

Contents

- 1. Alpha Diversity
- 2. Beta Diversity
- 3. Dimensionality Reduction (PCoA)

1. Alpha Diversity

- a. observed features
- b. Chao1
- c. Faith's PD

2. Alpha Diversity

- one sample at a time
- "how complex is one sample?"
- alternative perspectives
 - a. richness: observed features
 - b. richness: Chao1
 - c. evenness: Shannon
 - d. phylogenetic diversity: Faith's PD

Alpha Diversity: mouse gut microbiome

2. Alpha Diversity - a: <u>observed features</u>

- richness
- simple: count number of features

2. Alpha Diversity - b: Chao1

- richness
- simple: count number of features
- + emphasize singletons

 $F_1 = 3$ $F_2 = 0$ $S_{obs} = 3$ s3

$$chao1 = S_{obs} + rac{F_1(F_1-1)}{2(F_2+1)}$$
 =

F₁ = features with count 1 F₂ = features with count 2 S_{obs} = observed features

 $F_2 = 0$ $S_{obs} = 2$

2. Alpha Diversity - b: Chao1

- richness
- simple: count number of features
- + emphasize singletons

$$chao1 = S_{obs} + \overbrace{rac{F_1(F_1-1)}{2(F_2+1)}}$$

Anne Chao

 F_1 = features with count 1

F₂ = features with count 2

S_{obs} = observed features

Anne Chao (1984) Scand J Statist "Nonparametric Estimation of the Number of Classes in a Population"

"when most of the information is concentrated on the low order occupancy numbers"

2. Alpha Diversity - c: Shannon

evenness

$$H = -\sum_{i=1}^s \left(p_i \log_2 p_i
ight)$$

= 1.617190

= 0.970951

 $p_{red} = 3/5$ $p_{green} = 2/5$ $p_{red} = 1/3$ $p_{magenta} = 1/3$ $p_{green} = 1/3$

s3

 $p_{red} = 6/11$ $p_{magenta} = 1/11$ $p_{green} = 3/11$ $p_{blue} = 1/11$

 $p_{red} = 6/10$ p_{green} = 4/10

Claude Shannon

2. Alpha Diversity - c: Shannon

evenness

$$H = -\sum_{i=1}^s \left(p_i \log_2 p_i
ight)$$
 § 0.5

- captured evolutionary diversity
- needs a phylogenetic tree!

- captured evolutionary diversity
- needs a phylogenetic tree!

- captured evolutionary diversity
- needs a phylogenetic tree!

- captured evolutionary diversity
- needs a phylogenetic tree!

Alpha Diversity: skin microbiome

https://reference.yourdictionary.com/resources/parts-of-the-body-for-kids-names-and-basic-functions.html

3. Beta Diversity

- a. Jaccard
- b. Bray-Curtis
- c. UniFrac

3. Beta Diversity

- pair of samples at a time
- "how different are two samples?"
- alternative perspectives
 - a. Jaccard
 - b. Bray-Curtis
 - c. UniFrac
- a "Distance"

Distance Axioms

For all x_i , x_i and x_k

- 1. $d(x_i, x_j) \geq 0$.
- 2. $d(x_i, x_j) = 0$, iff x_i is equal to x_j .
- 3. $d(x_i, x_j) = d(x_j, x_i)$.
- 4. $d(x_i, x_j) \leq d(x_i, x_k) + d(x_k, x_j)$.

Distance Axioms

For all x_i , x_i and x_k

- 1. $d(x_i, x_i) \geq 0$. non-negativity
- 2. $d(x_i, x_j) = 0$, iff x_i is equal to x_j . identity
- 3. $d(x_i, x_i) = d(x_i, x_i)$. symmetry
- 4. $d(x_i, x_i) \leq d(x_i, x_k) + d(x_k, x_i)$. no wormholes

3. Beta Diversity - a: Jaccard

Fraction of unique features, regardless of abundance.

📄 Jaccard, Paul. Nouvelles recherches sur la distribution florale. 1908.

Paul Jaccard

3. Beta Diversity - a: <u>Jaccard</u>

Fraction of unique features, regardless of abundance.

$$J(A, B) = 1 - \frac{A \cap B}{A \cup B}$$

Paul Jaccard

Jaccard, Paul. Nouvelles recherches sur la distribution florale. 1908.

compares relative abundances

$$\sum |u_i-v_i|/\sum |u_i+v_i|$$

J. Roger Bray & John T. Curtis

compares relative abundances

J. Roger Bray & John T. Curtis

compares relative abundances

$$\frac{|3-1| + |2-1| + |0-1| + |0-0|}{|3+1| + |2+1| + |0+1| + |0+0|} = \frac{2 + 1 + 1 + 0}{4 + 3 + 1 + 0} = \frac{2 + 1 + 1 + 0}{4 + 3 + 1 + 0}$$

compares relative abundances

$$\sum |u_i - v_i| / \sum |u_i + v_i|$$

$$|i| = \text{red}, \text{ green, magenta, blue}$$

$$|u| \neq \text{s1}$$

$$|v| = \text{s4}$$

$$\frac{|3-6| + |2-4| + |0-0| + |0-0|}{|3+6| + |2+4| + |0+0| + |0+0|} = \frac{3 + 2 + 0 + 0}{9 + 6 + 0 + 0} = \frac{3 + 2 + 0 + 0}{9 + 6 + 0 + 0}$$

3. Beta Diversity - c: <u>UniFrac</u>

- Measures the fraction of <u>unique</u> branch length
- needs a phylogenetic tree!

3. Beta Diversity - c: <u>UniFrac</u>

Measures the fraction of <u>unique</u> branch length

needs a phylogenetic tree!

3. Beta Diversity - c: <u>UniFrac</u>

Measures the fraction of <u>unique</u> branch length

needs a phylogenetic tree!

Selecting a metric

Hamady, Micah, and Rob Knight. "Microbial community profiling for human microbiome projects: Tools, techniques, and challenges." Genome research 19.7 (2009): 1141-1152.

Free living

Selecting a metric

- Vertebrate Gut
- Free living

Hamady, Micah, and Rob Knight. "Microbial community profiling for human microbiome projects: Tools, techniques, and challenges." Genome research 19.7 (2009): 1141-1152.

4. Dimensionality Reduction (PCoA)

https://bit.ly/2LHMDFC

Gall Stereographic

Plate Carree

area in km²

Brazil: 8,515,767

Greenland: 2,166,086

https://en.wikipedia.org/wiki/List_of_c ountries_and_dependencies_by_area

Principal Scale 1:375,000,000 Created by Matt Sandee 02/10 Data Source: ESRI 2008