. Medcraft, P. Pinacho and M. Schnell, Phys. Chem. Chem. Phys., 2016, 18, 16682-16689; DOI: 10.1039/c6cp02876d
- High-Resolution Rotational Spectroscopy Study of the Smallest Sugar Dimer: Interplay of Hydrogen Bonds in the Glycolaldehyde Dimer - S. Zinn, Ch. Medcraft, Th. Betz, and M. Schnell, Angew. Chem. Int. Ed., 2016, 55, 5975-5980; DOI: 10.1002/anie.201511077
-
A boron-fluorinated tris(pyrazolyl)borate ligand (FTp*) and its mono- and dinuclear copper complexes [Cu(FTp*)2] and [Cu2(FTp*)2]: Synthesis, structures, and DFT calculations – T. Augenstein, F. Dorner, K. Reiter, D. Garnier, W. Klopper, F. Breher, Chem. Eur. J., 2016, 22, 7935-7943; DOI: 10.1002/chem.201504545
- Review: Experimental and Theoretical Determination of Dissociation Energies of Dispersion-Dominated Aromatic Molecular Complexes – J. A. Frey, C. Holzer, W. Klopper, S. Leutwyler, Chem. Rev., 2016, 116, 5614-5641; DOI: 10.1021/acs.chemrev.5b00652
- Review: Dispersion-Corrected Mean-Field Electronic Structure Methods - S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Chem. Rev., 2016, 116, 5105-5154; DOI: 10.1021/acs.chemrev.5b00533
- Internal Dynamics and Guest Binding of a Sterically Overcrowded Host - S. Löffler, J. Lübben, A. Wuttke, R. A. Mata, M. John, B. Dittrich, G. H. Clever, Chem. Sci., 2016, 7, 4676-4684; DOI: 10.1039/C6SC00985A
- The Enantioselective Dakin–West Reaction - Raffael C. Wende, Alexander Seitz, Dominik Niedek, Sören M. M. Schuler, Christine Hofmann, Jonathan Becker, Peter R. Schreiner, Angew. Chem. Int. Ed., 2016, 55, 2719–2723;
- Generation of Complex Azabicycles and Carbobicycles from Two Simple Compounds in a Single Operation through a Metal-Free Six-Step Domino Reaction - C. M. Bock, G. Parameshwarappa, S. Bönisch, C. Neiss, W. Bauer, F. Hampel, A. Görling, S. B. Tsogoeva Chem. Eur. J., 2016, 22, 5189-5197; DOI: 10.1002/chem.201504798. This work was highlighted on the cover of this issue.
- 1,4-Bis-Dipp/Mes-1,2,4-Triazolylidenes: Carbene Catalysts that Efficiently Overcome Steric Hindrance in the Redox Esterification of α- and β-Substituted α,β-Enals - V. R. Yatham, W. Harnying, D. Kootz, J.-M. Neudörfl, N. E. Schlörer, A. Berkessel, J. Am. Chem. Soc., 2016, 138, 2670-2677; DOI: 10.1021/jacs.5b11796
- Keto-Enol Thermodynamics of Breslow Intermediates - M. Paul, M. Breugst, J.-M. Neudörfl, R. B. Sunoj, A. Berkessel, J. Am. Chem. Soc., 2016, 138, 5044-5051; DOI: 10.1021/jacs.5b13236
- Wetting Camphor: Multi-Isotopic Substitution Identifies the Complementary Roles of Hydrogen Bonding and Dispersive Forces - Cristóbal Pérez, Anna Krin, Amanda L. Steber, Juan C. López, Zbigniew Kisiel and Melanie Schnell J. Phys. Chem. Lett., 2016, 7, 154-160; DOI: 10.1021/acs.jpclett.5b02541
-
Control over the Hydrogen-Bond Docking Site in Anisole by Ring Methylation - H. C. Gottschalk, J. Altnöder, M. Heger, and M. A. Suhm, Angew. Chem. Int. Ed., 2016, 55, 1921-1924; DOI: 10.1002/anie.201508481
- London Dispersion Decisively Contributes to the Thermodynamic Stability of Bulky NHC-Coordinated Main Group Compounds - J. Philipp Wagner and Peter R. Schreiner, J. Chem. Theory Comput., 2016, 12, 231 - 237; DOI: 10.1021/acs.jctc.5b01100
Publications 2015
- Supersymmetry and eigensurface topology of the spherical quantum pendulum - B. Schmidt and B. Friedrich, Phys. Rev. A, 2015, 91, 022111; DOI: 10.1103/PhysRevA.91.022111
- Directional properties of polar paramagnetic molecules subject to congruent electric, magnetic and optical fields - K. Sharma and B. Friedrich, New J. Phys., 2015, 17 (5), 045017; DOI: 10.1088/1367-2630/17/4/045017
- Water Structure Recovery in Chaotropic Anion Recognition: High-Affinity Binding of Dodecaborate Clusters to g-Cyclodextrin - K. I. Assaf, M. S. Ural, F. Pan, T. Georgiev, S. Simova, K. Rissanen, D. Gabel and W. M. Nau, Angew. Chem. Int. Ed., 2015, 54, 6852-6856; Angew. Chem., 2015, 127, 6956-6960; DOI:
-
Polarisabilities of long conjugated chain molecules with density functional response methods: the role of coupled and uncoupled response - A. Heßelmann, J. Chem. Phys., 2015, 142, 164102; DOI: 10.1063/1.4918680
-
Controlling the subtle energy balances in protic ionic liquids: dispersion forces compete with hydrogen bonds - K. Fumino, V. Fossog, P. Stange, R. Hempelmann, R. Ludwig Angew. Chem., 2015, 127, 2792-2795; Angew. Chem. Int. Ed., 2015, 54, 2792-2795; DOI: 10.1002/anie.201411509
- N-Acyl Amino Acid Ligands for Ruthenium(II)-catalyzed meta-C-H tert-Alkylation with Removable Auxiliaries - J. Li, S. Warratz, D. Zell, S. De Sarkar, E. E. Ishikawa, L. Ackermann, J. Am. Chem. Soc., 2015, 137, 13894 - 13901; DOI: 10.1021/jacs.5b08435
-
Review: London Dispersion in Molecular Chemistry — Reconsidering Steric Effects - J. Philipp Wagner and Peter R. Schreiner, Angew. Chem. Int. Ed., 2015, 54, 12274–12296; DOI: 10.1002/anie.201503476
-
1,8-Bis(phenylethynyl)anthracene – gas and solid phase structures - Jan-Hendrik Lamm, Jan Horstmann, Hans-Georg Stammler, Norbert W. Mitzel, Yuriy A. Zhabanov, Natalya V. Tverdova, Arseniy A. Otlyotov, Nina I. Giricheva and Georgiy V. Girichev, Org. Biomol. Chem., 2015, 13, 8893 - 8905; DOI: 10.1039/C5OB01078K
- To π or not to π – how does methanol dock onto anisole? - Matthias Heger, Jonas Altnöder, Anja Poblotzki, and Martin A. Suhm, Phys. Chem. Chem. Phys., 2015, 17, 13045-13052; DOI: 10.1039/C5CP01545F
- The effect of dispersion forces on the interaction energies and far infrared spectra of protic ionic liquids - Ralf Ludwig, Phys. Chem. Chem. Phys., 2015, 17, 13790-13793; DOI: 10.1039/c5cp00885a