

GERMAN NETWORK FOR BIOINFORMATICS INFRASTRUCTURE

From raw data to feature tables

NFDI4Microbiota workshop page 1

MICROBIOTA

NFDI4

Stefan.Janssen@cb.jlug.de

	Tuesday, Oct 8th	Wednesday, Oct 9th	Thursday, Oct 10th
10:00-10:30		QIIME2 and Qiita	Buffer for Hands-On, Coffee
10:30-11:00		Qiita Hands-On	break in-detween
11:00-11:30	Welcome & Intro		
11:30-12:00	From raw data to feature tables	Coffee Break (~15min)	Coffee Break (~15min)
12:00-12:30		Qiita Hands-On	Buffer for Hands-On
12:30-13:00		Lunch Break	Closing remarks and Farewell
13:00-13:30	Lunch Break		
13:30-14:00		QIIME2 Hands-On	
14:00-14:30	Sequence quality control		
14:30-15:00	Coffee Break	Coffee Break	
15:00-15:30	QC Hands-on	Diversity Calculation	
15:30-16:00		QIIME2 Hands-On (cont'd.)	
16:00-16:30			
DI4Microbiota wor	kshop page 2 Stefa	n.Janssen@cb.jlug.de	October 8 ^t

jIAB

Microbial Community Analysis

https://www.fiosgenomics.com/microbiome-vs-microbiota/

NFDI4Microbiota workshop page 3

Stefan.Janssen@cb.jlug.de

Profile community: meta genome

page 4

NFDI4Microbiota workshop

Stefan.Janssen@cb.jlug.de

October 8th 2024

Yarza et al (2014) Nature Reviews. 12: 635-645. Fig 1

Profile community: amplicon

NFDI4Microbiota workshop ____page 5

Stefan.Janssen@cb.jlug.de

Profile community: metabolome

NFDI4Microbiota workshop page 6

Stefan.Janssen@cb.jlug.de

Profile community: amplicon

page 7

Stefan.Janssen@cb.jlug.de

the "Feature" Table

the MAG Table

iste •	₿ <i>I</i> <u>U</u> • ⊡ • <u>⊅</u>	· <u>A</u> · = = = <u>·</u>	📑 📰 Merge & Center	• • • • • •	Conditional Format a Formatting ▼ Table ▼	as Cell Styles + Evroret +	 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
pboa 1	rd r Font	5a	Alignment	ন্দ্র Number	্র Styles	Cells	Editing
	А	В	С	D	E	F	G
1		Sample A	Sample B	Sample C	Sample C	Sample D	Sample E
2	iMGMC-MAG-1171	832	173	9	190	237	775
3	iMGMC-MAG-1164	446	460	4	25	225	73
4	iMGMC-MAG-1109	457	118	16	45	898	790
5	iMGMC-MAG-1072	434	307	9	443	388	224
5	iMGMC-MAG-1060	754	306	20	586	676	81
7	iMGMC-MAG-1058	414	179	26	573	763	3:
3	iMGMC-MAG-1053	678	26	26	396	179	37
)	iMGMC-MAG-1052	967	323	23	465	782	61
0	iMGMC-MAG-1047	757	20	23	70	736	32
1	iMGMC-MAG-1035	838	43	6	774	174	81
2							
3							
4							
5							
) I	Tabelle1 (+)						

the OTU Table

NFDI4Microbiota workshop

H	÷ ∂- ÷			featuretable.xlsx - E	ĸcel		Sign in 📧 —	o x
File	Home Insert	Page Layout Formulas	Data Review V	′iew Help Q Tell n	ne what you want to do			0.0
Paste	K Calibri I B I U ▼	$ \begin{array}{c c} \bullet & & \\ \bullet & & \\ \hline \bullet & \bullet & \\ \bullet & \bullet &$	E = ≫ - eb Wrap E = E ≥ E Merge	Text General e & Center + 😨 + %		Format as Cell Table ▼ Styles ▼	nsert ▼ Delete ▼ Z ormat ▼ Sort & Filter ▼ Sert	
Clipbo	ard 🖓 Fo	ont G	Alignment	ra Num	ber 🕞	Styles	Cells Editing	^
A1		\checkmark f_x						
	A	В	С	D	E	F	G	F
1		Sample A	Sample B	Sample C	Sample C	Sample D	Sample E	
2	OTU 1	774	65	10	179	50	139	
3	OTU 2	453	119	12	389	488	840	
4	OTU 3	48	416	2	54	<mark>6</mark> 9	54	
5	OTU 4	674	416	3	696	422	919	
6	OTU 5	910	320	27	50	947	131	
7	OTU 6	738	490	23	58	791	849	
8	OTU 7	15	83	23	665	249	319	
9	OTU 8	369	141	12	632	632	53	
10	OTU 9	113	417	15	540	92	232	
11	OTU 10	176	443	7	614	82	688	
12								
13								
14								
15								
н	Fabelle1	\oplus			: 4			
Ready								+ 180 %
	♀ Zur Suche Text	t hier eingeben	O Ħ	C 📃 😐			~ 管 단 ⁽¹⁾ 29.0	99.2021 🕐
pag	e 10	Stefan.Janss	sen@cb.ilug	.de			October 8 th	2024

the Proteome Table

NFDI4Microbiota workshop

	Can't Redo (Ctrl+Y)			reaturetable.xisx - E	(CEI		Sign in Et -	· · ·
File	Home Insert I	Page Layout Formulas $11 \cdot A^* = =$	Data Review V	iew Help Q Tell n Text General	ne what you want to do		nsert • Σ • A	iΙΔP
Paste	B I <u>U</u> →] • <u>◇</u> • <u>▲</u> • ≡ ≡	🗧 🖻 🔨 🛱 Merge	e & Center 🔹 🍄 🔹 %	• ←0 .00 • Conditional Formatting	I Format as Cell → Table → Styles →	ormat ▼	lect *
Clipboa	ard 🖓 Font	t G	Alignment	5 Num	ber 🖓	Styles	Cells Editing	
A1	· · · · · · · · ·	f _x						
	А	В	C	D	E	F	G	F
1		Sample A	Sample B	Sample C	Sample C	Sample D	Sample E	
2	226.951_595	429	<mark>4</mark> 98	6	417	454	67	
3	278.191_249	246	438	20	21	157	634	
4	307.112_169	569	112	12	100	140	829	
5	365.136_378	858	337	13	184	993	837	
6	337.105_334	104	174	8	641	535	693	
7	205.097_85.3	93	425	4	66	545	222	
8	343.154_378	831	402	17	526	942	431	
9	637.968_563	436	123	7	9	570	200	
10	360.181_378	772	189	22	166	331	869	
11	666.989_576	581	18	18	732	256	744	
12								
13								
14								
15								
Ready	Tabelle1	\oplus			1	E	Image: A state of the state	+ 180
		hier eingeben	O Ħ	2 📄 🔒			へ 智 臣 の 1	4:06
page	e 11 - S	Stefan.Ja <u>nss</u>	en@cb.jlug	.de			October 8 th	2024

Bolyen et al. (2019) Nature biotechnology

NFDI4Microbiota workshop page 14

Stefan.Janssen@cb.jlug.de

October 8th 2024

Content

- 1. Scope 🖌
- 2. Base Calling
- 3. Demultiplexing
- 4. Quality Control
- 5. Adapter Trimming, Clipping
- 6. "OTU" picking
- 7. Data Normalization
 - a. Contamination Removal
 - b. very low abundant "OTU" removal
 - c. Rarefaction

NFDI4Microbiota workshop page 15 Stefan.Janssen@cb.jlug.de

2. Base Calling

NFDI4Microbiota workshop page 16 Stefan.Janssen@cb.jlug.de

October 8th 2024

bcl2fastq

https://www.broadinstitute.org/files/shared/illuminavids/sequencingSlides.pdf

download at https://emea.support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html

Sequence Formats: FastQ

- de-facto standard format is FastQ
 - based on FastA + 2 lines for **Q**uality scores

4 lines per read:

- 1. @Sequence identifier (Illumina: origin and optionally length)
- 2. Sequence
- 3. +(Optional: Identifier again)G: 714. December 2011 22: 120 (Illumine)*: 42
- 4. Base quality, mapped to ASCII 33-128 (Illumina)

@M04304:185:00000000-CMBBK:1:1102:12988:2175 1:N:0:AAGAGGCA+TATCCTTT ACTGACGCTGAGGCACGAAAGCGTGGGTATCGAACAGGATTAGATACCCGTGTAGTCC +

FGFGGGGGGGGGGGGGGGGFGEEFFGGGCEEGF:FD:875*5:CF?F<+<CFEDDGF:4=@F

Raw Data Quality

- There are always errors!
- Quality "control"
 - how bad is sequencing quality, i.e. how many reads should be discarded?
- Source of errors: basecalling
 - "Sanger **Phred**" quality score = how certain is this called a G base?
 - how likely is it wrong: P
 - expressed as $Q = -10*\log_{10}(P)$
 - $\square Q = 10 \qquad \Rightarrow P = 0.1$
 - $\square Q = 40 \qquad \Rightarrow P = 0.0001$
- The Phred score is used for
 - assess overall quality
 - discard whole reads
 - truncate reads (clipping)
 - since low quality regions often occur at the start and end
 - SNV determination

Raw data quality

- encodes Phred Score
- $Q = -10*\log_{10}(P)$
- Q encoded as ASCII character
 - Q+33 for versions \geq 1.8
 - Q+64 for versions 1.3 to 1.7

Dectillar	nevanectillar	Dimary	ULLAL	cilar	Dectuar	nevanectilar	Dinary	octat	. unan	Dectuar	nevanectilar	Dinary	occat	Cilai
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	× .
1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	1-
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	
4	4	100	4	IEND OF TRANSMISSIONI	52	34	110100	64	4	100	64	1100100	144	
5	5	101	5	[ENOURY]	53	35	110101	65	5	101	65	1100101	145	
6	6	110	6	IACKNOWLEDGE1	54	36	110110	66	6	102	66	1100110	146	
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111	147	
8	8	1000	10	IBACKSPACE1	56	38	111000	70	8	104	68	1101000	150	h
9	9	1001	11	HORIZONTAL TAB?	57	39	111001	71	9	105	69	1101001	151	ï
10	Ā	1010	12	ILINE FEEDI	58	34	111010	72		106	64	1101010	152	
11	B	1011	13	IVERTICAL TAB)	59	38	111011	73		107	6B	1101011	153	,
12	č	1100	14	IFORM FFED1	60	30	111100	74	'e	108	60	1101100	154	ï
13	Ď	1101	15	(CARRIAGE RETURN)	61	30	111101	75	-	109	6D	1101101	155	m
14	F	1110	16	ISHIFT OUT	62	3E	1111110	76	5	110	6E	1101110	156	
15	2	1111	17	ICHIET INI	67	36	1111111	77	2	111	65	1101111	157	
16	10	10000	20	IDATA LINK ESCAPET	64	40	1000000	100		112	70	1110000	160	
17	11	10001	21	IDEVICE CONTROL 11	65	41	1000000	1 101	~	112	71	1110000	161	9
19	12	10010	22	IDEVICE CONTROL 21	66	42	10000010	102	÷	114	72	11100001	162	9
10	12	10010	22	IDEVICE CONTROL 21	67	42	1000011	1 102	č	115	72	1110010	162	-
20	14	10100	23	IDEVICE CONTROL 51	69	45	1000010	0 104	5	115	7.5	1110011	164	*
20	16	10100	29	INECATIVE ACKNOWLEDGEL	60	44	1000100	1 1 0 5	2	110	79	1110100	165	
21	15	10101	25	[REGATIVE ACKNOWLEDGE]	70	40	1000101	1 105	5	110	75	1110101	166	u
22	10	10110	20	(STINCHIKUNUUS IDLE)	70	40	1000110	100	5	110	70	1110110	167	v
23	10	110000	20	[CANCEL]	71	47	1000111	1107	G L	120	77	11110111	170	w
24	10	11000	30	(CANCEL)	72	48	1001000	110	2	120	78	1111000	170	×
20	19	11001	21	(END OF MEDIUM)	73	49	1001003	1111	1.1	121	79	1111001	171	y
20	10	11010	32	(SUBS/ITU/E)	74	4A	1001010	0 112	1 I	122	74	1111010	172	z
2/	18	11011	33	(ESCAPE)	/5	48	1001011	1113	<u> </u>	123	78	1111011	1/3	1
28	10	11100	34	[FILE SEPARATOR]	76	40	1001100	0 114	5	124	70	1111100	1/4	Į.
29	10	11101	30	[GROOP SEPARATOR]	//	40	1001101	115	M	125	70	1111101	1/5	3
30	1E	111110	36	[RECORD SEPARATOR]	78	4E	1001110	0 116	N	126	/E	11111110	1/6	-
31	11	11111	37	[UNIT SEPARATOR]	79	41	1001111	111/	0	127	/F	1111111	1//	[DEL]
32	20	100000	40	[SPACE]	80	50	1010000	0 120	P					
33	21	100001	41	1	81	51	1010001	1 121	Q					
34	22	100010	42		82	52	1010010	0 122	R					
35	23	100011	43	#	83	53	1010011	1 123	S					
36	24	100100	44	\$	84	54	1010100	0 124	T					
37	25	100101	45	%	85	55	1010101	1 125	U					
38	26	100110	46	&	86	56	1010110	0 126	v					
39	27	100111	47		87	57	1010111	1 127	w					
40	28	101000	50	(88	58	1011000	0 130	x					
41	29	101001	51)	89	59	1011001	1 131	Y					
42	2A	101010	52	*	90	5A	1011010	0 132	z					
43	2B	101011	53	+	91	5B	1011011	1 133	1					
44	2C	101100	54		92	5C	1011100	0 134	۸					
45	2D	101101	55	-	93	5D	1011101	1 135	1					
46	2E	101110	56		94	5E	1011110	0 136	^					
47	2F	101111	57	1	95	5F	1011111	1 137						

| Desimal Hevadesimal Ripary, Octal Char | Desimal Hevadesimal Ripary, Octal Char

Decimal Hevadecimal Ripary Octal Char

FGFGGGGGGGGGGGGGGGGGEEFFGGGCEEGF:FD:875*5:CF?F<+<CFEDDGF:4=@F

+

Content

- 1. Scope 🖌
- 2. Base Calling 🖌
- 3. Demultiplexing
- 4. Quality Control
- 5. Adapter Trimming, Clipping
- 6. "OTU" picking
- 7. Data Normalization
 - a. Contamination Removal
 - b. very low abundant "OTU" removal
 - c. Rarefaction

NFDI4Microbiota workshop page 22 Stefan.Janssen@cb.jlug.de

3. Demultiplexing

NFDI4Microbiota workshop page 23 Stefan.Janssen@cb.jlug.de

again: bcl2fastq

Amplify each sample, introducing barcode into each sequence using tagged PCR primers

Use barcodes to assign each sequence to the sample it came from, dropping low-quality reads

| 🖬 • 🛅 • 🛃 • 🗶 🔚 😨 🕌 🗉 🏥 • 🛓 💁 • 🐵 • 🔍 • 🛠 🖽 • 🎚 • 🕼 • 🕼 • 🖓 🗮 • 🔳 • 🕼 🖓 📼 🕢 👘 🖉 🖉 🖉 Liberation Si 🔻 10 💌 🍓 🖉 - 🚍 - 🚍 - 🚍 - 🚍 - 🚍 - 📰 👘 👘 - 👘 - % 0.0 🔯 🔩 😅 🖽 - 🕞 - 🖳 - 🕞 - 🚆 🕌

C12	-	fac	Σ
-----	---	-----	---

Sheet 1 of 2

				1	1	1	1	1	1		
1 [Header]	В	с	D	E	F	G	н		J	K	
3 Operator Name	Daniel Scholtyssik	Thorsten Wach	tmeister								
4 Experiment Name	11A Microhiome	morsten waen	incister								
	05/28/21										
7 Application	EASTO Only										
	Nextera VT										
 Assay Description 	EMD V// Amplicon	sequencing of o	ral (tonque left	tongue cente	r) human chil	tron complec					
³ Description	Amplicon	sequencing of o	i ai (tongue ieit,	tongue cente	r) numan chin	aren samples					
	Stofan Jansson/Su	conno Kurth									
	Stelan Janssen/Su	Sanne Kurtri	1		_						
			-								
301											
301											
ReverseCompleme	0										
Adapter	CTGTCTCTTATAC	CACATCT					_		-		
¹⁸ [Data]											
Sample_ID	Sample_Name	Sample_Plate	Sample_Well	I7_Index_ID	index	I5_Index_ID	index2	Sample_Project	Description		
²⁰ POAF01	-			7001	ATTACTCG	500:	TATAGCCT	microbiome_jia_oral			
POASW01				7002	TCCGGAGA	5003	TATAGCCT	microbiome_jia_oral			
¹² PORF01				7003	CGCTCATT	500	TATAGCCT	microbiome_jia_oral			
PORSZ01				7004	GAGATTCC	500:	TATAGCCT	microbiome_jia_oral			
PORSW01				7005	ATTCAGAA	500	TATAGCCT	microbiome_jia_oral			
POAF05				7006	GAATTCGT	5003	TATAGCCT	microbiome_jia_oral			
POASZ05				7007	CTGAAGCT	500:	TATAGCCT	microbiome_jia_oral			
POASW05				7008	TAATGCGC	500	TATAGCCT	microbiome_jia_oral			
PORF05				7009	CGGCTATG	500	TATAGCCT	microbiome_jia_oral			
PORSZ05				7010	TCCGCGAA	500	TATAGCCT	microbiome_jia_oral			
³⁰ PORSW05				7011	TCTCGCGC	500	TATAGCCT	microbiome iia oral			
				1011	10100000						
POAF06				7012	AGCGATAG	500	TATAGCCT	microbiome_jia_oral			
POAF06				7012	AGCGATAG	500	TATAGCCT	microbiome_jia_oral			

NFDI4Microbiota workshop

Stefan.Janssen@cb.jlug.de

English (USA)

Average: ; Sum: 0

Default

page 25

- + 220%

October 8th 2024

ilΔR

| 🖬 • 📇 • 🛃 • 🗶 😭 🙀 😹 🗉 🟥 • 🛓 ⊈ 🎭 • 🚿 • 🔍 🛠 🗯 🖽 • 🎚 • 🕼 • 🕼 • 🖓 🛤 • 🌆 • 🕼 • 🖓 🛤 🕢 Liberation S: ▼ 10 ▼ & Ø ≧ ≧ · ☱ · ☱ ☱ ☱ ☴ □ = = ☜ · % 0.0 🗓 🔩 🚑 ☲ ☲ 금 · 厅 · 旦 · 블 · 텔 👭

B12	-	fac	Σ

Sheet 1 of 2

12 • <i>B</i> _R Σ =											
	В	C	D	E	F	G	Н	1	J	K	<u> </u>
	Danial Scholtyccik	Thorston Mach	moistor								
	11A Microbiomo	Inorsten wach	lineistei								
	05/29/21						_				
Application	EASTO Only										
	Novtora VT										
Description	EMD V/4 Amplicon	coquencing of a	ral (tangua laft	tonguo conto) human ak	ildron complex			· · · · · · · · · · · · · · · · · · ·		
Chemietry	Amplicon	sequencing of o	rai (tongue ieit,	tongue center) numan cr	illuren samples					
	Amplicon Stafan Janasan/Si	iconno Kurth									
	Steran Janssen/St	Isanne Kurth									
		-									
3 301											
4 301											
Settings]											
ReverseCompleme Adapter											/
Auapter	CIGICICITATA	LACATCI									
^a [Dala]	Comple Nome	Comple Diste	Comple Wall	17 Index ID	indov	IE Index ID	inday2	Comple Droiget	Description		
Sample_ID	Sample_Name	Sample_Plate	Sample_well	17_Index_ID	Index	I5_IND	Index2	Sample_Project	Description		
POAFUI				7001	ACTCG	5001	AGCCT	microbiome_lia_oral			
POASW01				7002	GGAGA	5001	AGCCT	microbiome_jia_orai			
2 PORF01				7003	TCATT	5001	AGCCT	microbiome_jia_oral			
³ PORSZ01				7004	ATTCC	5001	AGCCT	microbiome_jia_oral			
4 PORSW01				7005	CAGAA	5001	AGCCT	microbiome_jia_oral			
POAF05				7006	TTCGT	5001	AGCCT	microbiome_jia_oral			
POASZ05				7007	AAGCI	5001	AGCCT	microbiome_jia_oral			
POASW05				7008	TGCGC	5001	AGCCT	microbiome_jia_oral			
⁸ PORF05				7009	CTATG	5001	AGCCT	microbiome_jia_oral			
PORSZ05				7010	GCGAA	5001	AGCCT	microbiome_jia_oral			
PORSW05				7011	CGCGC	5001	AGCCT	microbiome_jia_oral			
POAF06				7012	GITIG	5001	AGCCT	microbiome_jia_oral			
5010700				7001	TOTOC	FOOT	CACCO	microbiomo ilo oral			

NFDI4Microbiota workshop page 26

Stefan.Janssen@cb.jlug.de

English (USA)

Default

October 8th 2024

- + 220%

Average: ; Sum: 0

Liberation Sz 💌

Exp Date

Des
 Che

11 Inve 12 [Rea 13

Rev

Sheet 1 of 2

14 15 [Set AB

fre

Use Error tolerant barcodes!

🔍 🏘 🖽 • 🗊 • 🕼 🕴 🖓 🐷 🌒 🚺 🖓 🖙 🥃 🖾 🗋 • 🚍 💹

Default

page 27

05/28/21

- App Ass bcl2fastq --help
 - --barcode-mismatches arg (=1)

number of allowed mismatches per index

mt Fi

e.g. Hamady et al. (2008) *Nature methods* "Error-correcting barcoded primers allow hundreds of samples to be pyrosequenced in multiplex"

Sample_ID	Sample_Name	Sample_Plate	Sample_Well	I7_Index_ID index	I5_Index_ID index2	Sample_Project	Description
OAF01		-		7001 ACTCG	5001 AGCCT	microbiome_jia_oral	
OASW01				7002 GGAGA	5001 AGCCT	microbiome_jia_oral	
PORF01				7003 TCATT	5001 AGCCT	microbiome_jia_oral	
PORSZ01				7004 ATTCC	5001 AGCCT	microbiome_jia_oral	
PORSW01				7005 CAGAA	5001 AGCCT	microbiome_jia_oral	
POAF05				7006 TTCGT	5001 AGCCT	microbiome_jia_oral	
POASZ05				7007 TAGCI	5001 AGCCT	microbiome_jia_oral	
POASW05				7008 TGCGC	5001 AGCCT	microbiome_jia_oral	
PORF05				7009 CTATG	5001 AGCCT	microbiome_jia_oral	
PORSZ05				7010 GCGAA	5001 AGCCT	microbiome_jia_oral	
PORSW05				7011 CGCGC	5001 AGCCT	microbiome_jia_oral	
POAF06				7012 01720	5001 AGCCT	microbiome_jia_oral	
P049706				7001 ACTCG	5002 GAGGC	microhiome iia oral	

NFDI4Microbiota workshop

Stefan.Janssen@cb.jlug.de

English (USA)

October 8th 2024

Average: ; Sum: 0

Liberation Sa 💌 10 💌 🎒 🖉

B33

5 Date

🦁 • % 0.0 🛐 🔩 🔐 🧮 🧮 🕞 • 🔽 • 🗖 • 🗮 📲

ŵ

fre

jIAB

-- 🕱 🍋 🗉 • 🗊 • 🕼 🔃 🖓 🐷 👩 🐷 $\Omega symeq D$ 🖾 🗎 • 🚍 🐻 - 🖻 · 🔺 🕰

. = .

[Heat 3 Ope Excel is too smart 4 Exp

= =

05/28/21

App Ass Des always prefix sample names with characters!

Chemistry	Amplicon		
Investigator Name	Stefan Janssen/Susanne Kurth		
[Reads]			Mistaken Identifiers: Gene name errors can be introduced
30	1		inadvertently when using Excel in high formatics
30	1		madvertently when using Excerni bioinformatics
[Settings]			Barry R Zeeberg [†] , Joseph Riss [†] , David W Kane, Kimberly J Bussey, Edward Uchio, W Marston Linehan, J Carl Barrett and
ReverseCompleme	▶ 0		John N Weinstein 🔤
Adapter	CTGTCTCTTATACACATCT		^T Contributed equally
[Data]			BMC Bioinformatics 2004 580 DOI: 10.1186/1471-2105-5-80 © Zeeberg et al; licensee BioMed Central Ltd. 2004
Sample_ID	Sample_Name_Sample_Plate	Sample_Well I7_Index_ID index	x I5_Index_ID index2 Sample_Project Description
001	1	7001 ACT	
002	2	7002 GGA	NEWS 13 August 2021 Correction 25 August 2021
003	3	7003 TCA	Auto compact owners in Event still
004	4	7004 ATT	Autocorrect errors in Excel still
005	5	7005 CAG2	
006	6	7006 TTC	creating genomics headache
007	7	7007 AAG	creating genomies neadache
008	8	7008 TGC	
009	9	7009 CTA	Despite geneticists being warned about spreadsheet problems, 30% of published papers
010	10	7010 GCG2	contain mangled gene names in supplementary data.
011	11	7011 CGC	
012	12	7012 GAT2	https://www.pature.com/articles/d41586-021-02211-4
013	12	7001 A CT1	
+ 210528_M04304_0260_000	O00000-JNYJH Sheet2 Sheet2 Sheet2 Sheet2 Sheet2 Match Case O		
eet 1 of 2		Default	English (USA) == Average: ; Sum: 0
NEDIANA	hists workshap n	aga 20 Stafan Ir	October 8 th 201

Stefan.Janssen@cb.jlug.de

Randomize Plate Layout!

Minich et al. (2019) mSystems "Quantifying and Understanding Well-to-Well Contamination in Microbiome Research"

Randomize Plate Layout!

Minich et al. (2019) *mSystems* "Quantifying and Understanding Well-to-Well Contamination in Microbiome Research"

Randomize Plate Layout!

TA: "It feels soooo wrong"

HT1 PCR2 8 9 10 11 12 6 5 Α В С D Е F G н

Minich et al. (2019) *mSystems* "Quantifying and Understanding Well-to-Well Contamination in Microbiome Research"

	1												6		r	ilΔR
1	luo -		-	_				-		_		-	le group	cage id	collection timestamn	
2		n - t + t	-im	n in			da	mil	tinla	win		nnn+l	e_group	rm1	2019-01-03	recipient mother
3	Inve	est i	_	ビー	Ινυ	นเ	ue	IIUI	เมเย	XII.	וצ צו	ieet!		rm1	2019-01-03	recipient mother
4	Exp			• • •	- / -	••••			1		0 -			rm2	2019-01-03	recipient mother
5	Dat	Constate								5	4	2019 09 10	DM	rm2	2019-01-03	recipient mother
7	Application	EASTO Only								5	4	2018-08-19		rm2	2019-01-03	recipient mother
8	Instrument Type	Miseg								0	0	2018-08-19	RIM	1113	2019-01-03	recipient mother
9	Assay	Nextera XT								1	6	2018-08-19	RM	rm3	2019-01-03	recipient mother
10	Index Adapters	Nextera XT v2 Inde	x Kit							8	1	2018-11-30	PB	P1-10	2019-03-19	motherP1
11	[Deads]	Amplicon		14				-		9	8	2018-11-30	PB	P1-10	2019-03-19	motherP1
13	301	1		5	10				-	10	9	2018-11-30	PB	P1-11	2019-03-20	motherP1
14	301	1								11	10	2018-11-30	PB	P1-11	2019-03-20	motherP1
15	[Settings]									12	11	2018-11-30	PB	P1-12	2019-03-19	fatherP1
16	ReverseCompleme		O								12	2018-11-30	PC	P1-1	2019-03-19	motherP1
18	Adapter [Data]	CIGICICITATAC	ACALCI	12						14	13	2018-11-30	PC	P1-1	2019-03-19	motherP1
19	Sample ID	Sample Plate	Sample Well	17 Index ID	index	15 Index ID	index2	Sample Project	rescription	15	14	2018-11-30	PC	P1-2	2019-03-18	fatherP1
20	1	1		N701-A	TAAGGCGA	S502-A	CICTCIAT	148		16	15	2018-11-30	PC	P1-3	2019-03-20	motherP1
21		2		N701-A	TAAGGCGA	S503-A	TATCCTO	148		17	16	2018-11-30	PC	P1-3	2019-03-20	motherP1
22	-	3		N701-A	TAAGGCGA	S505-A	ACTOCATA	148		18	17	2018-11-30	PC	P1-4	2019-03-18	fatherP1
23		5		N701-A	TAAGGCGA	S507-A	AAGGAGT	140		19	18	2018-11-30	PC	P1-5	2019-03-19	motherP1
25		5	-	N701-A	T GGCGA	S508-A	CTAAGCC	148		20	19	2018-11-30	PC	P1-5	2019-03-19	motherP1
26		7		N701	TAAGGCGA	S510-A	CGTCTAAT	148		21	20	2018-11-30	PC	P1-6	2019-03-18	fatherP1
27		3		N701-A	TAAGGCGA	S511-A	TCTCTCC0	148		22	21	2018-11-30	PC	P1-7	2010-03-18	not provided
28	10			N702-A	CGTACTAG	S502-A	TATCCTCT	148		23	22	2010-11-30	PC	D1-9	2019-03-18	not provided
30	11			N702-A	CGTACTAG	S505-A	GTAAGGA	140		23	22	2010-11-30	PC	P1-0	2019-03-18	not provided
31	12	2		N702-A	CGTACTAG	S506-A	ACTGCATA	148		24	23	2018-11-30	PC	P1-8	2019-03-18	not provided
32	13	3		N702-A	CGTACTAG	S507-A	AAGGAGT	148		25	24	2018-11-30	PC	P1-8	2019-03-18	not provided
33	14	1		N702-A	CGTACTAG	S508-A	CTAAGCC	148		26	25	2018-11-30	PC	P1-8	2019-03-18	not provided
35	16	5		N702-A	CGTACTAG	S511-A	TCTCTCCO	140		27	26	2018-11-30	PC	P1-9	2019-03-18	not provided
36	17	7		N703-A	AGGCAGAA	S502-A	CTCTCTAT	148		28	27	2018-11-30	PC	P1-9	2019-03-18	not provided
37	18	3		N703-A	AGGCAGAA	S503-A	TATCCTCT	148		29	28	2019-02-15	BF1-1	F1-15	2019-05-31	motherF1
38	19	9		N703-A	AGGCAGAA	S505-A	GTAAGGA	148		30	29	2019-02-15	BF1-1	F1-16	2019-05-31	fatherF1
39	20	1	12	N703-A	AGGCAGAA	S506-A	ACTGCATA	148		31	30	2019-02-15	BF1-1	F1-17	2019-05-31	not provided
40	22	2		N703-A	AGGCAGAA	S508-A	CTAAGCC	140		32	31	2019-02-15	BF1-1	F1-18	2019-05-31	not provided
42	23	3		N703-A	AGGCAGAA	S510-A	CGTCTAAT	148		33	32	2019-02-15	BF1-1	F1-19	2019-05-31	not provided
43	24	4		N703-A	AGGCAGAA	S511-A	TCTCTCC0	148		34	33	2019-02-18	BF1-2	F1-20	2019-06-03	not provided
44	25	5		N704-A	TCCTGAGC	S502-A	CICICIAT	148		35	34	2019-02-18	BE1-2	F1-20	2019-06-03	not provided
45	20	7	12	N704-A	TCCTGAGC	S503-A	GTAAGGA	148		36	35	2019-02-27	BE1-2	F1-21	2019-06-12	motherF1
40	28	3		N704-A	TCCTGAGC	S506-A	ACTGCATA	140		37	36	2019-02-27	BE1-2	F1-21	2019-06-12	motherF1
48	29	9		N704-A	TCCTGAGC	S507-A	AAGGAGT	148		38	37	2010-02-27	BE1-2	E1-22	2019-06-12	fatherE1
49	30	D		N704-A	TCCTGAGC	S508-A	CTAAGCC?	148		20	37	2019-02-27	DF1-2	F1-22	2019-06-12	not provided
50	31	1		N704-A	TCCTGAGC	S510-A	CGTCTAAT	148		39	30	2019-02-27	DF1-2	F1-23	2019-06-12	not provided
51		4 • • • •		IN/04-A	TUCTGAGC	A-LICC						2019-02-18	a Hist	De la l		th 2024
	NFD14M	crobiota	WORKS	nop	— pag	ge 32		steran.	Janssen	@CD.J	iug.de				October 8	2024

a lot of frustration

October 8th 2024

jIAB

	A		В	C	D	E	F	G	Н	I	J	K	L
1	numl	ber	well	plate name	sam le name	concentration ng/µL	sample volume µL	solvent	sample type	organism	comment	514	
2	1		A01	1	90	25	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	colon feces	mouse
3	2		B01	1	178	22	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	olon feces	mouse
4	3		C01	1	175	13	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	olon feces	mouse
5	4		D01	1	192	21	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	olon feces	mouse
6	5		E01	1	117	15	25	EB (Tris-HO	genomic DNA (I*	prokaryote	DNAfrom	olon feces	mouse
7	6		F01	1	29	26	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	colon feces	mouse
8	7		G01	1	98	25	25	EB (Tris-He	genomic DNA (I*	prokarvote	DNAfrom	olon feces	mouse
9	8		H01	1	99	25	25	EB (Tris-He	genomic DNA (🎙	prokaryote	DNAfrom	olon feces	mouse
10	9		A02	1	261	14	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	olon feces	mouse
11	10		B02	1	334	1	25	EB (Tris-He	other	other	blank		
12	11		C02	1	82	25	25	EB (Tris-He	genomic DNA (l*	prokaryote	DNAfrom	olon feces	mouse
13	12		D02	1	216	28	25	EB (Tris-He	genomic DNA (🎙	prokaryote	DNAfrom	olon feces	mouse
14	13		E02	1	269	33	25	EB (Tris-He	genomic DNA (P	prokaryote	DNAfrom	olon feces	mouse
15	1.		F02	1	338	1	25	EB (Tris-He	other	other	blank		
16	15		G02	1	252	35	25	EB (Tris-He	genomic DNA (l*	prokaryote	DNAfrom	colon feces	mouse
17	16		H02	1	158	19	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	olon feces	mouse
18	17		A03	1	185	23	25	EB (Tris-He	genomic DNA (🎙	prokaryote	DNAfrom	colon feces	mouse
19	18		B03	1	80	25	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	olon feces	mouse
20	19		C03	1	190	14	25	EB (Tris-He	genomic DNA (1*	prokaryote	DNAfrom	colon feces	mouse
21	20		D03	1	180	22	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	olon feces	mouse
22	21		E03	1	273	25	25	EB (Tris-He	genomic DNA (1*	prokaryote	DNAfrom	colon feces	mouse
23	22		F03	1	316	25	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfeces	monkey	
24	23		G03	1	56	25	25	EB (Tris-He	genomic DNA (1*	prokaryote	DNAfrom	olon feces	mouse
25	24		H03	1	179	35	25	EB (Tris-He	genomic DNA (🎙	prokaryote	DNAfrom	olon feces	mouse
26	25		A04	1	23	25	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	olon feces	mouse
27	26		B04	1	239	19	25	EB (Tris-He	genomic DNA (l*	prokaryote	DNAfrom	colon feces	mouse
28	27		C04	1	181	10	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	colon feces	mouse
29	28		D04	1	197	12	25	EB (Tris-He	genomic DNA (🎙	prokaryote	DNAfrom	olon feces	mouse
30	29		E04	1	296	25	25	EB (Tris-He	genomic DNA (l*	prokaryote	DNAfrom	colon feces	mouse
31	30		F04	1	223	31	25	EB (Tris-He	genomic DNA (l*	prokaryote	DNAfrom	colon feces	mouse
32	31		G04	1	76	25	25	EB (Tris-He	genomic DNA (l*	prokaryote	DNAfrom	colon feces	mouse
33	32		H04	1	103	25	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	olon feces	mouse
34	33		A05	1	120	31	25	EB (Tris-He	genomic DNA (l*	prokaryote	DNAfrom	colon feces	mouse
35	34		B05	1	215	21	25	EB (Tris-He	genomic DNA (1*	prokaryote	DNAfrom	olon feces	mouse
36	35		C05	1	335	1	25	EB (Tris-He	other	other	blank		
37	36		D05	1	130	36	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	olon feces	mouse
38	37		E05	1	303	19	25	EB (Tris-He	genomic DNA (I*	prokaryote	DNAfrom	olon feces	mouse

NFDI4Microbiota workshop

page 34

Stefan.Janssen@cb.jlug.de

2. Base Calling & 3. Demultiplexing

Content

- 1. Scope 🖌
- 2. Base Calling 🖌
- 3. Demultiplexing ✔
- 4. Quality Control
- 5. Adapter Trimming, Clipping
- 6. "OTU" picking
- 7. Data Normalization
 - a. Contamination Removal
 - b. very low abundant "OTU" removal
 - c. Rarefaction

NFDI4Microbiota workshop page 36 Stefan.Janssen@cb.jlug.de

4. Quality Control

NFDI4Microbiota workshop page 37 Stefan.Janssen@cb.jlug.de

Quality assessment of raw sequence data

- How many sequences did we obtain?
- How well did DNA extraction/library prep/sequencing work?
- What preprocessing steps should be performed?

FastQC

- analyzes FASTQ file
- creates graphical report
- does NOT modify the data

Produced by FastQC (version 0.11.9)

jIAB

Quality control

FastQC: Nucleotide distribution across all reads

- expected to be uniform for (meta)genomes
- non-uniform distribution for amplicons, (meta)transcriptomes
- some noise at 5'/3' ends to be expected

FastQC: Overrepresented kmers

- sequencing adapter?
- barcode?
- ...

Content

- 1. Scope 🖌
- 2. Base Calling 🖌
- 3. Demultiplexing ✔
- 4. Quality Control 🖌
- 5. Adapter Trimming, Clipping
- 6. "OTU" picking
- 7. Data Normalization
 - a. Contamination Removal
 - b. very low abundant "OTU" removal
 - c. Rarefaction

NFDI4Microbiota workshop page 43 Stefan.Janssen@cb.jlug.de

5. Adapter Trimming, Clipping

NFDI4Microbiota workshop page 44 Stefan.Janssen@cb.jlug.de

https://seekdeep.brown.edu/images/Default%20Diagram.jpg

NFDI4Microbiota workshop page 47 Stefan.Janssen@cb.jlug.de

Preprocessing: Goals

- remove technical artefacts: sequencing adapters, barcodes, ...
- trim low-quality sequences
- discard short reads
- remove host DNA, e.g. by mapping to corresponding reference genome

→ No need for high-end resources here, typical laptop is sufficient!

Software installation / distribution not easy!

- how many users?
- central or individual maintenance?
- which operating system(s)?
- 1 laptop or supercomputer with 100 servers?
- performance?
- dependencies!!
- effort to update software

Stefan.Janssen@cb.jlug.de

Preprocessing: An iterative process!

- 1. Assessment: Raw sequencing data
- 2. know your primer!
- 3. Processing: Trimming, filtering, ...
- 4. Re-assessment: Data good? How much did we lose?
- 5. Repeat?

Tools

- Lots of different options available: Trimmomatic, **cutadapt**, fastx-toolkit, FastqCleaner, skewer, BbDuk, ..
- Tool performance is pretty similar, just use those you like

TrimmomaticSE data.fastq ILLUMINACLIP:adapter.fas:2:40:15 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

Content

- 1. Scope 🖌
- 2. Base Calling 🖌
- 3. Demultiplexing ✔
- 4. Quality Control 🖌
- 5. Adapter Trimming, Clipping ✓
- 6. "OTU" picking
- 7. Data Normalization
 - a. Contamination Removal
 - b. very low abundant "OTU" removal
 - c. Rarefaction

NFDI4Microbiota workshop page 51 Stefan.Janssen@cb.jlug.de

6. "OTU" picking

NFDI4Microbiota workshop page 52 Stefan.Janssen@cb.jlug.de

OTU picking = grouping sequences by similarity

October 8th 2024

SampleData[SequencesWithQuality] 4ac2.fastq(.gz) e375.fastq(.qz) 0HW GAC @ HW 4qd8.fastq(.qz) AGC TAC TCG @HW 9872.fastq(.gz) AGA ATG @HWT-6X 9267:1:1:25:1109 AGC aba TACGGAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAA 111 GAG AGCGTACGTAGGCGGTTAGGTAAGTCAGATGTGAAAGCCC aa′ BBB CGGGCTCCACCTGGGAATGG XYU aba 7^U 0 HW ^aa aaaba^`a^N `\ ``a a]Zaa^^\Z`[M]a`[VYa^ X VZ TAC Z]NZ\`]TY\] ^RVH PHOWZM[PTRPTRYUBBBBBB AGG >feature5 GGG GACGAAGGTGACGACCGTTGCTCGGAATCACTGGGCATAAAGCGCGCGTAGGTG GCTTGGTAAGTCCATGGTGAAATCCCTCGGCTCAACCGAGGAACTG aaa la >feature4 ^ZX TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACG GATGGACAAGTCTGATGTGAAAGGCTGGGGGCTCAACCCCGGGACGG >feature2 TACGTATGGGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGTGCGTAGGTG GTGGCTTAAGCGCAGGGTTTAAGGCAATGGCTTAACTATTGTTCTC >feature1 GACGGAGGATGCAAGTGTTATCCGGAATCACTGGGCGTAAAGCGTCTGTAGGTG

page 53

Stefan.Janssen@cb.jlug.de

NFDI4Microbiota workshop

FeatureTable [Frequency]

	featurel	feature2	feature3	feature4 feature	
4ac2	42	0	37	99	1
e375	12	1	22	88	0
4gd8	25	3	23	86	0
9872	0	0	87	12	0

2	0	0	87	
FeatureData[Sequence]				

		FeatureTable[Frequency]				
GGCGAGCGTT			OTU1	OTU2		
GGCGAGCGTT	90% OTU Clustering					
GGCGAGCGTT		4ac2	100	79		
GGCGAGCGTT					-	
GGCGAGCGTT		e375	88	35		
GGCGAGCGTT		4gd8			-	
GGCGAGCGTT			86	51		
GGCGAGCGTT		0.070	40	07		
GGCGAGCGTT		9072	12	87		
GGCGAGCGTT				I	-	
GGCGAGCGGT		FeatureTable[Free	quency]			
GGACGGCGTT			2 011	2 0110	3.0112	2 0114
GGACGGCGTT			ASVI	ASVZ	ASV3	ASV4
GGACGGCGTT		4ac2	42	0	37	99
GGACGGCGTT						
GGACGGCTTTT	Ciustering)	e375	12	1	22	88
GGACGGCTTTT						
GGACGGCTTTT		4gd8	25	3	23	86
GGACGGCTTT						
GGACGGCTGT		9872	0	0	87	12
GGACGGCTGT						
NFDI4Microbiota	workshop page 54 Stefan.J	anssen@cb.jlug.de				- Oct

jIAB

October 8th 2024

ASV5

1

0

0

0

What normally happens during sequencing?

Cleaning and manipulating raw sequences

- Clustering
 - Remove noisy sequences and reduce the amount of sequences to process
 - Works based on a given threshold, i.e. 97% similarity but others exist like Oligotyping
 - There are different methods (closed or open reference) and algorithms (sortmerna, vclust)
- Remove noise
 - Find the cleanest sequence
 - Correct and/or discard super noisy sequences
 - Examples are: DADA2 and Deblur

Clustering methods ideal situation

Closed reference OTU assignment

DADA2

Deblur

Amir, et al. *mSystems*, 2017

Content

- 1. Scope 🖌
- 2. Base Calling 🖌
- 3. Demultiplexing ✔
- 4. Quality Control 🖌
- 5. Adapter Trimming, Clipping 🗸
- 6. "OTU" picking ✔
- 7. Data Normalization
 - a. Contamination Removal
 - b. very low abundant "OTU" removal
 - c. Rarefaction

NFDI4Microbiota workshop page 60 Stefan.Janssen@cb.jlug.de

7. Data Normalization

a. Contamination Removalb. very low abundant "OTU" removalc. Rarefaction

October 8th 2024

7a. Contamination Removal

https://www.pngfind.com/download/hTbiJox_drawing-cell-endoplasmic-reticulum-endosymbiotic-theory-flowchart-hd/

NFDI4Microbiota workshop page 62 Stefan.Janssen@cb.jlug.de

7a. Contamination Removal

mouse gut microbiome

7b. very low abundant "OTU" removal

counts = counts[counts.sum(axis='features') >= 10]

NFDI4Microbiota workshop page 64 Stefan.Janssen@cb.jlug.de

7c Rarefaction

0

Credit: Antoine Doré, https://www.nature.com/artices/d41586-020-00193-

NFDI4Microbiota workshop

0

page 65

Stefan.Janssen@cb.jlug.de

October 8th 2024

jIAB

7c Rarefaction

NFDI4Microbiota workshop page 66

Stefan.Janssen@cb.jlug.de

7c Rarefaction

7c Rarefaction: Size of net = rarefaction depth?

7c Rarefaction: Size of net = rarefaction depth = 5

7c Rarefaction: depth

7c Rarefaction: depth

Summary

- Scope 🗸 1.
- Base Calling ✔ bcl2fastq 2.
- 3. **Demultiplexing** ✓ bcl2fastq
- Quality Control 🗸 fastp 4.
- Adapter Trimming, Clipping V fastp 5.
- "OTU" picking ✓ DADA2/Deblur via Qiime2.org 6.
- 7. Data Normalization
 - Contamination Removal ✔ taxonomic assignments -> later a.
 - b. very low abundant "OTU" V removal pandas
 - **Rarefaction** ✔ Qiime2.org С.

AB
	Tuesday, Oct 8th	Wednesday, Oct 9th	Thursday, Oct 10th
10:00-10:30		QIIME2 and Qiita	Buffer for Hands-On, Coffee break in-between
10:30-11:00		Qiita Hands-On	
11:00-11:30	Welcome & Intro		
11:30-12:00	From raw data to feature tables	Coffee Break (~15min)	Coffee Break (~15min)
12:00-12:30		Qiita Hands-On	Buffer for Hands-On
12:30-13:00		Lunch Break	Lunch break and Closing
13:00-13:30	Lunch Break		Temarks
13:30-14:00		QIIME2 Hands-On	
14:00-14:30	Sequence quality control		
14:30-15:00	Coffee Break	Coffee Break	
15:00-15:30	QC Hands-on	Diversity Calculation	
15:30-16:00		QIIME2 Hands-On (cont'd.)	
16:00-16:30			
DI4Microbiota wor	kshop page 73 Stefa	n.Janssen@cb.jlug.de	October 8 th

JHaaS

• Please login to <u>https://jhaas.gi.denbi.de/</u> and request access to <u>https://jhaas.gi.denbi.de/participation/participate/metagenomics2024</u>

• Wait until you are verified!

Hands-On Quality Control

NFDI4Microbiota workshop page 75 Stefan.Janssen@cb.jlug.de

October 8th 2024

Short JupyterHub Introduction I

October 8th 2024

Fastqc and Multiqc Hands-On I

1: Download and unzip the data

wget -qO-

http://minio-seed-s3-storage:9000/metagenomics2024/compressed_metagenomics.t
ar.gz | tar xvz

2: Create Folder for Fastqc Results

mkdir fastqc_results

3: Activate conda environment

source /opt/conda/bin/activate && conda activate qualitycontrol

Fastqc and Multiqc Hands-On II

4: Run fastqc on sequence data

```
fastqc -o fastqc_results/
```

Data/sequence_data/pax/study_raw_data_11758_092524-041740/per_sample_FASTQ/6 7800/*.fastq.gz

6: Run Multiqc there

```
multiqc fastqc_results/.
```

7: Look for multiqc_report.html file, download it, open in your Browser

Login and Account for Qiita

For tomorrow's Hands-On session, please create an account at <u>https://qiita.ucsd.edu</u>

Thank you for using Qiita. Citing Qiita?

Stefan.Janssen@cb.jlug.de

October 8th 2024