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Chapter 1

Introduction

“Nucleons are the stuff of which our world is made. As such they must be at
the center of any discussion of why the world we actually experience has the
character it does.”
Nathan Isgur, Why N∗’s are Important, overview talk at N∗2000 Conference,
Thomas Jefferson Laboratory, Newport News, VA/USA, 16-19 Febr. 2000.

“One very powerful way of experimentally investigating the strongly in-
teracting particles (hadrons) is to look at them, to probe them with a known
particle; in particular the photon (no other is known as well). This permits
a much finer control of variables, and probably decreases the theoretical
complexity of the interactions.”
Richard Feynman, Photon-Hadron Interactions, Addison-Wesley Pub.,
Reading/MA, 1998.

One of the major quests of contemporary theoretical physics is the search for a quantum
field-theoretical description of all phenomena observed in nature. A major milestone
towards this goal was the unification of the electromagnetic and weak force in the 1960s
and 70s by the electroweak theory due to Salam and Weinberg, soon followed by Quantum
Chromodynamics (QCD), the generally accepted field theory underlying the strong force
which holds together the nucleons. To date, only the gravitational force has resisted a
description within a unified quantum field-theoretical framework.

The success of the field-theoretical description of the subatomic world is based on the
overwhelming predictive power of the electroweak theory, and in particular of Quantum
Electrodynamics (QED). The smallness of the electromagnetic fine structure constant
αem allows for an expansion of the theory in powers of αem, called “perturbation theory”.
Upon application of this powerful tool, the electromagnetic field theory has passed up to
now all experimental tests with impressive accuracy.

At sufficiently high energies, QCD exhibits a perturbative nature similar to QED: The
color coupling constant of QCD αS becomes small, which is called “asymptotic freedom”.
Therefore, at these energies, quarks, which are subjected to the strong force, act as if
they could be described by a free theory, giving rise to the applicability of constituent
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2 Chapter 1. Introduction

quark models. In contrast to the electromagnetic force, however, the color coupling be-
comes large at low energies, thereby “confining” the quarks permanently into the known
hadrons and preventing QCD from being accessible by perturbation theory. A compelling
description of QCD in this region could be achieved through Wilson’s lattice gauge theory
[193]. Wilson showed how to quantize a gauge field theory as QCD on a discrete four
dimensional lattice in Euclidean space-time, while preserving exact gauge invariance and
having a a computable strong-coupling limit. Thus the extraction of qualitative non-
perturbative information concerning QCD became possible. In the absence of analytic
solutions to QCD, lattice gauge theories today provide the most promising approach for
theoretical predictions of properties of the hadronic ground states and also of their excited
states. However, due to the enormous computational power necessary for the numerical
treatment, lattice QCD has only started to be able to describe baryon resonance masses
and decay widths (see, e.g., [196, 107, 154]). This gave rise to the development of a large
number of quark models of hadrons (e.g. [17, 24, 151, 171]), aiming at the prediction of
the properties of the hadrons by reducing the complexity of the strongly self-interacting
multi-quark-gluon system to an effective two- or three-quark system.

On the experimental side, the low-energy behavior of QCD can not be adressed directly.
The investigation of the inner structure of hadrons can only be achieved in a controlled
way by exciting the nucleon with the help of a hadronic (meson) or an electromagnetic
(photon or electron) probe. However, due to the extremely short lifetime of the excited
hadron states, only the measurement of their decay products is possible. Consequently,
the experiments for analyzing nucleon resonances have focussed on meson production
off the nucleon. While for the meson-induced reactions, most of the experiments have
been performed from the 1960s to the 1980s, the development of high-duty beams and
detectors in the last decade has led to the collection of an increasing amount of photon-
induced data. Ongoing experiments are being performed at facilities in Mainz/Germany
(TAPS Collaboration), Bonn/Germany (SAPHIR, TAPS/Crystal Barrel Collaboration),
Grenoble/France (GRAAL Collaboration), Newport News/USA (CLAS Collaboration at
JLAB), Brookhaven/USA (LEGS Collaboration), and Hyogo/Japan (LEPS Collaboration
at SPring-8). All these experiments concentrate on measuring meson photoproduction
off the nucleon with the main purpose to provide information for the study of nucleon
resonances up to center-of-mass energies of

√
s ≈ 2 GeV.

Since (lattice) QCD calculations are still far from being amiable to solutions for low and
intermediate energy scattering reactions, it is necessary to use effective methods for the
description of the dynamical structure of these processes. Such effective methods account
for the inner structure of the baryons by introducing explicit baryon resonance states,
whose properties are extracted by comparison with the experimental observables. The
goal is to be finally able to compare the extracted masses and partial decay widths to the
predictions from lattice QCD and/or quark models.

Basically all information about nucleon resonances identified so far from experiment in
this way stems from partial wave analyses of γN → πN and πN → πN (to some degree
also from 2πN production). This also explains why these resonance states are usually
labeled by the πN relative orbital angular momentum L, the total isospin I, and the
total angular momentum J . The present situation in comparison with the quark model
predictions of Capstick et al. [24] is depicted in Figs. 1.1 and 1.2. For some of these
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Figure 3: Calculated masses and Nπ decay amplitudes for nucleon resonances below 2200
MeV from Refs. [6, 10], compared to the range of central values for resonances masses from the

PDG [11], which are shown as boxes. The boxes are lightly shaded for one and two star states
and heavily shaded for three and four star states. Predicted masses are shown as a thin bar,

with the length of the shaded region indicating the size of the Nπ amplitude.

Models with OPE-based short-distance interactions explain the low position of this
state as due to the flavor-dependence of the resulting contact interaction [8]. However, the
Roper resonance is very broad (roughly 350 MeV width), and neither of these approaches
takes into account shifts in its mass due to self-energy corrections from baryon-meson
loops, which can naively be expected to be of the order of the width. It is therefore
not clear whether 100 MeV discrepancies in any spectrum will allow conclusions to be
made until this rather difficult problem is consistently dealt with, for all the states in the
spectrum.

Masses for nonstrange baryon states below 2200 MeV calculated in this way are shown
in Figures 3 and 4, along with Nπ decay amplitudes [10] (their squares give the Nπ partial
widths) for each state. The calculated masses are shown as thin bars, and the length of the
shaded part of each bar is proportional to the Nπ decay amplitude strength. Also shown
in these figures are boxes showing the range in the central value of the mass of resonances
quoted by the Particle Data Group [11] (along with their best estimate of the mass), which
are compiled from partial-wave analyses of mainly Nπ elastic and inelastic scattering data.

4

Figure 1.1: Calculated masses and πN decay amplitudes for nucleon (I = 1
2
) resonances

below 2.2 GeV from the quark model of Capstick et al. [24], compared to the range of
central values for resonances masses from the particle data group (PDG) [67], which are
shown as boxes. The boxes are lightly shaded for one and two star states and heavily
shaded for three and four star states (cf. Table 3.2 in Chapter 3). Predicted masses are
shown as a thin bar, with the length of the shaded region indicating the size of the πN
amplitude. Figure taken from Ref. [23].

resonances, as e.g. the L(2I)(2J) = P33(1232) resonance (in brackets, the estimated mass is
given) dominating low-energy πN scattering, the various analyses agree rather well in the
extracted masses, total, πN and 2πN widths, while for others as the S11(1535) or the sec-
ond and third resonance in a partial wave there are still large discrepancies. In the specific
case of the S11(1535) the reason for the discrepancies is its closeness to the ηN threshold,
which has a strong influence on the πN → πN reaction due to unitarity. This example
already shows, that in many cases the simultaneous consideration of further final states, a
so-called “coupled-channel analysis”, for the resonance analysis is necessary. On the other
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Figure 4: Model masses and Nπ decay amplitudes for ∆ resonances below 2200 MeV from
Refs. [6, 10], compared to the range of central values for resonances masses from the PDG [11].

Caption as in Fig. 3.

It is clear that low-lying well separated states with substantial Nπ widths are those likely
to have been seen in the analyses, and that model states with small Nπ couplings are
either poorly established resonances, or not present at all in the analyses. Models which
describe the degrees of freedom in baryons at low energy as quarks and diquarks have
fewer degrees of freedom and so fewer excitations, so the discovery of additional positive
parity excited states (and the confirmation of some existing states) predicted by models
which treat the quarks symmetrically could rule out this possibility.

Further insight into the nature of the short-distance interactions between quarks can
be found from a consideration of the nature of the spin-orbit and tensor interactions
in baryons. Although the cancellation of the two-body parts of the one-gluon exchange
(OGE) spin-orbit interactions and those arising from Thomas precession in the confining
potential can be arranged [4], spin-orbit splittings are still too large in non relativistic
OGE-based models. In the relativized model it is shown that it is possible to have small
spin-orbit interactions in baryons due to relativistic effects [6]. This problem is not solved

5

Figure 1.2: Calculated masses and πN decay amplitudes for ∆ (I = 3
2
) resonances below

2.2 GeV from the quark model of Capstick et al. [24], compared to the range of central
values for resonances masses from the particle data group [67]. Notation as in Fig. 1.1.
Figure taken from Ref. [23].

side, quark models predict a much richer resonance spectrum than has been found in πN
production so far, giving rise to speculations that many of these resonance states only
become visible in other reaction channels. This has been the basis for a wealth of analyses
concentrating on identifying these “missing” or “hidden” resonances in the production of
other final states as ηN , KΛ, KΣ, or ωN . However, almost all of these analyses concen-
trate on one specific channel thereby neglecting the influence of the extracted resonance
properties on other channels. Therefore, there is a strong need in the field of nucleon
resonance analysis for a model that allows to consider and analyze all important reaction
channels simultaneously. At the same time, this requires the determination of a priori
unknown couplings and masses of a large number of resonances (cf. Table 3.2 in Chapter
3). The premise for the reliable extraction of these properties is therefore to develop a
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model, that not only analyses all production mechanisms simultaneously for as large an
energy range as possible, but also consistently uses the same Lagrangian to describe the
reaction mechanism of both the pion- and photon-induced reactions, thereby generating
all non-resonant contributions dynamically from Born, u-, and t-channel contributions
without new parameters. Since it is generally accepted that strong interactions are de-
scribed by QCD, an effective theory describing meson-nucleon scattering reactions should
ideally be derived from and therefore mirror as well as possible the properties of the fun-
damental theory QCD. Thus it should satisfy the same symmetries, while the degrees
of freedom are mesons and baryons rather than quarks and gluons. For πN production,
this mandates the conformity with chiral symmetry, which is known to be important for
low-energy pion-nucleon physics.

The way towards a simultaneous analysis of all reaction channels respecting the above
constraints has been paved by Feuster and Mosel [51, 52, 53], who have included in their
resonance analysis up to center-of-mass energies of 1.9 GeV the production of γN , πN ,
2πN , ηN , and KΛ off the nucleon using a unitary, effective Lagrangian framework. One of
the major conclusions has been that indeed, the additional inclusion of high quality pho-
toproduction data is inevitable for a reliable extraction of resonance masses and widths.
However, due to the neglect of the contribution of the important vector meson final state
ωN , the model had to put up with some discrepancies in the simultaneous description of
the included channels at higher energies (see Chapter 3).

Consequently, this model is extended in the present work to also include the ωN final state,
thereby allowing for a more reliable analysis of the properties of higher lying resonances.
This final state has not yet been included consistently and to its full complexity in a
coupled-channel analysis. The hitherto developed models have mostly considered the ωN
state only separately, leaving the calculation rather unconstrained. This situation changes
completely once the ωN production is considered in a choupled-channel approach, since
due to unitarity any change in the ωN description immediately affects all other channels,
in particular the πN production mechanism.

Vector meson production off the nucleon, however, is also of special interest by itself.
Due to the electromagnetic decay of vector mesons into lepton pairs they represent an
ideal probe to investigate the properties of hot and dense matter in heavy ion collisions.
Since the leptons only interact by the electroweak force, their measurement allows a direct
access to the influence of the surrounding medium on the vector mesons’ properties and
thereby the strongly interacting environment itself. In fact, the observed enhancement of
the dilepton yield at small invariant dilepton masses in ultrarelativistic heavy ion collisions
[25] is currently interpreted as a modification of the mass and width of the ρ vector meson
in nuclear matter. For reliable and conclusive investigations of such QCD phenomena,
the understanding of the underlying fundamental process of vector meson production in
the vacuum is of vital importance. Experimentally, explorations in this direction will
be realized by analyzing dilepton production with the spectrometer HADES at GSI in
Darmstadt/Germany.

As pointed out above, a theoretical investigation of higher lying resonances and vector
meson production requires the minimization of ambiguities by incorporating coupled-
channel effects and simultaneously considering all possible reaction channels. In this
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thesis, the extended coupled-channel model, fulfilling all the aforementioned constraints,
is presented and discussed in full detail. In the second Chapter of this work, the funda-
mental field-theoretical equation, the Bethe-Salpeter equation, which defines the unitary
and analytic framework for the description of all underlying two-particle scattering pro-
cesses, is discussed. The approximation to this equation, the so-called “K-matrix Born
approximation”, which is used in the present model, is introduced and its consequences
are compared with other approximations. The following Chapter 3 concentrates on the
final states, which have to be implemented in a unitary framework, and how this imple-
mentation is realized in the present and also in other works. For the inclusion of the
photoproduction mechanism in the model, it is imperative to account for the hadronic
substructure of background (Born) terms while properly maintaining gauge invariance in
order to unambigously separate the resonance from background contributions. This is
also discussed in Chapter 3.

The consideration of rescattering effects requires a partial-wave decomposition of all in-
cluded reaction processes. A natural and straightforward generalization of the standard
πN → πN partial-wave decomposition is presented in Chapter 4. This generalization al-
lows for a uniform treatment and therefore the analysis and decomposition of any meson-
and photon-baryon reaction on an equal footing. In Chapters 5 and 6, the formalism for
the calculation of the spin-dependent amplitudes in all channels is presented. Moreover, a
comparison is made between the partial waves resulting from our method and techniques
used in other works. The data base, which is used for the extraction of the nucleon res-
onance properties is introduced in Chapter 7 and its treatment in view of balancing the
various channels is discussed. Chapter 8 contains the results of the calculations performed
for the extraction of a best description of the experimental data base. These results are
discussed and also compared with extractions from other models.



Chapter 2

The Bethe-Salpeter Equation and
the K-Matrix Approximation

The aim of this chapter is to set the framework for the determination of the scattering
amplitude, which forms the basis for the extraction of any observable. General details of
the underlying formal scattering theory are given in Appendix C and discussed extensively
in the literature (e.g. [18, 56, 61, 82, 88, 144, 153]). In the processes considered in the
present work, accounting for physical constraints such as relativistic invariance, unitarity,
analyticity, and gauge invariance is essential. In the following, the Bethe-Salpeter (BS)
equation for the scattering amplitude, which automatically leads to a two-particle scat-
tering amplitude fulfilling the first three constraints, is derived and the useful K-matrix
Born approximation is presented. The last constraint of analyticity and to which degree
the BS equation is approximated in the present and other models are also discussed in
the next Chapter 3.

2.1 Bethe-Salpeter Equation

When one deals with strong interactions one faces the problem of iterating the interaction
potential. Due to the large couplings an expansion in orders of the potential becomes
questionable. The BS equation [15] represents a possibility for summing the “ladder”
contributions of the potential to the scattering amplitudes to all orders, cf. Fig. 2.1, while
analyticity and two-particle unitarity are maintained. The only assumption entering the
derivation of the scattering matrix is that all higher-order crossed diagrams are included in

Figure 2.1: “Ladder” contributions to the amplitude M.

7
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Figure 2.2: Left: Example of a higher-order crossed diagram neglected in the present
model. Right: First order amplitude M(1).

the potential V . In an effective Lagrangian model for the potential V as the one presented
in Chapter 3, however, it is not possible to include all those diagrams. Therefore, only
lowest order crossed diagrams (u-channel) are considered within the iteration, while the
higher-order ones, as, e.g., the one shown in Fig. 2.2, are assumed to be negligible within
the ladder summation.

In the following, we work in the center-of-mass (c.m.) kinematics and use two-particle
asymptotic states |pk , λ〉 ≡ |i〉 as given in Appendix A. Starting with the first order
amplitude (cf. Fig. 2.2)

M(1) ≡ 〈f |M (1)|i〉 = 〈f |V |i〉 ≡ Vfi (2.1)

containing all two-particle irreducible Feynman diagrams, one finds by applying standard
Feynman rules [18, 82] for writing down the second order ladder (square) contribution of
the potential V (see left graph in Fig. 2.1)

〈f |M (2)(p′, p;
√

s)|i〉 =

∫
d4q

(2π)4

∑
〈f |V (p′, q;

√
s)iGBq(q;

√
s)iGMq(q;

√
s)V (q, p;

√
s)|i〉 ,

(2.2)
where the sum runs over all allowed intermediate two-particle states. The lower index q is
introduced to denote the properties of these states, since they can in general be different
from the final states (e.g. πN → KΛ → πN). Furthermore, in Eq. (2.2) the intermediate
baryon and meson propagators GB and GM have been introduced in the standard way,
e.g. for a spin-1

2
baryon and a spin-0 meson:

GBq(q;
√

s) =
(1

2

√
s− q0)γ0 + q ·γ + mBq

(1
2

√
s− q0)2 − q 2 −m2

Bq
+ iε

=
2mBq

∑
λBq

u(pq, λBq)ū(pq, λBq)

(1
2

√
s− q0)2 − q 2 −m2

Bq
+ iε

GMq(q;
√

s) =
1

(1
2

√
s + q0)2 − q 2 −m2

Mq
+ iε′

. (2.3)

The intermediate momenta are routed symmetrically with respect to the total four-
momentum P = (

√
s,0 ) in the c.m. system:

kq = P/2 + q and pq = P/2− q . (2.4)

Although we have introduced specific intermediate particle propagators (i.e. those of a
spin-1

2
baryon and a spin-0 meson), the following derivations are valid for any meson-

baryon intermediate state and only refer to the denominators in (2.3). For convenience,
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Figure 2.3: Bethe-Salpeter equation for the two-particle scattering amplitude M.

in all the equations below the summation over the intermediate states in the rescattering
part and the dependence of all quantities on the c.m. energy

√
s are omitted and to be

understood implicitly.

Looking at Eqs. (2.1) and (2.2), an implicit expression for summing up all orders in V is
obvious:

〈f |M(p′, p)|i〉 = 〈f |V (p′, p)|i〉+

∫
d4q

(2π)4
〈f |M(p′, q)iGB(q)iGM(q)V (q, p)|i〉.

Introducing the Bethe-Salpeter propagator

GBS(q;
√

s) ≡ iGB(q;
√

s)GM(q;
√

s) (2.5)

one arrives at the famous Bethe-Salpeter equation

〈f |M(p′, p)|i〉 = 〈f |V (p′, p)|i〉+

∫
d4q

(2π)4
〈f |M(p′, q)GBS(q)V (q, p)|i〉 , (2.6)

which is depicted in Fig. 2.3.

An equivalent formulation of the BS equation is achieved when the integration is split up
into two steps. In the first step a K̃-matrix is introduced by the integration over the real
(principal value) part of the BS propagator:

〈f |K̃(p′, p)|i〉 = 〈f |V (p′, p)|i〉+

∫
d4q

(2π)4
〈f |K̃(p′, q)Re (GBS(q)) V (q, p)|i〉 . (2.7)

Now the matrix element M = 〈f |M(p′, p)|i〉 of the scattering matrix M is given by the
integration over the imaginary part of the BS propagator:

〈f |M(p′, p)|i〉 = 〈f |K̃(p′, p)|i〉+

∫
d4q

(2π)4
〈f |M(p′, q)iIm (GBS(q)) K̃(q, p)|i〉 , (2.8)

which is easily proven by plugging in (2.7). The advantage of this formulation will become
clear after a short look at the imaginary part of the BS propagator. As shown in Appendix
D.2 it acts under the integral

∫
d4q =

∫
dq0q

2dqdΩq as

∫
d4qiIm (GBS(q))

=

∫
d4q

[
−iπ2

mBq

∑
λBq

u(pq, λBq)ū(pq, λBq)

q
√

s
δ(q0 +

√
s/2− EMq)δ(q− q̂)

]
. (2.9)
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Here, q̂ is the c.m. three-momentum of the intermediate state when both particles are
on their mass shell. Taking advantage of this property of the imaginary part we arrive at
the two-dimensional BS equation:

〈f |M(p′, p)|i〉 = 〈f |K̃(p′, p)|i〉 − i q̂mBq

(4π)2
√

s

∫
dΩq

∑

λq

〈f |M(p′, q)|q〉〈q|K̃(q, p)|i〉 (2.10)

with the intermediate two-particle momentum state |q〉 = |p qk q, λq〉. Introducing the T -
and K-amplitudes (cf. Appendix C)

T fi
λ′λ ≡ −

√
pp′mB′mB

(4π)2
√

s
〈f |M(p′, p)|i〉

Kfi
λ′λ ≡ −

√
pp′mB′mB

(4π)2
√

s
〈f |K̃(p′, p)|i〉 ,

Equation (2.10) simplifies to

T fi
λ′λ = Kfi

λ′λ + i

∫
dΩq

∑

λq

T fq
λ′λq

Kqi
λqλ . (2.11)

As shown in Chapter 4 this equation can be further simplified for parity conserving and
rotationally invariant interactions by a decomposition into partial waves and one arrives
at an algebraic equation relating the decomposed T fiand Kfi:

T IJ±
fi =

[ KIJ±

1− iKIJ±

]

fi

. (2.12)

Here, we have in addition introduced the decomposition into amplitudes of total isospin
I (I = 1

2
or I = 3

2
), see Appendix F.

Although the full isospin decomposition of the photon-induced amplitudess including
Compton scattering can in principle be easily achieved (see Appendices F.1.2 and F.2.1),
one runs into problems concerning gauge invariance of Compton scattering. This is due
to the fact that the rescattering takes place via the I = 1

2
and I = 3

2
amplitudes thus

weighing the Compton isospin amplitudes T
11, 1

2
γγ with I = 1

2
and T

11, 3
2

γγ with I = 3
2

(cf. Eq.
(F.21)) differently, while gauge invariance for the nucleon contributions is only fulfilled for

the proton and neutron amplitude (more precisely, for the combination T
11, 1

2
γγ +2T

11, 3
2

γγ , see
Appendix F.2.2). Consequently, the electromagnetic interaction is included only perturba-
tively in the present calculation. The perturbative inclusion is equivalent to neglecting all
intermediate electromagnetic states a in the rescattering part of Equation (2.11). Due to
the smallness of the fine structure constant α, this approximation is reasonable. The con-
sequence is that the calculation of the hadronic reactions decouples from the electromag-
netic ones and can be extracted independently. Hence, the full K-matrix equation (2.12)
is only solved for the hadronic states. In the second step, the meson-photoproduction
amplitudes can be extracted via

T IJ±
fγ = KIJ±

fγ + i
∑

a

T IJ±
fa KIJ±

aγ . (2.13)
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The sum over a runs only over hadronic states. Finally, the Compton amplitudes result
from

T IJ±
γγ = KIJ±

γγ + i
∑

a

T IJ±
γa KIJ±

aγ (2.14)

with a running again only over hadronic states. Since the Compton isospin amplitudes of
the potential only enter in the direct contribution KIJ±

γγ and only the proton and neutron
Compton amplitudes of Eq. (F.22) are of interest, gauge invariance is fulfilled. This is
also discussed in some more detail in Appendix F.2.2.

2.2 Unitarity and the K-Matrix Approximation

Apart from the appealing simplicity of Eq. (2.12), the introduction of the K̃-matrix in
(2.7) leads to a further advantage concerning the proper treatment of unitarity in the
scattering problem.

From the unitarity of the scattering matrix SS† = S†S = 1 follows the optical theorem
under the assumption of two-particle unitarity (see Appendix C.2):

〈f |M(p′, p) − M †(p, p′)|i〉
= −i

∫
d4qδ(

√
s/2− EBq − q0)δ(

√
s/2− EMq + q0)

2mBq

(4π)2EBqEMq

×

〈f |M(p′, q)
∑

λBq

u(pq, λBq)ū(pq, λBq)M
†(p, q)|i〉 .

On the other hand, one can derive from the BS equation the relation (see Appendix D.1):

〈f |M(p′, p)−M †(p, p′)|i〉 =

∫
d4q

(2π)4
〈f |M(p′, q)2iIm (GBS(q)) M †(p, q)|i〉 .

Comparing these two equations, one sees that to preserve unitarity any two-particle prop-
agator can be used in the BS equation as long as its imaginary part acts under the integral∫

d4q =
∫

dq0q
2dqdΩq in the same way as the BS propagator (cf. Eq. (2.9)), i.e. as∫
d4qiIm (GBS(q))

=

∫
d4q

[
−iπ2

mBq

∑
λBq

u(pq, λBq)ū(pq, λBq)

EBqEMq

δ(k0
q − EMq)δ(p

0
q − EBq)

]
,

where Eq. (2.4) has been used. Looking back at (2.7) shows, that one can carry out
approximations in the K̃-matrix by modifying the real part of the two-particle propagator
without violating unitarity. Thus, the simplest choice for the two-particle propagator, that
still preserves unitarity, is the so called “K-matrix propagator”:

GK(q;
√

s) ≡ iIm(GBS(q))

= −iπ2
mBq

∑
λBq

u(pq, λBq)ū(pq, λBq)

EBqEMq

δ(k0
q − EMq)δ(p

0
q − EBq) (2.15)

= −i(2π)2mBq

∑

λBq

u(pq, λBq)ū(pq, λBq)δ(k
2
q −m2

Mq
)δ(p2

q −m2
Bq

)Θ(k0
q)Θ(p0

q) ,
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where the first equality refers to the action under the integral
∫

d4q. The last equality
shows that the K-matrix propagator simply sets the intermediate particles on their mass
shell. This is equivalent to setting ReGBS = 0 thus completely ignoring the integral part
in Eq. (2.7). Then the equation for the K̃-matrix reduces to

K̃(p′, p) = V (p′, p) , (2.16)

which is the so-called K-matrix Born approximation. However, even though two-particle
unitarity is fulfilled in this approximation, the complete relation between the real and
imaginary part of the amplitude is lost and analyticity is violated, because the real part of
the BS propagator is neglected. It has been shown by Pearce and Jennings [139], however,
that the contributions of GBS to the principal value part of the scattering equation are
of minor importance, since they have to be reduced by a very soft cutoff dictated by
experimental data. This leads to noticeable differences between a fully analytic and a
K-matrix calculation only very close to thresholds (see also Section 8.4.1). It has also
been argued by Goudsmit et al. [63], that for πN scattering the main effect of the real
part of the intermediate loop integrals is a renormalization of the coupling constants and
masses of the involved particles, which can therefore be taken to be physical values in the
K-matrix Born approximation. See also Section 3.2.

A glance at Eq. (2.12) reveals, that the proper treatment of unitarity in the scattering
problem can also be addressed in a more direct way. Since the scattering matrix S and
the transition matrix T are related by (cf. Appendix C)

Sfi ≡ 1 + 2iTfi , (2.17)

any T matrix, which is extracted via (2.12) from a Hermitian K-matrix, fulfills unitarity.
Therefore, in the literature, many other approximations to the BS Equation (2.6) preserv-
ing unitarity can be found (see also Section 3.1). Many of these approximations reduce
the four-dimensional BS Equation (2.6) to a three-dimensional Lippmann-Schwinger equa-
tion, thus accounting for analyticity to some extent. However, due to technical feasibility,
most of them are restricted to elastic pion-nucleon scattering, while only a few ones also
include inelastic channels. A general problem of the 3D reduction is the way how the
reduction is performed. There is no unique method [68]; it can even be shown, that the
3D reduction can be achieved in an infinite number of ways, all of which satisfy Lorentz
invariance and elastic two-body unitarity [195].
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The Model

Due to unitarity, a problem arises in the treatment of scattering reactions. If there is more
than one important channel energetically allowed, the various channels can influence each
other in different ways. Graphically, this means that flux can go away from one reaction
channel into another one, leading to significant effects especially at thresholds. A well
established observation is, e.g., the influence of the ηN threshold on πN scattering, cf.
Fig. 3.1. Without the ηN threshold cusp, the sudden change in slope of the real part
of the IJP = 1

2
1
2

−
(S11)

1) partial wave cannot be explained; i.e. a calculation without
ηN results in a strongly altered behavior. For that reason, all the resonance models for
πN scattering described below have also included the ηN final state at least in the 1

2
1
2

−

partial wave. Similar, but less dramatic effects can also be observed in other channel, see
Chapter 8.

Looking at the experimentally observed π−p cross sections in Fig. 3.1 one deduces, that in
the resonance region, i.e. up to energies of about

√
s ≈ 2 GeV, the πN elastic scattering

is the dominant channel. Only the 2πN flux approaches the πN contributions at the
highest energies. This also explains why πN and 2πN constitute at least 80− 90% of the
total widths of almost all resonances analysed up to now [67]. The only known exception
is the S11(1535), which has an ηN decay width of about 50%. This makes the inclusion
of ηN at least in the S11 partial wave mandatory (see above). For higher energies, the
ωN cross section rises up to about the same magnitude as the ηN threshold cross section,
underlining the necessity of the consideration of the ωN final state in a resonance analysis.
Manley and Saleski [113], e.g., have suspected that the large inelasticity in the 1

2
3
2

+
(P13)

wave at higher energies could be explained by the ωN channel; see also Section 8.1.3. In
addition, η and ω production on the nucleon represent a possibility to project out I = 1

2

resonances in the reaction mechanism. Furthermore, Manley and Saleski have also found
hints that the KΛ channel has some impact on the 1

2
1
2

+
(P11) partial wave, which has also

been confirmed by Feuster and Mosel [51, 52]; see, however, our findings in Sections 8.1.3
and 8.1.5.

Therefore, also these two final states have to be considered. Finally, the inclusion of KΣ
gives additional information on resonance properties, since especially in the pure I = 3

2

1)In brackets, the conventional πN notation is given.
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Figure 3.1: Left: IJP = 1
2

1
2

−
(S11) πN partial wave. The solid line shows the full

calculation C-p-π/χ+, the dashed line the calculation neglecting the ηN final state, and
the dotted line the calculation where the ηN width of the S11(1535) was moved to 2πN ,
i.e. restoring the total S11(1535) width. Data are from [277]. Right: Total cross sections
for the reactions π−p → X with X as given in the figure. All data are from Ref. [105];
the lines are to guide the eye.

reaction π+p → K+Σ+ many data have been taken in the 60s and 70s. It is also known
[148], that the inclusion of the KΣ final state can have an important influence on the
description of KΛ observables.

This leads to the mandatory inclusion of the final states πN , 2πN , ηN , KΛ, KΣ, and
ωN in a unitary description for analyzing nucleon resonance properties. In addition,
since there are much more precise data on photon- than on pion-induced reactions, the
inclusion of γN should also be realized. For example, it has been shown in [53, 103] that
the ηN photoproduction data cannot be explained by using the ηN widths extracted from
pion-induced data alone. Those problems can only be resolved by a simultaneous, unitary
analysis of all avaible photon- and pion-induced data on the nucleon.

At this point, a remark on the importance of a 3πN final state is in order. From the
relative behavior of the πN and 2πN production cross sections in Fig. 3.1, one could
conclude, that there might also be important contributions from 3πN production. Unfor-
tunately, there are only few data on πN → 3πN available [105], indicating contributions
of about the same magnitude as ωN and ηN . But considering that both the η and the ω
decay dominantly into three pions, a large fraction of these indicated 3πN cross sections
is already considered by including ηN and ωN and only small contributions are to be ex-
pected from other 3πN states as, e.g., ρ∆. As it will turn out in the present calculation,
only in the IJP = 3

2
3
2

+
(P33) and 1

2
3
2

+
(P13) partial waves indications for the necessity of

the inclusion of such a final state can be deduced, see discussions in Sections 7.1.2 and
8.1.3.



3.1. Other Models Analyzing Pion- and Photon-Induced Reactions on the Nucleon 15

3.1 Other Models Analyzing Pion- and Photon-

Induced Reactions on the Nucleon

Over the last 30 years, many different models for analyzing pion- and photon-induced
reactions on the nucleon in the resonance region have been developed. In this section,
we try to give an overview of their general properties, advantages, and drawbacks, in
particular relative to the model implemented here.

In general, these models can be divided into three groups, where the first two mainly refer
to pion- and the third one to photon-induced reactions:

3.1.1 Resonance Models:

The primary goal of these models is to provide a unitary framework for the extraction
of resonance properties by a comparison to πN → πN and πN → 2πN data, basically
neglecting all other channels; see below. Effects from analyticity are also included to some
degree. By including the most important final states, phase space and threshold effects are
accounted for properly. These are, however, no dynamical models, i.e. the background of
the reactions is not extracted from an underlying theory and they do not account for the
relativistic spin structure of the final state particles. The resonances are put in by hand,
and an energy dependent background is simulated separately for each partial wave, i.e.
by either a low order polynomial function or artificial resonances outside the considered
energy region. It should be mentioned, however, that the resonance description in those
partial waves which are dominated by a single resonance with only one decay channel,
e.g. 3

2
3
2

+
(P33) in πN → πN , is comparable to the dynamical prescription of the present

model, see also [51, 52] and beginning of Section 8.1.

In the literature, there are basically three different models:

Carnegie-Mellon Berkeley (CMB) Model

The CMB model has been developed by Cutkosky et al. [32] for a resonance analysis of
mainly elastic πN scattering data. It is a separable coupled-channel model with general-
ized Breit-Wigner vertex functions. Unitarity is satisfied by solving an algebraic Dyson
equation with bare resonance propagators. By applying a subtracted dispersion relation,
analyticity is guaranteed. The correct threshold effects are modelled by including in addi-
tion to πN the final states π∆2), ρN , ηN , σN , ωN , πN∗(1440), and ρ∆; however, apart
from πN → πN , only the π−p → ηn total cross section has been compared to experi-
mental data by assuming that ηN only arises from S11 contributions. The background
is generated by including up to three unphysical resonances per partial wave which lie
outside the considered energy region. In [183], Vrana et al. have revived this analysis. In
addition to the single energy πN → πN amplitudes of Arndt et al. [4], the model has
been compared to πN → 2πN amplitudes extracted by Manley et al. [278] and πN → ηN

2)∆ is the usual short-hand notation for the P33(1232) resonance.
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partial waves. The latter ones have been extracted by Batinić et al. [10], where the CMB
model has been used for analyzing simultaneously πN → πN for I = 1

2
and π−p → ηN

up to energies of 2.5 GeV including an effective 2πN flux channel. Note that [10] have
not compared their 2πN channel to experimental data. There have also been attempts
by Dytman et al. [44] to include photon-induced πN and ηN production in this model
for a coupled-channel analysis up to 2.2 GeV; unfortunately the final results have not yet
been published.

Kent-State University (KSU) Model

In the KSU model of Manley and Saleski [113] the resonance contributions are modelled
by generalized Breit-Wigners and the background is unitarized separately by the K-
matrix method. The functional form of the background is given by a polynomial (in

√
s),

independently for each partial wave. Although the final states πN , π∆, ρN , ηN , σN ,
KΛ, ωN , πN∗(1440), and ρ∆ have been included, these authors have only compared to
πN → πN and their πN → 2πN data [278]. Thus they have allowed for each partial
wave the inclusion of πN , all 2πN final states, and one of the mentioned other final states
to account for the missing inelasticity. For example, in the S11 partial wave ηN and in
P13 ωN have been added.

Although the above two resonance analyses [32, 113] include final states beyond πN , 2πN ,
and ηN , those are only considered to account for the correct threshold behavior and to
absorb additional flux contributions. Therefore, results for those channels are at best of
qualitative nature. In that respect, e.g., the reliability of the extraction of a 10 − 15%
KΛ branching ratio of the P11(1710) in [113] is questionable.

Virginia Polytechnic Institute and State University (VPI) Model

The VPI3) model of Arndt et al. [4] uses the K-matrix unitarization method (cf. Chapter
2) with free Breit-Wigner resonance propagators, whose widths are generated dynamically.
An additional first order polyonomial parametrization of the background is included in
each partial wave and analyticity is fulfilled by extracting the real part of the amplitudes
via a dispersion relation. Besides πN , one dummy inelastic (2πN) channel is considered
and only the S11(1535) is also allowed to couple to ηN . The same model has been used
by Green and Wycech [65] for analyzing the coupled-channel system γN , πN , and ηN
around the ηN threshold.

The drawback of all of the above models is that the background is not generated dy-
namically, but modelled separately for each partial wave by some (unphysical) function.
This leads to a large number of free parameters, making the extraction of the sought-after
resonance properties more difficult. For example, in the revived CMB model of Vrana
et al. [183] up to 38 parameters in a single partial wave have been to be fitted; in the
πN ⊕ 2πN ⊕ ηN coupled-channel analysis of Batinić et al. [10] 132 parameters have been
used, out of which only 60 have been resonance parameters, see also Section 3.8 below.

3)The group has recently moved to George Washington University, Washington D.C..



3.1. Other Models Analyzing Pion- and Photon-Induced Reactions on the Nucleon 17

3.1.2 Separable Potential Models

In contrast to the resonance models, in the separable potential models the aim is to model
in some way the dynamics underlying the reaction process. The motivation is to be able
to generate resonance structures dynamically, in particular by also accounting for the real
part in the rescattering of the BS equation (2.7). The consequence, however, is, that the
underlying interaction has to be simplified in such a way that a separate evaluation of
the rescattering part in Eq. (2.7) is possible. Thus, the parameters of these separable
potential models do not have a clear physical meaning, making the interpretation in terms
of resonances and background questionable. Hence, although they often result in a good
description of the experimental data, they provide no clear physical information about
the interaction process.

Examples are the chiral SU(3) model of Kaiser et al. [148], which includes the final states
γN , πN , ηN , KΛ, and KΣ applying an approximated separable interaction Lagrangian.
Although a fair description of experimental data seems possible, the model suffers from
the neglect of 2πN inelasticities and higher partial waves (`π ≥ 2), i.e. they only consider
S and P waves. In a similar model by Nieves and Arriola [128], which includes the final
states πN , ηN , KΛ, and KΣ, it is possible to solve the BS equation for an approximated
chiral SU(3) Lagrangian in the S11 wave resulting in a fair description of the S11 πN → πN
partial wave and a good description of the πN → ηN and πN → KΛ total cross sections.
This model has been extended by Inoue, Oset, and Vacas [81] to also include 2πN final
state effects.

The most recent model in this category is the one of Lutz et al. [109], where, as in our
analysis, also vectormeson-nucleon final states have been included. There, the complexity
of the vectormeson-nucleon states is strongly simplified by the use of only one specific
combination of the V N helicity states (cf. Sections 5.2, 5.3, and 5.4.2). Due to the

lack of JP = 1
2

+
and JP = 3

2

+
(P ) waves in this model, these authors are only able to

compare to production cross sections at energies very close to the corresponding threshold
by assuming S-wave dominance. The photon coupling is implemented via strict vector
meson dominance (VMD), i.e. the photon can only couple to any other particle via its
“hadronic” components, the ρ and ω mesons. As a consequence of the energy limitation
for the data range and the neglect of πN → ρN data of [278], these assumptions are not
strictly tested by comparing to experimental data and the results remain debatable.

3.1.3 Effective Lagrangian Models

The idea of the effective Lagrangian models is to account for the symmetries of the
fundamental theory QCD but including only effective degrees of freedom instead of quarks.
These effective degrees of freedom are modelled by baryons and mesons known to exist
as (quasi-) bound quark states. The advantage of this method is that it gives more
insight on the underlying production mechanism leading to less freedom and making the
interpretation of the results easier. At the same time, due to the more complicated
interaction structure, the meeting of the physical constraints unitarity and analyticity
becomes technically more involved. Therefore, almost all of the effective Lagrangian
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models are not analytic, many of them not even unitary. To give an overview, some
effective Lagrangian models are discussed in the following by first concentrating on models
for pion-induced and then for photon-induced reactions.

Effective descriptions of πN low-energy properties using phenomenological interactions
originate back to the 1950s and 60s (see, e.g., [27, 190, 191]). Peccei [140] has performed
one of the first extended calculations of πN scattering lengths using a chiral effective
Lagrangian including the P33(1232) resonance. Olsson and Osypowski [134] have used a
model including an effective Lagrangian for the πN∆ interaction to extend the comparison
to low-energy πN phase shifts. In addition to the contributions discussed below in Section
3.3.2 they have had to introduce a diffractive term, whose justification was questioned
later on by Bofinger and Woolcock [19].

Accounting for unitarity within a relativistic chirally symmetric effective Lagrangian
model by the K-matrix method has first been tested by Pearce and Jennings [139] in
a fit of πN elastic phase shifts up to ≈ 1.38 GeV, see also Section 3.2 below. The exten-
sion of the effective Lagrangian K-matrix method to include further final state has first
been realized by Sauermann [156, 157]. The model has been, however, restricted to a

description of γN/πN → πN/ηN up to
√

s = 1.75 GeV using just the 1
2

1
2

−
(S11) partial

wave. The model has already included the idea of absorbing the complete 2πN flux by
an artificial isoscalar 2π meson called ζ (see Section 3.2), but the 2πN channel has not
been compared to experimental data. Scholten et al. [160] have introduced an extended
effective Lagrangian K-matrix model, which is able to describe γN/πN → γN/πN up
to ≈ 1.3 GeV neglecting 2πN contributions but including also higher partial waves. The
model has later been extended to somewhat higher energies and Compton scattering [101],
and recently modified to restore analyticity to a large extent within the K-matrix for-
malism [100]. Unfortunately, the restoration of analyticity leads to large complications in
the feasibility of the model. Gridnev and Kozlenko [66] have also put forward an effective
Lagrangian K-matrix model, analyzing πN → πN and πN → ηN up to

√
s ≈ 1.67 GeV.

An additional dummy channel has also been included to account for all inelasticities apart
from ηN .

There are a variety of unitary models for πN scattering using effective Lagrangians in
three-dimensional reduction schemes (often denoted as Lippmann-Schwinger equations)
of the full BS equation, thus accounting for analyticity to some extent. Most of them are
restricted to elastic scattering (e.g., [139, 68, 63, 155, 79, 137]), while only a few ones also
include inelastic channels [68, 102, 46]. An interesting 3D model is the solitary boson-
exchange model of Jäde [84]. It is thought as an interpolation between QCD inspired
and phenomenological hadron-hadron interaction models, thus explicitly evaluating and
regularizing self-energy diagrams by meson-exchange contributions instead of using form
factors. He finds a unified description of low-energy NN and πN scattering data.

A general problem of the 3D reduction is the way how the reduction is achieved. For
example, in the model of Gross and Surya [68], which takes into account πN → πN and
γN → πN , the four-dimensional BS integral equation is reduced to three dimensions
by restricting the intermediate pion to its mass shell. However, they have demonstrated
that this method is not unique; on the contrary, the 3D reduction can be achieved in
an infinite number of ways, all of which satisfy Lorentz invariance and elastic two-body
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unitarity [195].

A full solution of the BS equation using an effective Lagrangian model for pion-induced
reactions has up to now only been possible in the single channel analysis of πN elastic
scattering for energies up to ≈ 1.35 GeV, put forward by Lahiff and Afnan [104]. They
have used the same chiral πN background Lagrangian as in our model and in addition
taken the P33(1232) resonance into account.

For completeness, we also mention a somewhat special case in this context, the model of
Ellis and Tang [45]. Their effective chiral Lagrangian model for πN → πN fulfills unitarity
by using heavy baryon chiral perturbation theory, within which unitarity is ensured order
by order. Thus, they do not have to solve for the full scattering equation.

For the pseudoscalar meson photoproduction (πN , ηN , KΛ, KΣ), since the late 1950s
a wealth of effective Lagrangian models have been developed (e.g. [28, 38, 141, 172,
184]). In such a model, the important constraint of gauge invariance can be addressed
on the operator level (see also Sections 3.3.1 and 3.7 below), while unitarity and coupled-
channel effects have only been considered in a few calculations, mostly on low-energy pion
[34, 68, 129] or eta photoproduction [14, 157]. The problem in all other single-channel
photoproduction models is an inherent inconsistency, see the end of this section.

To the same category of models, i.e. single-channel analysis (often called “T -matrix
models”), also belong almost all effective Lagrangian models on pion- and photon-induced
ωN production to date. They are discussed in the following.

Up to now, the pion-induced ω production channel has resisted a consistent effective
Lagrangian description in line with experiment. Especially the inclusion of nucleon Born
contributions overestimates the data at energies above 1.77 GeV [97] and only either the
neglect of these diagrams [145] or very soft form factors [179] has led to a rough description
of the experimental data4). None of these models has included rescattering effects or a
detailed partial-wave analysis of interference effects, which will prove to lead to strong
modifications of the observed cross section, see Section 8.1.7.

The same problem of the treatment of the nucleon Born contributions is apparent in
the effective Lagrangian models on ω photoproduction. The first calculation has been
performed by Friman and Soyeur [54], giving a rough description of the experimental
data by only including π and σ t-channel exchange. In the model of Oh, Titov, and Lee
[131] the nucleon contributions are damped by rather soft formfactors (ΛN = 0.5 − 0.7
GeV using Fp, Eq. (3.29) below). A similar observation has been made in the model of
Babacan et al. [8], where the Born contributions have not been damped by soft formfac-
tors, but a very small ωNN coupling constant has been extracted (gωNN ≤ 1). Hence
in both models, the Born contributions are effectively neglected. Since Babacan et al.
have not included any baryon resonances, the effective reaction process is almost purely
given by t-channel exchanges and thus close to the model of Friman and Soyeur. Oh
et al., however, have included baryon resonances by using non-relativistic Breit-Wigners
with vertex functions taken from the quark model of Capstick [24] and thus have not
consistently generated a u-channel background. The imaginary part of the amplitude has

4)Note that Ref. [179] has not used the correct experimental data, but has followed the claim of Ref.
[73]; see Section 7.2.9.
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only been taken into account via total widths in the denominator of the implemented
Breit-Wigner resonance description. In a similar way resonances have also been included
in the effective Lagrangian quark model of Zhao [198]5) on ω photoproduction. As in the
pion-induced reaction, none of the models on ω photoproduction has included rescattering
effects. Only in the most recent two works of Oh et al. [131], the authors have started
to consider coupled-channel effects of intermediate πN and ρN states, neglecting the ρ
spectral function in the latter case.

This restriction to a single-channel analysis is a fundamental weakness of all the T -matrix
models. Although the above models on ωN and also others on KΛ or KΣ [1, 26, 108, 114,
115] photoproduction aim to provide a tool for the search and identification of so-called
“missing” resonances, i.e. resonances which are predicted by quark models but have not
yet been identified in the theoretical analysis of experimental data, an inherent problem
of such an extraction is ignored: Due to the restriction on one single reaction channel,
rescattering effects can only be incorporated in these models by putting in by hand a total
width in the denominator of the included resonances. The parameters for these widths
either have to be taken from other analyses, or enter as additional fit parameters. But
if only one channel is analysed, the main part of the width of the “missing” resonance
is shifted to some “rest” channels, which are not compared to any data. Hence, it is
not clear from a single-channel analysis how these “rest” channels should be split up
into different physical channels and how that would influence — e.g. due to cusp and/or
rescattering effects — the analysis of the corresponding reactions. Thus, the “hunt for
hidden resonances” by single channel analyses becomes questionable.

This problem can only be circumvented if all channels are compared simultaneously to
experimental data thereby restricting the freedom severely. This is done in the model un-
derlying the present calculation, whose ingredients are discussed in the following section.

3.2 The Giessen Model

The above discussion shows that within the aforementioned models there are no reliable
and consistent extractions of resonance parameters beyond the final states πN , 2πN , and
ηN . Hence, there is a need for a unitary, consistent dynamical model covering the full
resonance region up to

√
s ∼ 2 GeV, including all important channels and higher partial

waves, thus allowing to incorporate as much experimental information as possible for a
reliable extraction of resonance parameters. At the same time, the consistency between
experimental data from various reactions can be analyzed. A first step in this direction
has been put forward by the model of Feuster and Mosel [51, 53], in the following called
Giessen model. There, the model space is spanned by the final states γN , πN , 2πN ,
ηN , and KΛ, allowing for a simultaneous description of all pion- and photon-induced
reactions of these final states up to

√
s = 1.9 GeV. The idea is to include as many

5)Note, that the models of Zhao [198] and Oh [131] also include the Pomeron exchange, which is a
purely phenomenological exchange particle with the quantum numbers of the vacuum (SP = 0+). Its
properties are extracted by effectively describing the corresponding reaction especially in the high energy
region. This particle is not included in the present calculation, since here only well-known mesons are
allowed as t-channel exchange particles.
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channels as technically feasible. This is especially important for the treatment of the
second most important flux channel, the 2πN channel. As a three-particle final state, it
makes the treatment of unitarity more involved. Manley et al. [278] have split up the
2πN state in the quasi-two-body states π∆, ρN , σN , and πN∗(1440) and have thereby
achieved an excellent description of the πN → 2πN experimental data. However, already
the inclusion of these 4 additional final states tremendously complicates the calculation,
especially due to the widths of the final state isobars (∆, ρ, σ, and N∗(1440)). Hence, so
far, in the Giessen model the 2πN channel is only included effectively as a ζN channel,
where the scalar-isovector meson ζ is an artificial 2π state with a mass of mζ = 2mπ.
Although this final state is not supposed to model the “real” 2πN complexity, its flux
contributions are compared to the πN → 2πN partial wave cross sections that have
been extracted by Manley et al. [278]. That allows to get a handle on the 2πN partial
wave contributions and their consistencies with other reaction channels. Thereby, the
parameters of those other channels can be reliably extracted, since no dummy channel is
included in the calculation, but all final states are compared to experimental data. Even
though a significant change of the latter parameters is not to be expected, an extension of
the Giessen model by including the same quasi-two body 2πN states as in [278] would be
desirable, thereby being able to also extract detailed information on the 2πN complexity.

Forming the basis of the present calculation, the model of [51, 53] is extended to further
include the final states KΣ and ωN . As pointed out in the introduction to this chapter,
a minimum set of final states for a complete resonance analysis up to

√
s = 2 GeV has to

include πN , 2πN , ηN , and ωN . Especially for energies above 1.7 GeV the ωN final state
is a mandatory flux channel in a unified, unitary description, and has, so far, only been
considered in the model of Lutz et al. [109]; see Section 3.1.2. Thus the inclusion of the
ωN final state in the present calculation differs from all other calculations on ω production
on the nucleon in various respects. All pion- and photon-induced data for γN , πN , 2πN ,
ηN , KΛ, KΣ, and ωN production are simultaneously described in such a large energy
region, which means there are more restrictions from experiment. At the same time, the
ωN reaction process is influenced by all other channels and vice versa. This leads to
strong constraints of the choice of the ωN contributions (and also all others). Therefore,
it is possible to extract them more reliably and a partial-wave analysis of interference
effects becomes possible.

The interaction in the Giessen model is constructed in all channels by incorporating the
effective degrees of freedom that are relevant in the considered energy region. There-
fore, the potential Vfi is built up consistently by a sum of s-, u-, and t-channel Feynman
diagrams by means of effective Lagrangians, see Fig. 3.2. The only assumption enter-
ing in the generation of the potential is, that the contributions of higher-order crossed
diagrams as the one depicted in Fig. 2.2 are negligible or can be absorbed in the form-
factors of non-crossed diagrams, see also Section 3.6 below. The advantage of generating
the potential via Feynman diagrams is that the background (non-resonant) contributions
are created dynamically and the total number of parameters is greatly reduced, as com-
pared to Breit-Wigner driven models or those including only pointlike interactions, see
Sections 3.1.1, 3.1.2 above, and 3.8 below. However, a coupled-channel model with a
non-separable effective Lagrangian potential makes the solution of the Bethe-Salpeter
scattering equation much more complicated. In view of the number of parameters that
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Figure 3.2: Feynman diagrams considered in this work. First row: s- and u-channel
contributions with propagating final state baryons (N , Λ, Σ) or baryon resonances (∆,
N∗). Second row: t-channel contributions with propagating asymptotic and intermediate
mesons, and the four-point interaction (Kroll-Rudermann) required by gauge invariance
in the photoproduction of charged mesons. ϕ denotes the spin-0 final state mesons. a):
u-channel contributions of Λ and Σ only exist for γN → KΛ/Σ.

have to be determined by comparison of the model calculation with experimental data,
the K-matrix Born approximation is at present the only feasible method that still satisfies
the important condition of unitarity; see also Section 2.2.

The validity of the effective Lagrangian K-matrix method as compared to calculations
accounting also for analyticity has first been tested by Pearce and Jennings [139]. By
fitting the πN elastic phase shifts up to ≈ 1.38 GeV with various approximations to the
intermediate two-particle propagator GBS (cf. (2.7)), these authors have found no sig-
nificant differences in the parameters extracted in the various schemes. It has also been
deduced that the contributions of GBS to the principal value part of the scattering equa-
tion are of minor importance, since they have been reduced by a very soft cutoff dictated
by experimental data. It has been concluded that — in order to fulfill the low-energy soft-
pion theorems [2, 189] — an important feature of the reduced intermediate two-particle
propagator is a delta function on the energy transfer. It has also been argued in [63],
where the K-matrix effective Lagrangian model for low-energy πN elastic scattering of
[62] has been extended, that for πN scattering the main effect of the real part of the
intermediate loop integrals is a renormalization of the coupling constants and masses of
the involved particles. Therefore, in the present K-matrix calculation these are taken to
be physical values and are either taken from other reliable sources (if available) or to be
determined by comparison with experimental data.
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It should, however, be mentioned, that within the K-matrix method the nature of a
resonance can not be explained. There are, e.g., hints, that the Roper P11(1440) resonance
is a quasi-bound σN state [102]. In addition, in the chiral model of [148] the S11(1535)
can be explained as a quasi-bound KΣ state. Moreover, it has been shown in [39] by
using a generalized separable Lee model, that explicit S11(1535) resonance contributions
might not play a large role if the coupled-state system πN ⊕ ηN is treated analytically,
i.e. the real part of the Bethe-Salpeter propagator GBS (2.5) is taken into account.
Because of the omittance of the principal value part of the integral in (2.7) in the K-
matrix approximation, the real part of GBS is neglected and these resonances cannot be
generated dynamically as quasi-bound meson-baryon states, but have to be put into the
potential explicitly.

In the following sections, the full effective Lagrangian of the Giessen model will be dis-
cussed.

3.3 Asymptotic Particle (Born) Contributions

3.3.1 Electromagnetic Interactions

The introduction of electromagnetic interactions into an effective Lagrangian model is gov-
erned by the local gauge field theory QED; the question of gauge invariance can therefore
be addressed on a fundamental level [118]:

From classical electrodynamics it is known that the electromagnetic vector potential is not
uniquely determined. In particular, the electromagnetic field tensor Fµν = ∂µAν − ∂νAµ

is invariant under a local gauge transformation

Aµ(x) → Aµ(x) + ∂µα(x) , (3.1)

where α(x) is an arbitrary Lorentz scalar depending on space and time.

To lowest order in the electromagnetic coupling constant e, the electromagnetic field Aµ

is given by the plane wave mode expansion [82, 118]

Aµ(x) =
∑

λ

∫
d3k

(2π)32Ek

(
â(kµ, λ)ελ

µ(kµ)e−ikx + h.c.
)

, (3.2)

where kµ is the photon four-momentum, λ denotes the photon polarization, and ελ
µ(kµ) its

polarization vector, see Appendix A.2.2. This means that the photon polarization vector
εµ, which enters the evaluation of the Feynman diagrams, is changed as a function of the
photon momentum by a gauge transformation (3.1) in the following way:

εµ(kµ) → εµ(kµ) + α̃(kµ)kµ . (3.3)

Here, α̃(kµ) is the Lorentz scalar resulting from α(x) via Fourier transformation. Since
all observables have to be independent under a gauge transformation (3.1), all matrix
elements have to be invariant under the transformation (3.3).
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The invariance of the theory under (3.1) can be achieved if the fields of the particles
coupling to the photon field are simultaneously changed by a “local” phase transformation
e−iêα(x), where ê is the charge operator. These combined transformations form the local
gauge transformation of QED. Gauge invariance can be ensured if the couplings of all
particles to the electromagnetic field are consistently introduced by the “minimal coupling
scheme” in the full hadronic Lagrangian [82, 118]:

∂µ → ∂µ + ieêAµ (3.4)

or, equivalently modifying the four-momentum pµ:

pµ → pµ − eêAµ .

This scheme will be illustrated in the following for the Born term Lagrangian describing
the photoproduction of ρ mesons on the nucleon.

The free Lagrangian for the nucleon leading to the Dirac equation (A.19) is given by

L = ū (i∂µγ
µ −mN) u ,

where u (ū) denotes the (adjungated) nucleon spinor. Applying minimal coupling (3.4), a
vector coupling of the nucleon to the photon field is generated: i∂µγ

µ → i∂µγ
µ − eêAµγ

µ.
Accounting for the fact that the magnetic moment of the nucleon does not correspond to
the one of a pointlike spin-1

2
particle, the coupling to the anomalous magnetic moment

κN has to be introduced and one arrives at the full electromagnetic Lagrangian of the
nucleon:

L = −eū

(
êγµ − κN

2mN

σµν∂
ν
γ

)
uAµ . (3.5)

The free Lagrangian of the ρ meson associated with the Proca equation (A.30) is

L = −1
4
ρ µνρ

µν + 1
2
m2

ρρ µρ
µ (3.6)

with the antisymmetric ρ field tensor (cf. Appendix A.2.2) ρ µν = ∂µρ ν − ∂νρ µ. The
interaction Lagrangian between the ρ meson and the nucleon is governed by the fact that
the ρ has the same quantum numbers as the photon: SP = 1−. Thus the interaction is
analogous to the electromagnetic coupling of the nucleon in Eq. (3.5) [34, 51, 55, 56]:

Lint = −gρū

(
γµ − κρ

2mN

σµν∂
ν
ρ

)
uτ ρ µ , (3.7)

where the only difference is contained in the isospin part τ ρ , see also Appendix F.
Applying minimal coupling to the Lagrangians (3.6) and (3.7) generates the following
electromagnetic interactions for outgoing ρ mesons and incoming photons:

Lmin = eρ [(k′ + q)µA
µgνσ − iFνσ] ρν

qρ
σ − i

eρgρκρ

2mN

ūσµνuAνρµ . (3.8)

For the momentum notation, see Appendix A.1. The first part gives rise to a
Bremsstrahlung contribution (as used in [197]) with an intermediate ρ meson (ρq) be-
ing put on its mass shell by capturing the incoming photon, while the part proportional
to κρ generates a four-point (Kroll-Rudermann) term.



3.3. Asymptotic Particle (Born) Contributions 25

Since in the evaluation of the Feynman diagrams the photon field Aµ is replaced by
its polarization vector εµ (see above), the invariance of the theory under local gauge
transformations can be tested by the replacement εµ → kµ (cf. Eq. (3.3)) in the sum
of all Born diagrams. This has to result in a vanishing expression. Applying standard
Feynman rules [18] leads to the four contributions (nucleon s- and u-channel, ρ t-channel,
and a four-point contribution, cf. Fig. 3.2):

M̃s = +eNgρfI ū(p′)
(

1− κρ

2mN

/k′
)

/ρu(p)

M̃u = −eN ′gρfI ū(p′)
(

1− κρ

2mN

/k′
)

/ρu(p)

M̃t = −eρgρfI ū(p′)
{

/ρ− κρ

2mN

[(/k′ − /k)/ρ + k ·ρ]

}
u(p)

M̃4 = +eρgρfI
κρ

2mN

ū(p′) (/k/ρ− k ·ρ) u(p) , (3.9)

where the isospin factor fI is ±√2 for γn/p → ρ∓p/n and ±1 for γp/n → ρ0p/n (see
Appendix F.1.2). The sum of all four diagrams then is

M̃s + M̃u + M̃t + M̃4 = (eN − eN ′ − eρ)fIgρū(p′)
(

1− κρ

2mN

/k′
)

/ρu(p) , (3.10)

which vanishes as long as charge is conserved.

The case of ω photoproduction is identical to the case of ρ0 photoproduction, i.e. follows
from the above by the neglect of Bremsstrahlung and four-point contributions (eρ0 = 0).
For the electromagnetic production of pseudoscalar mesons (πN , ηN , KΛ, and KΣ) the

Dirac operator
(
1− κρ

2mN
/k′

)
/ρ in (3.10) has to be replaced by γ5/k

′; see also [142], Section

3.3.2 below, and Appendix E.1.

This demonstrates that the Born diagrams are not individually gauge invariant. But as
long as the photon is consistently coupled minimally to all asymptotic particles in the
corresponding hadronic interactions and free Lagrangians, it turns out that the sum of all
Born contributions is gauge invariant as long as charge is conserved. A problem arises,
when one has to introduce form factors on the hadronic vertices, see Section 3.6 below.

3.3.2 Hadronic Interactions

Pion Nucleon Interaction and Chiral Symmetry

As pointed out in Chapter 1, an effective hadronic interaction Lagrangian should resemble
the underlying fundamental theory QCD as closely as possible and thus satisfy the same
symmetries concerning the conservation of quantum numbers as parity and total spin.
While these symmetries are easily incorporated exactly in the effective Lagrangian, the
interaction should also be in conformity with chiral symmetry, which is known to be
important for low-energy πN physics. Chiral symmetry is a direct consequence of the
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negligible u- and d-quark masses leading to the decoupling of left- and righthanded states
[118]. Consequently, one should replace the QCD Lagrangian by a hadronic Lagrangian,
which at least fulfills the chiral symmetry low-energy constraints. In principle there are
two ways of constructing chirally invariant Lagrangians. In the linear σ model [59, 161]
the sigma meson and the pion couple to nucleons in the scalar-pseudoscalar combination
σ + iπ ·τ γ5. In Weinberg’s non-linear realization [191] the nonderivative couplings of the
σ and π are eliminated by a chiral field-dependent rotation and replaced by a non-linear
derivative coupling of the chiral rotation vector, which is identified with the new pion field.
The arising pion-nucleon coupling γ5γµ∂

µπ ·τ is denoted as pseudovector coupling, while
the σ meson does not appear anymore. In addition, the generated Weinberg-Tomazawa
contact term [181, 189, 191], which automatically accounts for the values of the πN
scattering lengths, can be identified with a ρ meson exchange provided the ρ couplings
are fixed by the KSRF relation [91]:

√
gρgρππ = mρ/(2fπ) with the pion-decay constant

fπ = 93 MeV, which gives gρ ≈ 2.84 using the value gρππ = 6.02 (see Appendix E.1)6).
It should be remarked that this equivalence only holds at threshold, while the energy
dependence of the ρ exchange is different from the Weinberg-Tomazawa contact term.
Since the aim of the present calculation is the analysis of a wide energy region, we allow
for deviations from the KSRF relation by varying the ρ nucleon coupling gρ; see also
Sections 8.1.2 and 8.2.1. The ρ nucleon tensor coupling κρ (cf. Eq. (3.7)) — known to be
important from many other analyses — is not subjected to chiral symmetry constraints
since due to the derivative ρ coupling it does not contribute at the πN threshold in the
chiral limit of a vanishing pion mass.

In the linear σ model, the σ exchange proves to be especially important for the repro-
duction of low-energy πN scattering [47, 99, 156]. However, in the non-linear σ model
with pseudovector pion-nucleon coupling the low-energy theorems for πN scattering and
pion photoproduction are automatically fulfilled [156, 157, 191]. Therefore, the non-linear
chiral symmetry realization is used here. As pointed out above, from the point of view of
chiral symmetry, the σ meson, which cannot really be identified with an existing particle
anyway, is not needed any more. Nevertheless, a t-channel σ exchange can be used to
model an effective interaction, representing higher-order processes such as the correlated
2π exchange in the scalar-isoscalar wave, which is not explicitly included in our potential.
In principle, there are two possibilities for the pion-sigma coupling: the direct (σπ π ) and
the derivative coupling (σ∂µπ ∂µπ ). In order to keep the agreement with chiral symmetry
and the soft-pion theorem [2, 189], the derivative coupling to the pion should be used. In
this way, σ exchange does not contribute to low-energy πN scattering in the chiral limit
of a vanishing pion mass.

Thus our full chirally-invariant background Lagrangian for πN elastic scattering is the
same one as in [104, 137, 139]:

Lχ = −ū

[
gπ

2mN

γ5γµ(∂µπ )τ + gσσ + gρ

(
γµ − κρ

2mN

σµν∂
ν
ρ

)
ρ µτ

]
u

−gσππ

2mπ

(∂µπ )(∂µπ ′)σ − gρππ (π × (∂µπ
′)) ρ µ . (3.11)

Note, that [104, 137, 139] normalized the ρNN coupling by a factor of 1
2
. Note also, that

6)For a review on effective Lagrangians and chiral symmetry see also [57].
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[137] allowed for an admixture of a direct σπ π coupling, similarly to, e.g., [62, 63], to
get a handle on chiral symmetry breaking effects; see chapter 8.1.2. For comparison, we
also allowed for the use of this direct coupling.

Since the σ meson is supposed to model the scalar-isoscalar correlated two-pion exchange,
its mass mσ is a priori not fixed. In [104, 139] mσ was thus used as a free parameter and
fitted to πN → πN data. In our calculation, it turns out that the final quality of the
fit is almost independent of the actual value. As long as it is in a reasonable range of
mσ ≈ 450− 750 MeV a change in mσ can be compensated by a change in gσNNgσππ. For
example, a mass change from mσ = 650 MeV to 560 MeV leads to a coupling reduction of
about 30% while all other πN parameters change at most by a few percent. The mass of
the sigma meson has thus been chosen as 650 MeV, which was also used in [102]. There,
the correlated two-pion exchange in the scalar-isoscalar wave was also parametrized by a
σ meson exchange and mσ was determined by comparison to the ππ dynamical model of
[43]. The value for mσ is in line with the values found by [139] and [104], and also in the
range of ππ calculations and predictions [167, 182].

Remaining Nucleon Contributions

Since the mass of the strange quark is much higher than the u- and d-quark masses,
one does not expect similarly strict chiral constraints as in the pion case for the other
asymptotic pseudoscalar mesons ϕ = η, K and thus preferences of either pseudoscalar
(PS) or pseudovector (PV) NNϕ coupling. Several investigations on η production [14,
51, 53, 156, 157, 173] have found ηNN couplings 5− 10 times smaller compared to πNN ,
leading to a minor significance of the choice for the ηNN coupling. In particular, this
has been demonstrated in [14], where several fits on η photoproduction data using PS
and PV eta-nucleon coupling have been performed, showing that the resulting magnitude
of the ηNN coupling and the quality of the fits hardly differ. In the case of KΛN ,
however, from SU(3) considerations, the coupling is expected to be larger. Thus one
would expect observable differences between PS and PV coupling. This point has been
examined in the Giessen model [53] and in a single-channel effective Lagrangian model
[72]. Performing calculations with both coupling schemes, however, have revealed that
neither the magnitude of gKΛN nor the quality of the fit differ significantly in both cases
as long as formfactors are used. Therefore, here the same PS-PV choice is made as in
[53], i.e. using PV coupling for all Born couplings besides ηNN .

As already pointed out above, in the present model the 2πN channel is only accounted
for effectively by the ζN channel. A consistent description of background contributions
for the 2πN channels is hence difficult, since each background diagram would introduce
meaningless coupling parameters. In the case of the resonant contributions, however, the
situation is different because the decay into ζN can be interpreted as the total (σN +
π∆ + ρN + . . .) 2πN resonance widths. As it turns out, a qualitative description of the
πN → 2πN partial-wave flux data from Manley et al. [278] is indeed possible by allowing
for the 2πN production only via baryon resonances. Therefore, no t-channel and Born
contributions to 2πN are included in the model, because they could not be interpreted in
terms of a physical process as the above total 2πN resonance width. As soon as the 2πN
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state is described in a more detailed way, the above problem of interpreting the background
contributions can be resolved and additional Born- and t-channel contributions have to
be taken into account.

For the ωNN coupling, the same interaction Lagrangian is used as for the ρ meson and
the photon:

LNNω = −gωū

(
γµ − κω

2mN

σµν∂
ν
ω

)
uωµ . (3.12)

3.4 Baryon Resonances

In this section the resonance decay Lagrangians are presented from which all s- and u-
channel resonance contributions can be consistently derived. Unfortunately, a problem
still remains in the channels which contain a final state with associated strangeness (KΛ
and KΣ). The consideration of u-channel resonance and Born contributions in, e.g.,
πN → KΛ would require the inclusion of hyperon resonances and, for the Born diagrams,
the inclusion of the cascade baryons Ξ. Since these are only non-resonant contributions,
the determination of the needed coupling constants cannot be very conclusive within the
present model. Therefore, the corresponding diagrams are neglected, although this might
lead to missing background contributions in the aforementioned channels, see also Sec-
tions 8.1.5, 8.1.6, 8.4.4, and 8.4.5. This inconsistency, could, however, be removed by
a simultaneous analysis of anti-kaon-induced reactions on the nucleon, where the corre-
sponding couplings appear in resonant contributions. A first step in this direction has
been undertaken by an analysis using the same K-matrix effective Lagrangian model for
anti-kaon-induced reactions on the nucleon including the final states K̄N , πΛ, and πΣ
[92]. A future merged analysis, including radiative capture processes (e.g. K̄N → γΛ) to
also have a handle on the electromagnetic properties of the hyperon resonances, would be
desirable.

3.4.1 (Pseudo-)Scalar Meson Decay

Spin-1
2

Resonances

For spin-1
2

resonances, one has, in principle, the same freedom as for the nucleon to
choose either PS or PV coupling at each decay vertex involving (pseudo-)scalar mesons.
This question has been addressed in a coupled-channel effective Lagrangian K-matrix
model for πN → πN and πN → ηN [66] by introducing a mixing parameter between the
two ways of coupling for the spin-1

2
resonances P11(1440), S11(1535), S11(1650), P11(1710),

S31(1620), and P31(1910). The best fit has resulted in pseudovector πN and ηN couplings;
however, the differences in χ2 to a fit with pure PS couplings have been, especially for
the ηN couplings, only marginal. This can easily be understood, because the PS and PV
vertices are constructed in such a way (see Eqs. (3.13) and (3.14) below) that on-shell
both couplings are equivalent. The different energy behavior becomes only evident far off-
shell, where the resonance contribution is already largely damped due to the denominator
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of the resonance propagator. Only in the case of the nucleon-nucleon-pion vertex, due to
the large NNπ coupling, a difference is obvious and results in a clear preference of PV
coupling in line with chiral symmetry.

In principle, one could also allow for such a PS-PV mixture in the present model, but due
to the obviously small differences between the two schemes and to avoid the introduction
of additional parameters, we choose to follow the PS-PV convention used in [51, 52, 53]:
For the positive-parity spin-1

2
resonances, PV coupling is used just as in the nucleon case:

LPV
1
2
Bϕ

= − gRBϕ

mR ±mB

ūR

(
γ5

i

)
γµuB∂µϕ . (3.13)

The upper (lower) sign and operator hold for pseudoscalar (scalar) mesons ϕ = π, η,K
(ζ). The spinor u denotes the corresponding final state baryon (N , Λ, Σ). Note, that
due to the choice of normalization (mR ±mB), PS and PV coupling are equivalent when
both baryons are on-shell. For negative-parity spin-1

2
resonances (see also Appendix I),

PS coupling is used since this coupling has also been applied in other models for the
S11(1535) on ηN photoproduction [156, 157, 173]:

LPS
1
2
Bϕ

= −gRBϕūR

(
1

−iγ5

)
uBϕ . (3.14)

Here, the upper (lower) operator again holds for pseudoscalar (scalar) mesons ϕ. This
choice of PS-PV coupling for the resonances is also supported by the fact, that in the
πN → πN partial wave data, the resonant structures are more pronounced in the JP = 1

2

−

(S) than in in the 1
2

+
(P ) waves. Therefore, a decay vertex washing out the resonant

behavior, i.e. with a contribution increasing with energy (cf. the PV-vertex Eqs. (3.13)

and (E.26)), seems to be favorable in the 1
2

+
case.

Spin-3
2

Resonances

Spin-3
2

resonances are described in the Rarita-Schwinger formalism given in Appendix
A.2.3 by the coupling of a spin-1 polarization vector with a spin-1

2
spinor. The resulting

spinor uµ
R fulfills the Rarita-Schwinger equations [149]:

(/p−m)uµ
R(p, s) = 0

pµu
µ
R(p, s) = 0

γµu
µ
R(p, s) = 0 , (3.15)

where the last two equations ensure that the number of independent fields is reduced
from 16 to 8. The interaction with (pseudo-)scalar mesons for positive-parity resonances
is conventionally chosen to be

L 3
2
Bϕ =

gRBϕ

mπ

ūµ
R

(
1

−iγ5

)
uB∂µϕ (3.16)

and for negative-parity resonances (see also Appendix I)

L 3
2
Bϕ = −gRBϕ

mπ

ūµ
R

(
iγ5

1

)
uB∂µϕ . (3.17)
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As in the spin-1
2

case, the upper (lower) operator holds for pseudoscalar (scalar) mesons
ϕ. In the resulting contributions to the potential, however, the spin-3

2
resonances only

contribute as intermediate particles described by the Rarita-Schwinger spin-3
2

propagator
Gµν

3
2

(cf. Eq. (A.41)). It reads in terms of spin-projection operators PJ [90, 127, 136]:

−Gµν
3
2

(q) =
1

/q −m
Pµν

3
2

(q)− 2

3m2
(/q + m)Pµν

1
2
,22

(q) +
1√
3m

(
Pµν

1
2
,12

(q) + Pµν
1
2
,21

(q)
)

,(3.18)

where

Pµν
3
2

(q) = gµν − 1

3
γµγν − 1

3q2
(/qγµqν + qµγν/q)

Pµν
1
2
,22

(q) = qµqν/q2

Pµν
1
2
,12

(q) = (qµqν − /qγµqν)/(
√

3q2)

Pµν
1
2
,21

(q) = (/qqµγν − qµqν)/(
√

3q2) .

Note the relation of the pure spin-3
2

projector Pµν
3
2

with the spin-3
2

projection operator

in Eq. (A.42) of Appendix A: (/q + m)Pµν
3
2

(q) = −Λµν
3
2

(q). Thus, on-shell (q2 = m2
R)

the Rarita-Schwinger propagator is proportional to Pµν
3
2

, while off-shell, there are also

admixtures from the spin-1
2

sector denoted by Pµν
1
2
,ij

. This manifests itself also in the

fact that off-shell, the last constraint in Eq. (3.15) γµG
µν
3
2

= Gµν
3
2

γν = 0 is not fulfilled

anymore [90]. To examine the influence of the off-shell spin-1
2

contributions so-called
off-shell projectors have been introduced [125] in the couplings (3.16) and (3.17):

Θµν(a) = gµν − aγµγν . (3.19)

These projectors allow for a variation of the spin-1
2

components in terms of the parameter
a, which is related to the commonly used off-shell parameter z [125, 126] by a = (z + 1

2
).

There have been theoretical attempts to fix the value of a [126, 141] and to thereby remove
the spin-1

2
contributions. However, in [12] it has been shown, that these contributions are

always present for any choice of a. Moreover, it has been argued that in an effective
theory, where the spin-1

2
spin-3

2
transition between composite particles is described phe-

nomenologically, these parameters should not be fixed by a fundamental theory assuming
pointlike particles, but rather be determined by comparison with experimental data. This
is also confirmed by the fact that only a poor description of photoproduction multipoles
is possible when the values for a given in [126] are used for the ∆ resonance [12].

It has, furthermore, been shown [135], that for any choice of the off-shell parameters,
the “conventional” πN∆ interaction given by (3.16) leads to inconsistencies: Either the
constraints of the free theory are explicitly violated (a 6= 1) [125] or it gives rise to the
Johnson-Sudarshan-Velo-Zwanziger problem [89] (a = 1). Pascalutsa and Timmermans
[135, 136] have thus recently suggested an interaction that is invariant under gauge trans-
formations of the Rarita-Schwinger field (uµ

R → uµ
R+∂µε) and consequently consistent with

the free spin-3
2

theory. The premise is that consistent interactions should not “activate”
the spurious spin-1

2
degrees of freedom, and therefore the full interacting theory must obey
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similar symmetry requirements as the free theory. These interactions can be easily con-
structed by allowing only couplings to the manifestly gauge invariant Rarita-Schwinger
field tensor

Uµν
R = ∂µuν

R − ∂νuµ
R (3.20)

and its dual Ũµν
R = 1

2
εµναβURαβ. Note the relation to the introduction of gauge invariant

electromagnetic resonance couplings in Section 3.4.2 below. Thereby, the corresponding
vertex function will satisfy

qµΓµ(q) = 0 ,

where q denotes the four-momentum of the spin-3
2

particle. In the full Feynman amplitude
∼ Γµ(q)Gµν

3
2

(q)Γν(q) all the spin-1
2

contributions of the propagator (3.18) will drop out

for any q. The resulting amplitude is therefore proportional to the spin-3
2

projector as
already anticipated by the adhoc prescription used in [192]. Pascalutsa has proposed in
[136, 135] the following πN∆ interaction:

LπN∆ = fπN∆
¯̃U

µν

R γµγ5u∂νπ . (3.21)

Using this interaction, the net result is a Feynman amplitude that resembles the conven-
tional one, with the difference, that the full Rarita-Schwinger propagator Gµν

3
2

(q) is replaced

by its spin-3
2

part −(/q−m)−1Pµν
3
2

(q) and the amplitude is multiplied by an overall q2. De-

manding on-shell (q2 = m2
∆) equivalence with the conventional interaction, the coupling

constant fπN∆ can be identified to be

fπN∆ =
gπN∆

mπm∆

.

This equivalence procedure can be generalized to any spin-3
2

vertex (in particular to the
electromagnetic and vector meson decay vertices introduced below) by the replacement

Γµu
µ
R → Γµγ5γνŨ

νµ
R (3.22)

leading effectively to the substitution of the propagator Gµν
3
2

(q) by −(/q−m)−1Pµν
3
2

(q) and

an additional overall factor of q2/m2
R in the Feynman amplitude.

Pascalutsa has also shown [138] that using the “inconsistent” conventional couplings lead-
ing to s- and u-channel contributions is equivalent at the S-matrix level to using the
“consistent” (gauge-invariant) couplings plus additional contact interactions. The advan-
tage, however, of using “consistent” couplings is that they allow for an easier analysis
of separating background and resonance contributions. This has also been confirmed by
Tang and Ellis [170] in the framework of an effective field theory. These authors have
shown that the off-shell parameters are redundant since their effects can be absorbed by
contact interactions. In addition, Pascalutsa and Tjon [137] have demonstrated that the
gauge-invariant and the conventional πN∆ interaction result in the same πN threshold
parameters once contact terms are included and some coupling constants are readjusted.
Pascalutsa [138] has thus concluded that within an effective Lagrangian approach, any
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linear spin-3
2

coupling is acceptable, even an “inconsistent” one. The differences to the
use of “consistent” couplings plus contact terms are completely accounted for by a change
of coupling constants.

In our model, calculations with both spin-3
2

couplings are performed to extract information
on the importance of off-shell contributions – or, correspondingly, contact interactions –
from the comparison with experimental data. I.e., for the pion-induced reactions we
present calculations where the additional spin-1

2
contributions are allowed in the spin-3

2

propagators and the off-shell parameters are used as free parameters, and calculations
where these contributions are removed by the above prescription (3.22). The remaining
background contributions are identical in both calculations, in particular the same t-
channel exchange diagrams are taken into account and no additional contact diagrams
are introduced when using the Pascalutsa couplings.

Note, that the isospin operators of the above interactions are discussed in Appendix F.2.

3.4.2 Electromagnetic Decays

The contributions of baryon resonances to photoproduction amplitudes cannot be ex-
tracted by minimal substitution (cf. Section 3.3.1 above) from the field theoretical
hadronic Lagrangian, because the resonances only appear as intermediate states. Thus
only the electromagnetic decay processes of the resonances contribute to the reaction
mechanism and the electromagnetic transition vertices R → Nγ have to be introduced
by hand. This also means that each individual electromagnetic decay vertex has to fulfill
gauge invariance by itself:

kµΓµ
R→Nγ(s, t) = 0 .

This can easily be accomplished by only allowing for couplings to the electromagnetic
field tensor Fµν = ∂µAν − ∂νAµ. Since the vertices are related to the Lagrangians via
ūRΓµuAµ = iLint the electromagnetic transition Lagrangians for spin-1

2
resonances can be

chosen similarly to the magnetic coupling of the nucleon

L 1
2
Nγ = +e

g1

2mN

ūR

(
1

−iγ5

)
σµν∂

ν
AuAµ

= −e
g1

4mN

ūR

(
1

−iγ5

)
σµνuF µν . (3.23)

The upper (lower) factor 1 (−iγ5) corresponds to positive- (negative-) parity resonances.
For the spin-3

2
resonances, there is an additonal possibility of combining the nucleon and

the photon spin (sγ ⊕ sN = 1
2

or 3
2
), leading to two possible couplings in the Lagrangian

for the RNγ decay:

L 3
2
Nγ = −eūµ

R

(
iγ5

1

)(
g1

2mN

γα + i
g2

4m2
N

∂α
N

) (
∂A

α gµν − ∂A
µ gαν

)
uAν

= +eūµ
R

(
iγ5

1

)(
g1

2mN

γν + i
g2

4m2
N

∂ν
N

)
uFµν . (3.24)
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Again, the upper (lower) factor corresponds to positive- (negative-) parity resonances. In
principle, there could also be a coupling ∝ ∂γ

µ for all resonances; however, for real photons
it does not contribute. Note, that for clarity, the spin-3

2
off-shell projectors Θµν(a) (cf.

Eq. (3.19)), which are contracted with each coupling operator when the conventional
spin-3

2
prescription is used (see Section 3.4.1 above), are not displayed.

3.4.3 Vector Meson Decays

The resonance ωN Lagrangians have been chosen as a compromise of an extension of the
above RNγ transitions [for vector meson dominance (VMD) reasons], and the compati-
bility with other RN vector meson couplings used in the literature [146, 151, 179]. For
the spin-1

2
resonances we apply the same ωN Lagrangian as for the nucleon (ωN → R):

L 1
2
Nω = −ūR

(
1

−iγ5

)(
g1γµ − g2

2mN

σµν∂
ν
ω

)
uωµ , (3.25)

where the first coupling is the same one as in [151, 179] since the ω is polarized such that
k′µω

µ = 0, see Appendix A. For the spin-3
2

resonances we use

L 3
2
Nω = −ūµ

R

(
iγ5

1

)(
g1

2mN

γα + i
g2

4m2
N

∂α
N + i

g3

4m2
N

∂α
ω

) (
∂ω

αgµν − ∂ω
µgαν

)
uων . (3.26)

In both equations the upper operator (1 or iγ5) corresponds to a positive- and the lower
one to a negative-parity resonance. For positive-parity spin-3

2
resonances the first coupling

is also the same as the one used in [151, 179]; for negative parity a combination of our
first two couplings corresponds on-shell to those of [151, 179]. The above couplings have
also been applied in [146] in calculations of the ρ spectral function. Note, that for clarity,
the spin-3

2
off-shell projectors Θµν(a) (cf. Eq. (3.19)), which are contracted with each

coupling operator when the conventional spin-3
2

prescription is used (see Section 3.4.1
above), are not displayed.

3.5 Intermediate Mesons

The t-channel meson exchanges are thought to generate background contributions to
the reactions by introducing effective degrees of freedom (intermediate mesons) known
to couple to the final state mesons [67]. In addition to the σ and ρ meson discussed
in Section 3.3.2, the included intermediate mesons are a0(980), K∗(892), K1(1270), and
K∗

0(1430). The properties of these mesons are summarized in Table 3.1 in Section 3.8
below, where also the channels to which these exchange mesons contribute are given.
Note, that whenever one of the final state mesons is known to couple to two other final
state mesons (e.g. ω → π0γ), the corresponding t-channel contribution is also taken into
account. For some quantum number combinations, there exist more than one intermediate
meson. The higher-lying states are not included here since the t-channel contributions of
two mesons having the same quantum numbers can hardly be disentangled. This applies
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especially to the K1(1270) meson, which is included for hyperon photoproduction in line
with other models [1, 26, 108, 114, 115]. With a mass of 1.402 GeV there is a second K1

meson close by, which is even predicted [7] and measured [3] to have a 3− 4 times larger
radiative decay width K1 → Kγ than the K1(1270). Therefore, the K1(1270) included in
the present calculation rather represents an effective K1(1270)-K1(1400) exchange.

The interaction Lagrangians of the intermediate mesons with the final state baryons are
chosen in the following way: The a0 and K∗

0 mesons are scalar mesons like the σ meson
and thus couple in the same way to the baryons (a0NN , K∗

0ΛN , K∗
0ΣN), see Section

3.3.2. The K∗ is a vector meson as the ρ and ω thus coupling to NΛ and NΣ as given in
Eqs. (3.11) and (3.12). The K1 is an axialvector (SP = 1+) meson therefore requiring an
additional parity operator (iγ5) as compared to the vector mesons (SP = 1−) K∗, ρ, and
ω:

LK1ΛN = −igK1ΛN ūΛ

(
γµK

µ
1 +

κK1ΛN

2mN

σµνK
µν
1

)
γ5uN

with Kµν
1 = ∂µKν

1 − ∂νKµ
1 and in the same way for the K1ΣN vertex.

The isospin operators of the interactions are discussed in Appendix F.2.

3.5.1 Electromagnetic Decays

The two-photon decay vertex of the pseudoscalar mesons ϕ = π, η is given with the help
of the Levi-Civita tensor (cf. Appendix A.2):

Lϕγγ = −e2 gϕγ

4mϕ

ϕεµναβF µνF ′αβ
. (3.27)

In analogy, also the radiative decay of the vector mesons ρ → πγ/ηγ, ω → πγ/ηγ, and
K∗ → Kγ is given:

LV ϕγ = −e
gV ϕγ

4mϕ

ϕεµναβF µνV αβ .

Due to its opposite parity, the radiative decay interaction of the axialvector K1 meson
has to be chosen differently:

LK1Kγ = e
gK1Kγ

2mK

KFµνK
µν
1 .

The radiative and hadronic decay constants of all intermediate mesons are extracted from
the corresponding decay widths, see Appendix E.1.

3.5.2 Hadronic Decays

The hadronic decays of the intermediate mesons can mostly be extracted from the chiral
Lagrangian in Eq. (3.11). The decay vertices of the the two pseudoscalar mesons (a0 →
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ηπ, K∗
0 → Kπ) are analogous to the σππ vertex (either a direct or a derivative coupling,

see Section 8.1.2), while the decay of the K∗ vector meson to Kπ is in analogy to the
ρ → ππ decay: −gK∗Kππ(∂µK)K∗µ. A completely new interaction is introduced for the
consideration of a ρ exchange in πN → ωN . The Lagrangian is chosen in the same way
as the pion two-photon decay (3.27):

Lωρπ = −gωρπ

4mπ

π εµναβρ µνωαβ .

For the isospin part of all Lagrangians, see Appendix F.2.

Looking at the intermediate mesons listed in [67], one might wonder why the b1(1235)
axialvector meson with a dominant decay to πω is not included in the present model. The
reason for that is two-fold: Firstly, there are only about 110 data points for the reaction
πN → ωN , most of which are located in the range up to 50 MeV above threshold. In this
energy region, t-channel contributions are still small, and since a ρ exchange is already
included for this channel, it would not be possible to differentiate between the two t-
channel meson contributions from the presently available data. Secondly, Oh and Lee
(see first reference in [131]) have included the b1 meson in their model on πN → ωN and
only found negligible contributions.

3.6 Formfactors

It is long known, that the direct application of the Lagrangians presented in the previous
sections does not even allow for the description of a single channel problem as, e.g.,
πN → πN for energies below 1.4 GeV [16, 139]. This is not unexpected, since the particles
in the effective Lagrangian model are not pointlike particles but have an internal structure.
This, e.g., gives rise to the anomalous magnetic moments of baryons. Furthermore, the
effects of higher order loop contributions at the vertices influencing the off-shell behavior
of a vertex are neither taken into account. These two effects have to be considered since
the internal structure of a particle participating in a reaction is probed as soon as it is
going off-shell. A generalization of the vertex function is reqired, which is accomplished
by the introduction of formfactors allowing for the extension of the effective theory to
off-shell kinematics.

Scaling laws [21] suggest the asymptotic fall-off of scattering processes to some power
(depending on the participating particles) of the four-momentum squared of the particle
going off-shell. Therefore, in the literature the vertex formfactors are usually chosen such
that they have their maximum at the on-shell point and are normalized to one at this
point (giving a definite meaning to the coupling constant in the effective Lagrangian).
The offshellness is often expressed by the three-momentum of one of the vertex particles.
This parametrization, however, can cause problems as soon as one tries to extend the
interactions to kinematical regions where one could run into a kinematical pole of the
formfactor giving rise to divergences. Hence in a relativistic model for πN scattering
[139], Pearce and Jennings have introduced a general pole-free (on the real axis) formfactor
shape which just depends on the four-momentum squared q2 of the off-shell particle:

FPJ(q2, m2) =

(
nαΛ4

nαΛ4 + (q2 −m2)2

)nα

, (3.28)
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Figure 3.3: Comparison of the two formfactors Fp(q
2) of Eq. (3.29) (solid line) and Ft(q

2)
of Eq. (3.30) (dashed line) for the ρNN vertex in πN elastic scattering with Λ = 0.7
GeV. The dotted lines give the threshold value q2

t for the t-channel and the on-shell value
(q2 = m2

ρ).

where m denotes the mass of the particle going off-shell. For large nα, FP approaches a
Gaussian in q2 −m2 with width Λ2. The so-called cutoff value Λ has to be extracted by
comparison with experimental data. The specific forms applied here are

Fp(q
2,m2) =

Λ4

Λ4 + (q2 −m2)2
(3.29)

Ft(q
2,m2) =

Λ4 + 1
4
(q2

t −m2)2

Λ4 +
(
q2 − 1

2
(q2

t + m2)
)2 , (3.30)

where q2
t denotes the value of q2 at the kinematical threshold of the corresponding s-,

u-, or t-channel. The first form Fp corresponds to Eq. (3.28) with nα = 1. The second
form Ft is a slight modification of Fp and has also been used by [51, 52, 53]. It stresses
the kinematical regime between the threshold and the on-shell point of the intermediate
particle and ensures that t-channel contributions at threshold are directly given by their
couplings. For example, using the non-linear σ model in πN scattering (i.e. pseudovector
pion-nucleon coupling), only the isovector contact term (corresponding to the exchange of
an infinitely heavy ρ meson) contributes to the scattering length aπ [156, 191]. Since the
use of the coupling constants taken from chiral symmetry reproduces the experimental
value for aπ very well, a formfactor being 1 at the πN threshold (t = 0) is desirable in
this case. This is fulfilled by Ft . However, since we also allow for the variation of the ρ
nucleon coupling constant in our calculation, the use of Ft for the t-channel contributions
is not mandatory.

Summarizing the properties of the two formfactors Fp and Ft, both forms are only func-
tions of the Lorentz invariant q2, polefree on the real q2 axis, and normalized to 1 for
q2 = m2. The second form Ft is also 1 at threshold, but does not have its maximum at
q2 = m2 like the first one. See Fig. 3.3 for a direct comparison of the two formfactors.
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3.7 Formfactors, Photons, and Gauge Invariance

3.7.1 Born Contributions and Electromagnetic Formfactors

Using the conservation of the electromagnetic current kµj
µ, in addition to what is de-

duced in Section 3.3.1 one can derive a consistency requirement for the electromagnetic
interactions, which yields a connection between the electromagnetic vertex Γµ and the
full propagator G of a particle, the Ward-Takahashi identity (WTI) [82, 185]:

kµΓµ(p + k, p, k) = eê
[
G−1(p + k)−G−1(p)

]
(3.31)

with the charge operator ê. This identity is automatically fulfilled if the photon is intro-
duced via minimal coupling ∂µ → ∂µ + ieêAµ in the hadronic Lagrangian (as described in
Section 3.3.1 above), since the minimal coupling prescription guarantees gauge invariance
and hence current conservation.

An interesting consequence of the WTI (3.31) is, that any modification performed on
the charge coupling vertex also requires a modification in the propagator. In particular,
the introduction of a formfactor F (q2), where q is the four-momentum of the interme-
diate propagating particle, at the charge vertex yields a self energy in the intermediate
propagator. Moreover, it can be shown that gauge invariance requires for the nucleon elec-
tromagnetic half-offshell formfactor [40, 122, 123] F1(q

2) = 1 (the same also holds true for
the charge formfactor of other asymptotic particles [124]). Here, F1(q

2) is the formfactor
describing the off-shell behavior of the charge coupling (êγµ) in Eq. (3.5). Current conser-
vation also requires that the unphysical, negative-energy part of the half-offshell formfac-
tor F2(q

2) (modifying the coupling to the anomalous moment κ in (3.5)) is removed from
the full amplitude and thus does not influence any observable [124, 122]. For a consistent
description of the positive-energy part of the F2 formfactor, one has to consider minimal
coupling in loop-diagrams corresponding to higher order vertex corrections, since they
generate additional transverse (with respect to the photon four-momentum) parts of the
electromagnetic current [122]. However, this requires knowledge of the underlying strong
interaction structure and may hence be model-dependent for real photons [122]. Recently
[48], by using field transformations in Lagrangian field theories, it has also been argued,
that it is impossible to measure any off-shell effects of F1 and F2 in nucleon-nucleon
Bremsstrahlung and nucleon Compton scattering. Simply introducing a phenomenolog-
ical term in the Lagrangian which produces an off-shell photon-nucleon-nucleon vertex
can even lead to results which are inconsistent with data for related reactions [48].

To circumvent the above problems and ambiguities, we choose to use the free intermediate
propagators for asymptotic particles and do not consider any formfactors at the photon
vertices of the asymptotic particles.

3.7.2 Born Contributions and Hadronic Formfactors

As pointed out in Section 3.4.2, the photon couplings of all intermediate meson and baryon
resonances are chosen in such a way that they are gauge invariant by themselves. Hence,
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they can be independently multiplied with a formfactor. This does not hold true for the
intermediate propagation of a final state particle, since the photon also couples to its
charge and thus the coupling is dictated by minimal coupling. As pointed out above, this
leads to a gauge invariant sum of all Born diagrams. At the same time this gives rise to
a problem upon introducing form factors at the hadronic vertices of the Born diagrams,
since they should depend on the offshellness of the intermediate particle. This leads to
putting q2 dependent weights on the different diagrams. Since q2 = s for the direct graph,
q2 = u for the exchange graph, and q2 = t for the Bremsstrahlung graph the sum becomes
misbalanced and gauge invariance is violated. To circumvent this problem, already in the
first effective Lagrangian models of pion photoproduction [38], gauge restoring terms have
been added by hand.

The first microscopical treatment of this problem has been performed by Ohta [133]. He
has expanded the electromagnetic formfactor of the pion-nucleon vertex in a Taylor series
of the three four-momenta and has thereby shown that the minimal coupling scheme de-
mands an additional amplitude contribution restoring gauge invariance when formfactors
are used. In [194] it has been pointed out that Ohta’s minimal-coupling scheme yields
the same result as the simplest Born approach where point-like charge couplings without
any formfactors are used. Thus Otha’s additional amplitude just cancels all formfactor
effects on the charge couplings, while the magnetic moment couplings can still be altered.
In pseudoscalar meson photoproduction, Ohta’s prescription hence translates in an un-
changed A2 part of the amplitude (see Section 5.4.1 and in particular Eq. (5.32)), while
the other three amplitudes are still damped by the formfactors.

Leaving the A2 contribution of the Born amplitude unchanged is, however, unsatisfactory
for example from a dispersion theoretical point of view, because then, the Born amplitude
is not square integrable. In addition, explicit microscopic one-loop meson calculations
[20] show that the A2 amplitude is indeed modified by off-shell effects. For these reasons,
ad hoc prescriptions of using an overall formfactor for the Born diagrams have been
introduced in pion photoproduction, see, e.g., [129].

Haberzettl [69] has been able to give a theoretical foundation to these phenomenological
prescriptions. He has critized on Ohta’s formalism that the Taylor expansion of the form-
factor of the πNN vertex has been performed independently in the three four-momenta
and consequently in the minimal-coupling scheme, although they are connected to each
other via four-momentum conservation. Furthermore, in Ohta’s prescription one is left
with a formfactor contribution of F̂ (s = m2

N , u = m2
N , t = m2

π), which is unphysical. By
using the two nucleon momenta as independent variables for minimal coupling, Haberzettl
has shown that an additional counter term is generated effectively restoring gauge invari-
ance by giving the same overall formfactor to all Born diagrams. This formfactor depends
on the difference of the two nucleon momenta, i.e. on the pion momentum. Since the
choice of the dependent four-momentum is arbitrary, he has deduced that any (reason-
ably behaved) formfactor that becomes unity for the limit k = 0 is sufficient to restore
gauge invariance without any unwanted singularities. A general, “democratic” form of
the formfactor for the Born diagrams in pion photoproduction has hence been deduced:

F̂ (s, u, t) = a1F1(s) + a2F2(u) + a3F3(t) . (3.32)
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To ensure the above limit, the coefficients ai have to add up to unity: a1 + a2 + a3 = 1.
In [52, 53] a1 = a2 = a3 = 1

3
has been chosen.

Davidson and Workman [35] have pointed out a flaw in the arguments of Haberzettl
[69]. Since two of the three mandelstam variables are independent, merely requiring
a1 + a2 + a3 = 1 does not necessarily lead to the desired on-shell constraint ensuring the
cancellation of poles:

F̂ (s = m2
N , u, t) = F̂ (s, u = m2

N , t) = F̂ (s, u, t = m2
π) = 1 .

Moreover, crossing symmetry requires that the A1 and A2 amplitudes (see Eq. (5.32))
in pseudovector photoproduction only change sign under the replacement s ↔ u. This
requires that F̂ (s, u, t) = F̂ (u, s, t), which is violated in (3.32) if a1 6= a2. Davidson and
Workman have deduced a crossing symmetric form also satisfying the pole constraints:

F̂ (s, u, t) = F1(s) + F1(u) + F3(t)−
F1(s)F1(u)− F1(s)F3(t)− F1(u)F3(t) + F1(s)F1(u)F3(t) . (3.33)

Note, that this form is not unique. This can also be applied easily to η and ω photopro-
duction by setting F3(t) = 0 and to KΛ photoproduction by setting F2(u) = 0 since the
corresponding Born diagrams are absent.

Following the arguments of Ohta, Haberzettl, and Davidson and Workman, the gauge
prescription of using an overall formfactor with the shape (3.33) is implemented in the
present calculation.

3.7.3 Resonances and Intermediate Mesons

For the baryon intermediate resonances, each electromagnetic decay vertex is chosen in
such a way, that it is gauge invariant by itself. Therefore, the introduction of formfactors
does not cause any problem and one can allow for independent formfactors at the hadronic
and electromagnetic decay vertices of the baryon resonances.

The same holds also true for the electromagnetic decay vertices of intermediate mesons,
and one could also introduce independent formfactors at the baryon-baryon-meson and the
meson-meson-photon vertex. Being two-quark states, the meson structure is revealed at
smaller distances than in the baryon resonance case leading to the expectation that form-
factors play a less important role in meson- than in baryon-exchange reactions. Therefore,
in the t-channel diagrams, we only introduce a formfactor at the baryon-baryon-meson
vertex and absorb all internal structure effects of the meson-meson-meson/meson-meson-
photon vertex effectively in the baryon-baryon-meson vertex. This procedure also proves
to be reasonable a posteriori since the use of only one t-channel cutoff formfactor turns
out to lead to a good description of the experimental data. At the same time, the resulting
cutoff value Λt turns out to be significantly smaller (≈ 0.7 GeV) than at all other vertices
(≥ 1 GeV), indicating that the use of a formfactor at both t-channel vertices would be
necessary to extract values for Λt in the range of the other cutoff values.
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3.7.4 Formfactors and Free Parameters

In principle, at each interaction vertex one should allow for a different formfactor behavior
because it is supposed to describe the internal structure of the participating particles. This
would amount to allowing for a different cutoff value or even shape at each individual
vertex, giving rise to a huge amount of free parameters. To reduce this number, we
restrict ourselves to a minimum of distinction in the following way:

• The same formfactor shape (Fp of Eq. (3.29)) and cutoff value ΛN is used at all
nucleon-final-state vertices (NNπ, NNη, NΛK, NΣK, and NNω) in the s- and
u-channel.

• The same formfactor shape (Fp) is used at all baryon resonance vertices (RNγ,
RNπ, RNζ, RNη, RΛK, RΣK, and RNω), but it is distinguished between spin-1

2

and -3
2

resonances and between hadronic and electromagnetic final states. This leads
to four different cutoff values Λh

1
2

, Λγ
1
2

, Λh
3
2

, and Λγ
3
2

.

• The same formfactor shape (Fp or Ft of Eqs. (3.29), (3.30)) and cutoff value Λt is
used at all baryon-baryon-meson t-channel vertices.

The nucleon is treated differently as the resonances to account for the particular impor-
tance of the ground state contributions for all energies and channels. Since the vertex
structure given by the Lagrangians is significantly different for spin-1

2
and spin-3

2
res-

onances (see Section 3.4 above), a distinction is also made between these two classes
of diagrams7). The t-channel gives rise to fundamentally different contributions and is
therefore chosen independently from the s- and u-channel formfactors.

The choices of the formfactor shapes are guided by the results from Feuster and Mosel
[51, 52, 53], who have found the best description of experimental pion- and photon-induced
data when following the above. Since the differences between the choice of Fp or Ft for the
formfactors in the t-channel contributions have been only marginal, we also allow for both
possibilities in the present calculation. Whether the both choices still give comparable
results even in the extended kinematic range considered here, is discussed in Chapter 8.

3.8 Model Parameters

The aim of this calculation is to perform a consistent extraction of nucleon resonance
properties, while reducing the number of free parameters to a minimum. Therefore, the
properties of all asymptotic particles and intermediate t-channel mesons entering the
potential are not varied but taken from [67]; a summary is given in Table 3.1. The
remaining free parameters of the model are

• the masses of the resonances, i.e. the values of mR entering the propagator;

7)An alternative way for this classification could be the distinction between different orbital angular
momentum transitions.
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mass [GeV] S P I t-channel contributions

N 0.939 1
2

+ 1
2

Λ 1.116 1
2

+ 0
Σ 1.193 1

2
+ 1

π 0.138 0 − 1 (γ, γ), (γ, π), (γ, ω)
ζ 0.276 0 + 1
K 0.496 0 − 1

2
(γ, Λ), (γ, Σ)

η 0.547 0 − 0 (γ, γ), (γ, ω)
ω 0.783 1 − 0 (γ, π), (γ, η)
σ 0.650 0 + 0 (π, π)
ρ 0.769 1 − 1 (π, π), (π, ω), (γ, π), (γ, η)
a0 0.983 0 + 1 (π, η)
K∗ 0.894 1 − 1

2
(π, Λ), (π, Σ), (γ, Λ), (γ, Σ)

K1 1.273 1 + 1
2

(γ, Λ), (γ, Σ)
K∗

0 1.412 0 + 1
2

(π, Λ), (π, Σ)

Table 3.1: Properties of all asymptotic particles and intermediate t-channel mesons enter-
ing the potential. For the isospin, see also Appendix F. For those particles, that appear in
several charge states, averaged masses are used. For the mesons also all reaction channels,
where the corresponding meson appears in a t-channel exchange, are given.

• the couplings of the resonances to the final states, i.e. for each resonance one for
each (pseudo-) scalar meson final state, one (two) for the γN final state, and two
(three) for the ωN final state. The value in brackets holds for spin-3

2
resonances.

When the conventional spin-3
2

resonance vertices (cf. Section 3.4.1) are used, an
additional off-shell parameters a is required for each spin-3

2
resonance coupling.

• the couplings of the nucleon to the hadronic final states, i.e. one for each (pseudo-)
scalar meson final state and two for ωN . Since the usual values for the NNω
couplings (cf. Ref. [53] and references therein) stem from different kinematical
regimes than the one examined here, we also allow these two values to be varied
during the fitting procedure; see also Section 8.2.1.

• the couplings of the nucleon to the intermediate mesons, i.e. one for each (pseudo-)
scalar meson and two for the (axial-) vector mesons.

• the cutoff values of the formfactors, see Section 3.7.4 above.

Due to the large number of considered resonances8) (see Table 3.2) a large number of
parameters results from the consideration of 6 hadronic final states. In principle, it would
be desirable to use ranges for the parameters determined from quark models [24, 151] or
QCD lattice calculations [107]. On the other side, there are still large uncertainties and
discrepancies in the predicted resonance properties. Thus leaving them as free parameters

8)As it will turn out in the fitting procedure, however, 3 of the quoted resonances (S11(2090), P11(2090),
and P31(1910)) are not needed for the description of the experimental data, see Section 8.2.3.
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L2I,2S status mass Γtot RπN R2πN RηN RKΛ RKΣ RωN RγN

S11(1535) **** 1535 150 45 6 43 0.2
S11(1650) **** 1650 150 72 15 6 7 0.1
S11(2090) * 2090
P11(1440) **** 1440 350 65 35 0.04
P11(1710) *** 1710 100 15 65 15 0.02
P11(2100) * 2100
P13(1720) **** 1720 150 15 > 70 8 0.1
P13(1900) ** 1900 500 26 45
D13(1520) **** 1520 120 55 45 0.5
D13(1700) *** 1700 100 10 90 0.04
D13(2080) ** 2080

S31(1620) **** 1620 150 25 75 — — — 0.02
S31(1900) ** 1900 200 20 — — —
P31(1750) * 1750 300 8 — — —
P31(1910) **** 1910 250 23 — — — 0.1
P33(1232) **** 1232 120 > 99 0 — — — 0.54
P33(1600) *** 1600 350 18 82 — — — 0.01
P33(1920) *** 1920 200 13 — — —
D33(1700) **** 1700 300 15 85 — — — 0.02

Table 3.2: Properties of all resonances considered in the calculation. The status gives the
overall rating from the PDG [67] ranging from * (“Evidence of existence is poor.”) to ****
(“Existence is certain and properties are at least fairly well explored.”). When available,
the mass and decay widths (taken as the mean value of the given ranges) estimates from
[67] are also quoted. L denotes the angular momentum in the resonance’s πN decay.
The mass and the total width Γtot are given in MeV, the partial decay width ratios R in
percent of the total width. The long bars “—” indicate that the corresponding decay is
forbidden due to isospin. As it will turn out, not all of these resonances are needed in the
present calculation, see Chapter 8.

in the present calculation allows to compare the extracted resonance properties with the
underlying theory, thereby restricting the models of hadron structure. The advantage
for the extraction of these properties by an effective Lagrangian model becomes apparent
when looking at Table 3.3. The comparison of our model parameters with the resonance
model of Batinić et al. [10] (see Section 3.1.1) reveals, that in the resonance model of
[10] the amount of background parameters exceeds the one of resonance parameters. This
problem makes the reliable extraction of resonance parameters in resonance models more
difficult. It is a result of the fact, that the background has to be parametrized separately
for each partial wave. Hence the number of background parameters rises linearly with the
number of included partial waves, while in an effective Lagrangian model the background
is fixed by the consideration of inherent u-channel contributions, Born diagrams, and
t-channel meson exchanges. While the first ones are completely fixed by the resonance
properties and the Born diagrams only add one unknown coupling per considered final
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final states Jmax I SR max.
√

s res. para. back.

P-p-π+ πN, ζN, ηN, KΛ, KΣ, ωN 27
2

1
2
, 3

2
3
2

2.0 GeV 15 120 20
Batinić πN, ζN, ηN 7

2
1
2

7
2

2.5 GeV 15 132 72

Table 3.3: Comparison of the model of Batinić et al. [10] with our calculation P-p-π+
(see Chapter 8). Jmax is the maximal total spin considered, I the considered isospin
amplitudes, SR the maximum resonance spin, “para.” the total number of parameters,
and “back.” the number of background parameters.

state, the meson exchanges give rise to only 1−2 parameters per considered meson. Note,
that some of the final state mesons (ω, π, η, see Table 3.1 above) of the present model
also contribute as t-channel exchanges, thereby creating t-channel background without
any free parameter. This shows in particular, that due to the dynamical background
generation, the number of background parameters does not increase with the number of
included partial waves and is drastically reduced compared to a resonance model.
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Chapter 4

Helicity Amplitudes and
Partial-Wave Decomposition of the
BS Equation

It has been pointed out in Chapter 2 that the BS equation (2.11) can be further simpli-
fied by a partial-wave decomposition (PWD). The general idea is to directly implement
the symmetry properties of the underlying potential in the scattering equation, i.e. the
conservation of the quantum numbers total spin J , total parity P , and total isospin I,
see Fig. 4.1. In this chapter, the consequences of the conservation of the total spin J
and the parity P are discussed, while the isospin decomposition is deferred to Appendix
F. Due to the complexity of our potential, the PWD in total spin and parity has to be
performed by a generalization of the standard procedures (see, e.g., [52]), while the isospin
decomposition is only slightly modified as compared to what is discussed in [52].

For many of the channels that enter the potential of the present model, PWD of the angle-
dependent amplitudes into amplitudes with total spin J and parity P have been known for
a long time; e.g. for πN → πN and γN → πN since the late 1950s [27, 28]. In the previous
chapter, it has been argued that also final states where both particles carry intrinsic spin
as, e.g., ωN have to enter the unitary calculation consistently, i.e. also channels such as
ωN → ωN have to be considered. Therefore, in the coupled-channel problem not all the
final states consist of a 1

2

+
-baryon and a 0−-meson as in the πN → πN (ηN, KΛ, KΣ)

Figure 4.1: Illustration of the conservation of the quantum numbers J , P , and I during
rescattering.

45
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case. As a consequence, the orbital angular momentum ` is not necessarily a conserved
quantity, and a standard PWD [27, 28] based on ` becomes inconvenient for many of the
channels that have to be included. A more elegant and in particular uniform PWD for all
channels would be desirable. Hence we use here a generalization of the standard PWD
methods which represents a tool to analyze any meson- and photon-baryon reaction on
an equal footing; even final states not yet considered in the model – as e.g. π∆ – can
be incorporated easily. This generalization also has the advantage that – from a field-
theoretical point of view – the resulting helicity partial waves are closely related to the
Feynman spin matrix elements Mfi

s′s. The relation between this generalization and the
above mentioned standard decompositions is discussed in Chapter 6.

4.1 Helicity Amplitudes

The aim in the construction of the helicity amplitudes is to take advantage of the sym-
metry properties of the interaction, i.e. that it is rotationally invariant, parity and four-
momentum conserving. In describing a reaction a+ b → c+d in the center-of-mass (c.m.)
system, we use the total four-momenta P = pa + pb = (

√
s,0 ), P ′ = pc + pd, the total

spin J and its z-component Jz = M together with the initial- and final-state helicities
λ = λa − λb, λ′ = λc − λd

1) as the properties to characterize the initial and final state.
The reaction matrix T then has the form:

〈P ′J ′M ′, λ′|T |PJM, λ〉 = 〈λ′|T JM(
√

s)|λ〉δ4(P − P ′)δJJ ′δMM ′ . (4.1)

To reexpress our Feynman amplitudes in such a way, we start with a basic two-particle
momentum state in the c.m. system with three momenta k = −p and particle helicities
λk and λp: |pk , λkλp〉. In Eq. (A.5) of Appendix A.1 the relation between the three-
momentum states |pk , λkλp〉 and the four-momentum states |P ; ϑϕ, λkλp〉 is established:

|pk , λ〉 =

√ √
s

kEBEM

|P ; ϑϕ, λ〉 .

Hence, in the following it is sufficient to restrict the discussion on the angular part
|ϑϕ, λkλp〉 of the two-particle state. Consider the Wigner functions

DJ
M ′M(α, β, α) = e−iαM ′

dJ
MM ′(β)e−iαM , (4.2)

which are the matrix elements of a rotation transforming the |J,M〉 component of the unit
vector e z into the |J,M ′〉 component of the vector (cos α sin β, sin α sin β, cos β). Now,
the two-particle c.m. momentum states can be decomposed into states with definite total
angular momentum J and z-component Jz = M [83]:

|JM, λ〉 = NJ

∫
dϕd(cos ϑ)DJ

Mλ

∗
(ϕ, ϑ,−ϕ)|ϑϕ, λ〉 (4.3)

1)The particle helicities λa etc. are the projections of the spin sa on the direction of motion of the
particle. Thus, since in the c.m. system the z-axis is chosen along the three-momentum of the incoming
meson, one has λ = sz for final state mesons and λ = −sz for final state baryons, cf. Appendices A.1
and A.2.
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The normalization constant NJ is chosen such that the helicity states are normalized in
the following way (λ = λk − λp, λ′ = λ′k − λ′p):

δJ ′JδM ′Mδλ′kλk
δλ′pλp

!
= 〈J ′M ′, λ′kλ

′
p|JMλk, λp〉

= N∗
J ′NJ

∫
dΩ′dΩDJ ′

M ′λ′(ϕ
′, ϑ′,−ϕ′)DJ

Mλ

∗
(ϕ, ϑ,−ϕ)×

〈ϑ′ϕ′, λ′kλ′p|ϑϕ, λkλp〉
= N∗

J ′NJδλ′kλk
δλ′pλp

∫
dΩei(M−M ′)ϕdJ ′

M ′λ′(ϑ)dJ
Mλ(ϑ)

= 2πN∗
J ′NJδλ′kλk

δλ′pλpδM ′M

∫
d(cos ϑ)dJ ′

M ′λ′(ϑ)dJ
Mλ(ϑ)

=
4π

2J + 1
|NJ |2δλ′kλk

δλ′pλpδM ′MδJ ′J (4.4)

and hence NJ =
√

(2J + 1)/(4π). The last equality follows from the normalization con-
dition of the d-functions (B.8). Then the transformation is given by

〈ϑϕ, λkλp|JM, λ′kλ
′
p〉 = NJDJ

Mλ

∗
(ϕ, ϑ,−ϕ)δλ′kλk

δλ′pλp . (4.5)

For the incoming c.m. state (ϑ0 = ϕ0 = 0) one gets2)

〈JM, λ|ϑ0ϕ0, λ〉 = NJDJ∗
Mλ(0, 0, 0) = NJdJ

Mλ(0) = NJδMλ , (4.6)

where property (B.6) of the d-functions was used. This result is not surprising since ` = 0
and therefore Jz ≡ M = λ. Consequently, the index M of the reaction matrix T is
dropped in the following, since it is fixed by the helicity λ of the initial state.

Using the rotational invariance of the interaction, we are now in a position to decompose
the angle-dependent c.m. T -matrix (cf. Eq. (C.10)) into 〈λ′|T J(

√
s)|λ〉 matrix elements

as in Eq. (4.1) by inserting complete sets of |JM〉 states:

T fi
λ′λ ≡ 〈ϑ′ϕ′, λ′|T |ϑ0ϕ0, λ〉

=
∑

J ′,M ′

∑
J,M

〈ϑ′ϕ′, λ′|J ′M ′, λ′〉〈J ′M ′, λ′|T (
√

s)|JM, λ〉〈JM, λ|00, λ〉

=
∑

J ′,M ′

∑
J,M

NJ ′NJDJ ′∗
M ′λ′(ϕ

′, ϑ′,−ϕ′)〈λ′|T J(
√

s)|λ〉δJJ ′δMM ′δMλ

=
∑

J

2J + 1

4π
〈λ′|T J(

√
s)|λ〉ei(λ−λ′)ϕ′dJ

λλ′(ϑ) . (4.7)

Setting ϕ′ = 0 (c.m. system, see Appendix A) and relabeling ϑ′ → ϑ, this equation can
be inverted to extract amplitudes with total spin J

T J
λ′λ(

√
s) ≡ 〈λ′|T J(

√
s)|λ〉

2)From now on, the individual helicities are omitted where redundant and the states are only labeled
by the total helicities λ and λ′.
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≡ 〈J, λ′|T (
√

s)|J, λ〉
= 2π

∫ +1

−1

d(cos ϑ)dJ
λλ′(ϑ)〈ϑ, ϕ = 0, λ′|T (

√
s)|00, λ〉

= 2π

∫ +1

−1

d(cos ϑ)dJ
λλ′(ϑ)T fi

λ′λ , (4.8)

where the normalization of the d-functions (B.8) has been used again. Furthermore, the
helicity states |J, λ〉 ≡ |J, λkλp〉 fulfill the parity property [83]:

P̂ |J, λ〉 = P̂ |J, λkλp〉 = ηkηp(−1)J−sk−sp |J,−λk − λp〉 = ηkηp(−1)J−sk−sp|J,−λ〉 . (4.9)

Here, ηk, ηp, and sk, sp are the intrinsic parities and spins, resp. of the two particles. The

construction of normalized states with parity (−1)J± 1
2 is now straightforward:

|J, λ;±〉 ≡ 1√
2

(|J, +λ〉 ± η|J,−λ〉)

⇒ P̂ |J, λ;±〉 = (−1)J± 1
2 |J, λ;±〉 , (4.10)

where we have defined
η ≡ ηkηp(−1)sk+sp+ 1

2 . (4.11)

For parity conserving interactions T = P̂−1T P̂ follows:

〈J,−λ′k − λ′p|T (
√

s)|J,−λk − λp〉 = η(η′)−1〈J, λ′kλ
′
p|T (

√
s)|J, λkλp〉 (4.12)

and one can project out helicity partial-wave amplitudes with a definite parity of (−1)J± 1
2 :

T J±
λ′λ ≡ 〈J, λ′;±|T |J, λ;±〉

= T J
λ′λ ± ηT J

λ′−λ . (4.13)

These helicity partial-wave amplitudes T J±
λ′λ have definite, identical J and definite, but

opposite parity. It is quite obvious that this method is valid for any meson-baryon final
state combination, even cases as e.g. ωN → π∆. As shown in Section 6.1, in the
case of πN → πN (ηN, KΛ, KΣ) the T J±

λ′λ coincide with the conventional partial wave
amplitudes: T J±

1
2

1
2

≡ T`±.

The parity property (4.12) can also be used to extract the parity properties of the angle
dependent c.m. helicity scattering amplitudes T fi

λ′λ(ϑ):

T fi
−λ′,−λ(ϑ) ≡ 〈ϑ0,−λ′|T |00,−λ〉

= η(η′)−1(−1)λ−λ′〈ϑ0, λ′|T |00, λ〉
= η(η′)−1(−1)λ−λ′T fi

λ′λ(ϑ) , (4.14)

where ϕ = 0 and Eqs. (4.7), (B.5) have been applied.

For elastic scattering reactions (γN → γN , V N → V N , ϕN → ϕN), it is also interesting
to note, that similarly to Eq. (4.12), due to the time reversal property T = T̂−1T T̂ of the
interaction follows [83]

〈J, λ′kλ
′
p|T (

√
s)|J, λkλp〉 = 〈J, λkλp|T (

√
s)|J, λ′kλ

′
p〉 (4.15)
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and for the angle-dependent c.m. helicity scattering amplitudes T fi
λ′λ(ϑ):

T fi
λ′,λ(ϑ) ≡ 〈ϑ0, λ′|T |00, λ〉

= (−1)λ−λ′〈ϑ0, λ|T |00, λ′〉
= (−1)λ−λ′T fi

λλ′(ϑ) , (4.16)

where Eqs. (4.7), (B.4) have been used.

4.2 Partial-Wave Decomposition of the BS Equation

Since the Bethe-Salpeter (BS) equation, which is derived in Chapter 2, is in general a four-
dimensional integral equation (2.6) its solution poses a tremendous problem. However,
the problem can be simplified for rotationally invariant potentials by performing a partial-
wave decomposition of the scattering equation. For the following discussion, we restrict
ourselves to the angular part of the four-dimensional integral and evaluate it in the c.m.
system, i.e. ϑ ≡ ϑ0 = 0, ϕ ≡ ϕ0 = 0. We start from the integral part of Eq. (2.11),
insert complete sets of |J,M〉 states, and make use of the rotational invariance of the K-
and T -matrices (in the following, the upper indices fi and the summation over different
intermediate two-particle states |a〉 are omitted):

∫
dΩq

∑

λq

Tλ′λqKλqλ

=

∫
dΩq

∑

λq

∑

J ′,M ′

∑
J,M

∑

J ′q ,M ′
q

∑
Jq ,Mq

〈Ω′, λ′|J ′M ′, λ′〉〈J ′M ′, λ′|T (
√

s)|J ′qM ′
q, λq〉 ×

〈J ′qM ′
q, λq|Ωq, λq〉〈Ωq, λq|JqMq, λq〉〈JqMq, λq|K(

√
s)|JM, λ〉〈JM, λ|Ω0, λ〉

=

∫
dΩq

∑

λq

∑

J ′,M ′

∑
J,M

∑

J ′q ,M ′
q

∑
Jq ,Mq

NJ ′DJ ′∗
M ′λ′(ϕ

′, ϑ′,−ϕ′)T J ′M ′
λ′λq

δJ ′J ′qδM ′M ′
q
×

NJ ′qD
J ′q
M ′

qλq
(ϕq, ϑq,−ϕq)NJqDJq

∗
Mqλq

(ϕq, ϑq,−ϕq)KJM
λqλδJJqδMMqNJDJ

Mλ(0, 0, 0)

=

∫
dΩq

∑

λq

∑

J ′,M ′

∑
J,M

N2
J ′N

2
JdJ ′

M ′λ′(ϑ
′)ei(M ′−λ′)ϕ′T J ′M ′

λ′λq
×

dJ ′
M ′λq

(ϑq)d
J
Mλq

(ϑq)e
i(M−M ′)ϕqKJM

λqλδMλ

= 2π

∫
d(cos ϑq)

∑

λq

∑

J ′,M ′

∑
J

N2
JN2

J ′d
J ′
M ′λ′(ϑ

′)ei(M ′−λ′)ϕ′T J ′M ′
λ′λq

dJ ′
M ′λq

(ϑq)d
J
λλq

(ϑq)δM ′λKJλ
λqλ

= 2π
∑

λq

∑

J ′,J

N2
JN2

J ′d
J ′
λλ′(ϑ

′)ei(λ−λ′)ϕ′T J ′λ
λ′λq

2

2J + 1
δJJ ′KJλ

λqλ

=
∑

λq

∑
J

2J + 1

4π
dJ

λλ′(ϑ
′)ei(λ−λ′)ϕ′T J

λ′λq
KJ

λqλ ,
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where the T J
λ′λq

and KJ
λqλ are defined in the same way as in (4.8). Now the BS equation

reads:

Tλ′λ = Kλ′λ + i
∑

λq

∑
J

2J + 1

4π
dJ

λλ′(ϑ
′)ei(λ−λ′)ϕ′T J

λ′λq
KJ

λqλ . (4.17)

Integrating this equation over 2π
∫

d(cos ϑ′) and taking ϕ′ = 0 we arrive at an algebraic
BS equation for each partial wave:

T J
λ′λ = KJ

λ′λ + i
∑

λq

T J
λ′λq

KJ
λqλ . (4.18)

Finally, we also have to take into account that our interactions are parity conserving and
the rescattering takes place only via states with the same parity. Thus we have to rewrite
the BS equation correspondingly. Using the helicity partial-wave amplitudes with parity
(−1)J± 1

2 as defined in (4.13) we find from (4.18):

T J±
+λ′,λ = KJ±

+λ′,λ + i
∑

λq

T J
+λ′,λq

KJ±
λq ,λ

= KJ±
+λ′,λ + i

∑

λq>0

(
T J

+λ′,+λq
KJ±

+λq ,λ + T J
+λ′,−λq

KJ±
−λq ,λ

)

= KJ±
+λ′,λ + i

∑

λq>0

(
T J

+λ′,+λq
± ηqT J

+λ′,−λq

)
KJ±

+λq ,λ

= KJ±
+λ′,λ + i

∑

λq>0

T J±
+λ′,λq

KJ±
+λq ,λ , (4.19)

where we have used (4.12) to derive

KJ±
−λq ,λ = KJ

−λq ,+λ ± ηKJ
−λq ,−λ

= ηqη
(
KJ

+λq ,−λ ± ηKJ
+λq ,+λ

)

= ±ηq

(
±ηKJ

+λq ,−λ +KJ
+λq ,+λ

)

= ±ηqKJ±
+λq ,λ .

The sum over λq > 0 in (4.19) has to be understood as the summation over various
helicity states of the same final state, thus it only refers to final states with s1 + s2 ≥ 3

2
.

By introducing various final states for the different helicity states of one final state (in
particular for ωN : ωN 3

2
, ωN 1

2
, ωN0

3)), (4.19) can be rewritten to calculate the scattering
matrix via matrix inversion:

T J±
fi =

[ KJ±

1− iKJ±

]

fi

, (4.20)

where f (i) characterizes the final (initial) state ϕ′B′ (ϕB) via the total c.m. energy
√

s
and the helicity λ′ (λ).

Note, that for the derivation of (4.19), (4.20) no assumption has been made about the
intrinsic spins and parities of the particles!

3)Here, the same helicity notation for ωN is used as in Section 5.2.



Chapter 5

Calculation of Amplitudes

In the previous Chapter 4 the decomposition of spin dependent helicity amplitudes into
amplitudes of good total spin and parity with the help of the Wigner functions has been
established. In addition, for calculational purposes, it is desirable to find a minimal set
of Lorentz (pseudo)scalars, (pseudo)vectors, or tensors, with the help of which one can
express all occuring Feynman amplitudes. In this chapter these minimal sets are presented
and the connection to the spin dependent amplitudes that are needed as the input for the
partial-wave decomposition (PWD) is established.

Throughout this chapter, the notation is the same as given in Appendix A. I.e. incoming
(outgoing) baryon momenta are labelled by p (p′), incoming (outgoing) meson momenta
by k (k′), and we work in the c.m. system, where k = −p and k ′ = −p ′.

Starting point is always the potential Vfi ≡ 〈f |V |i〉 calculated via the standard Feynman
rules for the first order amplitude M(1) (see also Appendix I):

Vfi
λ′λ = M(1)fi

λ′λ = ū(p′, λB′)Γ(s, u)u(p, λB) , (5.1)

where Vfi is related to the K-matrix amplitude Kfi
λ′λ via Eq. (C.11):

Kfi
λ′λ = −

√
pp′mB′mB

(4π)2
√

s
Vfi

λ′λ = −
√

pp′mB′mB

(4π)2
√

s
M(1)fi

λ′λ . (5.2)

The aim is to find the minimal set of operators in Dirac space for Γ(s, u) on the right
hand side of Eq. (5.1) and to reexpress the helicity dependent matrix elements for all
helicity combinations in terms of this set.

Whenever there are spin 0 mesons involved in the final states the Dirac operators are
further expanded in a two-component form by reexpressing the γ-matrices in terms of
the Pauli σ-matrices, and the Dirac spinors u(p, λB) in terms of the two-component Pauli
spinors χλB

:

Vfi
λ′λ = ū(p′, λB′)Γ(s, u)u(p, λB) =

4π
√

s√
mBmB′

χ†λB′
F(s, u)χλB

. (5.3)
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5.1 Spin-0 Spin-1
2 Scattering

The case of spin-0 spin-1
2

scattering, as e.g. πN → πN , is most frequently discussed in
the literature ([47, 52, 61, 88]). However, as it will turn out in the following section, using
the PWD presented in the previous chapter 4, the resulting formalism for the calculation
of the helicity dependent amplitudes is at least as concise as for the conventional PWD.

5.1.1 Mesons with Identical Parity

Of the 2 · 2 = 4 helicity amplitudes only 2 are independent due to the parity conserving
property of the interaction, cf. Eq. (4.14). This must also be reflected in the Dirac
and Pauli operators in Eq. (5.3). Due to parity conservation the two independent Dirac
operators are given by the unit four matrix and a four-momentum contracted with the
γ matrix four-vector. The usual choice for the latter one is the average of the meson
momenta: k̄ = (k + k′)/2 [70] and hence one has

Γ(s, u) = A114 + B/̄k . (5.4)

All other Dirac operators appearing in the Feynman amplitudes can be cast into the form
(5.4) by using four-momentum conservation and applying the Dirac equation (A.19).
Using the explicit representation of the γ matrices and Dirac spinors (cf. Appendix A) it
follows from Eq. (5.3) that F can be written as

F = Ã112 + B̃σ · k̂0σ · k̂ . (5.5)

Here, Ã and B̃ are related to A and B in the following way:

Ã = +

√
R+R′

+

8π
√

s

(
A + 1

2
B(S− + S ′−)

)

B̃ = −
√

R−R′−
8π
√

s

(
A− 1

2
B(S+ + S ′+)

)
, (5.6)

where

R± = EB ±mB , R′
± = EB′ ±mB′ ,

S± =
√

s±mB , S ′± =
√

s±mB′ . (5.7)

Instead of the decomposition (5.5), in the literature (e.g. [61]) often

F = f112 + iσ · (k̂ × k̂0 )g (5.8)

is used. The functions f and g are related to Ã and B̃ by

f = Ã + cos ϑB̃ , g = −B̃ , (5.9)

which can be proven by applying Eq. (A.17).
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Using Eq. (A.25): σ · k̂0χf

± 1
2

= ±χf

± 1
2

and σ · k̂χi
± 1

2

= ±χi
± 1

2

and Eqs. (A.22), (A.23)

one finds from Eq. (5.5) for the helicity-dependent amplitudes:

V+ 1
2
+ 1

2
= V− 1

2
− 1

2
=

4π
√

s√
mBmB′

cos
ϑ

2

(
Ã + B̃

)

V+ 1
2
− 1

2
= V− 1

2
+ 1

2
=

4π
√

s√
mBmB′

sin
ϑ

2

(
Ã− B̃

)
. (5.10)

Here, the relation between the amplitudes with inverted helicities (λ, λ′ → −λ,−λ′) (4.14)
has been applied.

5.1.2 Mesons with Opposite Parity

Due to the change of parity in one of the final states (e.g. the outgoing final state for
πN → ζN) the parity operator iγ5 is introduced. This is absorbed by replacing Γ(s, u) of
Eq. (5.4) by iγ5Γ(u, s) and F of Eq. (5.5) by

F = iσ · k̂0Fππ = iÃσ · k̂0 + iB̃σ · k̂ (5.11)

(s. Eqs. (A.17) and (A.26) in Appendix A). Then Ã and B̃ are related to A and B in
almost the same way as in Eq. (5.6); the only difference is the change of EB′ + mB′ into
EB′ −mB′ (cf. Eq. (A.26)), i.e. R′

± → R′
∓ and S ′± → S ′∓:

Ã = +

√
R+R′−

8π
√

s

(
A + 1

2
B(S− + S ′+)

)

B̃ = −
√

R−R′
+

8π
√

s

(
A− 1

2
B(S+ + S ′−)

)
. (5.12)

Using now Eq. (A.25): σ · k̂0χf

+ 1
2

= χf

+ 1
2

, one deduces that the V+ 1
2
+ 1

2
and V+ 1

2
− 1

2
of Eq.

(5.10) still depend in the same way on Ã and B̃ (up to a factor of i), while the other two
amplitudes experience a sign switch (cf. Eq. (4.14)):

V+ 1
2
+ 1

2
= −V− 1

2
− 1

2
= i

4π
√

s√
mBmB′

cos
ϑ

2

(
Ã + B̃

)

V+ 1
2
− 1

2
= −V− 1

2
+ 1

2
= i

4π
√

s√
mBmB′

sin
ϑ

2

(
Ã− B̃

)
. (5.13)

5.2 Pion-Induced Vector Meson Production

The relations established in this section refer to the production of vector mesons by scalar
or pseudoscalar particles. They are closely related to the formalism for photoproduction
of (pseudo)scalar mesons – with the only difference that real photons only have two
(transversal) polarizations. The latter fact can be easily incorporated by taking into
account gauge invariance and is demonstrated in Section 5.4 below.
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5.2.1 Pseudoscalar (JP = 0−) Mesons

To be able to make use of results obtained for photo- and electroproduction of pseudoscalar
mesons, which are abundantly examined in the literature, we actually do not develop the
necessary formalism for πN → V N , but rather for V N → πN . Similarly to the πN → πN
case we start from:

ū(p′, λB′)Γ(s, u)u(p, λB) ≡ ū(p′, λB′)Γµ(s, u)εµ
λV

u(p, λB) =
4π
√

s√
mBmB′

χ†λB′
F(s, u)χλB

.

(5.14)
Note that this relation differs by a factor of i from the one used in e.g. [14, 53]. Applying
parity considerations (Eq. (4.14)) we infer that both Γµ and F of Eq. (5.3) consist of
2 · 3 · 2 · 1

2
= 6 independent functions because of the spins of the asymptotic particles. For

photo- and electroproduction of pseudoscalar mesons F has been derived [53, 14]:

F = iσ · εF1 + σ · k̂0σ · (k̂ × ε )F2 + iσ · k̂ ε · k̂0F3 + iσ · k̂0 ε · k̂0F4

−iε0(σ · k̂0F5 + σ · k̂F6) , (5.15)

where εµ
λV

= (ε0, ε ) is the polarization vector of the vector meson, cf. Appendix A.2.2.
Obviously, F5 and F6 only contribute for longitudinal polarizations.

Looking at the general Dirac structure of Mλ′λ and using the Dirac equation (A.19), one
finds that the Lorentz four-vector Γµ takes the form

Γµ(s, u) = iγ5

(∑
i

(Aipiµ + Bipiµ/k) + Cγµ + D/kγµ

)
(5.16)

with the vector meson four-momentum kµ. The sum runs over the four asymptotic par-
ticles. Using four-momentum conservation and the four-transversality of the polarization
vector of the incoming vector particle kµε

µ
λ = 0, Γµ can be reduced for all Feynman

diagrams to

Γµ(s, u) = iγ5

(
Appµ + Ap′p

′
µ + (Bppµ + Bp′p

′
µ)/k + Cγµ + D/kγµ

)
, (5.17)

where the Ap, Ap′ , Bp, Bp′ , C, and D are functions of the Mandelstam variables s and u.
Some tidious, but straightforward algebra leads to the following relations:

F1 =
1

8π
√

s

√
R′

+R+ (C − S−D)

F2 =
1

8π
√

s

√
R′−R− (C + S+D)

F3 =
k′

8π
√

s

√
R′

+R− (−Ap′ + S+Bp′)

F4 =
k′

8π
√

s

√
R′−R+ (Ap′ + S−Bp′)

F5 = − 1

k′
F̃4 − 1

8πmM

√
s

√
R′−R−

(
S+C + m2

MD
)

F6 = − 1

k′
F̃3 − 1

8πmM

√
s

√
R′

+R+

(
S−C −m2

MD
)

(5.18)
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with

F̃i = ε·p′Fi + ε·pFi(Ap′ → Ap, Bp′ → Bp)

ε·p ≡ εµ
0pµ =

k
√

s

mM

, ε·p′ ≡ εµ
0p
′
µ =

1

mM

(EB′ k + k′EM cos ϑ)

and R±, R′
±, and S± as defined in Eq. (5.7). In the c.m. system the Fi are related to the

helicity dependent amplitudes via1)

V+ 1
2
+ 3

2
= +V− 1

2
− 3

2
= i

4π
√

s√
mBmB′

1√
2

sin ϑ cos
ϑ

2
(−F3 −F4)

V+ 1
2
− 3

2
= −V− 1

2
+ 3

2
= i

4π
√

s√
mBmB′

1√
2

sin ϑ sin
ϑ

2
(−F3 + F4)

V+ 1
2
+ 1

2
= −V− 1

2
− 1

2
= i

4π
√

s√
mBmB′

√
2 cos

ϑ

2

[
−F1 + F2 + sin2 ϑ

2
(F3 −F4)

]

V+ 1
2
− 1

2
= +V− 1

2
+ 1

2
= i

4π
√

s√
mBmB′

√
2 sin

ϑ

2

[
F1 + F2 + cos2 ϑ

2
(F3 + F4)

]

V+ 1
2
+0 = −V− 1

2
−0 = i

4π
√

s√
mBmB′

ε0 cos
ϑ

2
(−F5 −F6)

V+ 1
2
−0 = −V− 1

2
+0 = i

4π
√

s√
mBmB′

ε0 cos
ϑ

2
(−F5 + F6) . (5.19)

Here, we have introduced the following notation for the V N helicity state: ±0: λ =
λV − λB = 0 ± 1

2
, ±1

2
: λ = ±1 ∓ 1

2
, and ±3

2
: λ = ±1 ± 1

2
. The relation between the

amplitudes with inverted helicities can be inferred from Eq. (4.14).

5.2.2 Scalar (JP = 0+) Mesons

The case of scalar meson production is hardly discussed in the literature (s. [64]). How-
ever, similarly as in the spin-0 spin-1

2
scattering case it is easily derived from the pseu-

doscalar meson production:

Due to the change of parity in one of the final states the parity operator iγ5 in Eq. (5.17)
is dropped. This is absorbed by replacing F of Eq. (5.15) by −iσ · k̂0F (s. Eq. (A.26) in
Appendix A). Then, the relations between the Fi and the Lorentz operators are almost
identical to Eq. (5.18); the only difference being the change of EB′ +mB′ into EB′ −mB′ ,
i.e. R′

± → R′
∓ (cf. Eq. (A.26)). Using now Eq. (A.25): σ · k̂0χf

+ 1
2

= χf

+ 1
2

, one deduces

that the Vλ′λ on the very left of Eq. (5.19) still depend in the same way on the Fi (up to
a factor of −i) and we have:

V+ 1
2
+ 3

2
= −V− 1

2
− 3

2
=

4π
√

s√
mBmB′

1√
2

sin ϑ cos
ϑ

2
(−F3 −F4)

V+ 1
2
− 3

2
= +V− 1

2
+ 3

2
=

4π
√

s√
mBmB′

1√
2

sin ϑ sin
ϑ

2
(−F3 + F4)

1)Note that there is a misprint in Eq. (B12) in [53]: The H4 term should start with −√2 sin ϑ
2 .
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V+ 1
2
+ 1

2
= +V− 1

2
− 1

2
=

4π
√

s√
mBmB′

√
2 cos

ϑ

2

[
−F1 + F2 + sin2 ϑ

2
(F3 −F4)

]

V+ 1
2
− 1

2
= −V− 1

2
+ 1

2
=

4π
√

s√
mBmB′

√
2 sin

ϑ

2

[
F1 + F2 + cos2 ϑ

2
(F3 + F4)

]

V+ 1
2
+0 = +V− 1

2
−0 =

4π
√

s√
mBmB′

ε0 cos
ϑ

2
(−F5 −F6)

V+ 1
2
−0 = +V− 1

2
+0 =

4π
√

s√
mBmB′

ε0 cos
ϑ

2
(−F5 + F6) , (5.20)

where, again, the relative sign for the amplitudes with inverted helicities has been ex-
tracted from Eq. (4.14).

5.3 Vector Meson Nucleon Scattering

Since to our knowledge there is no decomposition to be compared to, the intermediate
step of introducing the Fi amplitudes is omitted. Replacing Γ(s, u) of Eq. (5.1) by

Γµν(s, u)εµ
λV

ε†λV ′
ν
, one finds for V B → V ′B′ after having used the Dirac equation, four-

momentum conservation, four-transversality of the polarization vectors of the incoming
and outgoing vector particles and the relations given in Appendix A:

Γµν(s, u) = Aµν + Bµν/k + Cνγµ + Dν/kγµ + Eµγν + Fµ/kγν + Gγµγν + H/kγµγν (5.21)

with

Aµν = Apppµpν + App′pµp
′
ν + Ap′pp

′
µpν + Ap′p′p

′
µp
′
ν + Aggµν , similarly for Bµν

Cν = Cppν + Cp′p
′
ν , similarly for Dν

Eµ = Eppµ + Ep′p
′
µ, similarly for Fµ . (5.22)

This is not a minimal set of Lorentz tensors, since by applying parity considerations the
minimal set should consist of 3 ·2 ·3 ·2 · 1

2
= 18 elements, whereas the above set contains 20

elements. This is due to the mixing of Lorentz and Dirac space. An alternative approach
would be to span the Lorentz space first via a basis nµ ≡ {pµ, p

′
µ, kµ, εµαβδp

αp′βkδ}, and
then combining this basis with the non-reducible contractions of the γ matrices with the
basis’ elements: Γµν = nµnν ⊗ {/k, 1/γ5/k, γ5}, where the γ5 is needed when exactly one
Levi-Civita tensor is involved. By comparing these two sets one can deduce how to rewrite
the set (5.22) in terms of a minimal set of 18 Lorentz tensors. However, since it is more
straightforward to decompose the Feynman amplitudes in terms of the set given via (5.22)
the corresponding formulae are presented for this set. In the notation

Vλ′λ ≡ 1√
4mBmB′R+R′

+

Aλ′λ (5.23)

one finds

A+ 3
2
+ 3

2
= − cos3 ϑ

2

{
Q−

[
2kk′ sin2 ϑ

2
(Ap′p − 2Fp′) + Ag + 2G

]
+



5.3. Vector Meson Nucleon Scattering 57

Qs
+

[
2kk′ sin2 ϑ

2
Bp′p + Bg + 2H

] }

A+ 3
2
− 3

2
= sin3 ϑ

2

{
Q+

[
2kk′ cos2 ϑ

2
(Ap′p − 2Fp′)− Ag − 2G

]
+

Qs
−

[
2kk′ cos2 ϑ

2
Bp′p −Bg − 2H

] }

A+ 1
2
+ 3

2
= cos2 ϑ

2
sin

ϑ

2

{
Q+

[
2kk′ sin2 ϑ

2
(Ap′p − 2Fp′) + Ag + 2G

]
+

Qs
−
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2kk′ sin2 ϑ

2
Bp′p + Bg + 2H

]
+ 2k′

[
P−Ep′ + P s

+Fp′
]}
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2
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2
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2
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ϑ

2
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Q−

[
2kk′ cos2 ϑ
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(Ap′p − 2Fp′)− Ag − 2G
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2
Bp′p −Bg − 2H

]
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[
P+Ep′ + P s

−Fp′
]}
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2
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2
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2
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ϑ

2
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2
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2
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2
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ϑ
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2
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+
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2
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EM

mM

(Ag + 2G)
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mM

Bg
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kP s
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P s
− ( ε′ ·pDp + ε′ ·p′ Dp′) +
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ϑ

2

{
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Qs
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−

mM ′
( ε·pEp + ε·p′ Ep′)−

P ss
+

mM ′
( ε·pFp + ε·p′ Fp′)−

1

mM ′mM

(Qss
+ G + m2

MQ′s
−H)

}

(5.24)

with

Q± = R′
+R+ ± kk′

Qs
± = R′

+R+S− ± kk′S+

Q′s
± = R′

+R+S ′− ± kk′S ′+
Qss
± = R′

+R+S−S ′− ± kk′S+S ′+
P± = kR′

+ ± k′R+

P s
± = kR′

+S+ ± k′R+S−
P ′s

± = kR′
+S ′+ ± k′R+S ′−

P ss
± = kR′

+S+S ′− ± k′R+S−S ′+
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and for λV , λV ′ = 0 (s. also Section 5.2):

ε′ ·p =
1

mM ′
(EB k′ + EM ′ k cos ϑ)

ε′ ·k =
1

mM ′
(EM k′ − EM ′ k cos ϑ)

ε′ ·p′ =

√
sk′

mM ′

ε·ε′ =
1

mMmM ′
(kk′ − EMEM ′ cos ϑ) . (5.25)

The other helicity amplitudes follow via (cf. Eq. (4.14))

Aλ′λ = (−1)λ′−λA−λ′−λ . (5.26)

We have checked these formulae numerically against the calculation method developed
by [158], where the combinations ūΓµνuεµε′†

ν
have been calculated by a decomposition of

Γµν into the 16 4× 4 Clifford algebra elements.

5.4 Reactions Including Photons: Gauge Invariance

For the decomposition presented above, the photon can just be treated as a vector meson.
The only necessary modification arises from the property of the photon being the gauge
boson of QED, see Section 3.3.1. As a massless particle, only two polarization states are
allowed, i.e. the longitudinally polarized state (λγ = 0) and the corresponding ampli-
tudes do not contribute. The consequence is a reduction of the set of possible helicity
amplitudes, e.g. for γN → ϕN as compared to V N → ϕN from 6 to 4, for γN → V N
as compared to V N → V N from 18 to 12 and for Compton scattering (γN → γN) as
compared to V N → V N from 18 to 62). This should also be reflected in a reduction of
the minimal set of Lorentz operators necessary to completely describe all Feynman am-
plitudes. It can be achieved by taking into account the interdependencies of the Lorentz
operators following from gauge invariance: kµΓµ = 0 for γN → ϕN , kµΓµν = 0 for
γN → V N and kµΓµν = k′νΓ

µν = 0 for Compton scattering.

Looking at the Lorentz operators in detail, one finds the following expressions:

5.4.1 Photoproduction of (Pseudo-) Scalar Mesons

As discussed in Section 5.2.2 the production of pseudoscalar and scalar mesons are closely
related. In the following we present the influence of gauge invariance on the decomposition
of the amplitude for pseudoscalar meson photoproduction, since this case is also discussed
in the literature [14, 38]. However, all the results derived in this section apply in the same

2)In Compton scattering, the additional reduction from 8 to 6 is due to time reversal invariance, i.e.
T γγ

± 3
2 , 1

2
= T γγ

1
2 ,± 3

2
; cf. Eq. (4.16).
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way to scalar meson photo- and electroproduction; the only change is to replace iγ5 by
114.

For real photons two conditions have to be found to reduce the set of 6 Lorentz pseu-
dovectors

Γµ(s, u) = iγ5

(
Appµ + Ap′p

′
µ + (Bppµ + Bp′p

′
µ)/k + Cγµ + D/kγµ

)

to 4. Requiring gauge invariance Γµk
µ = 0 results in (k2 = /k2 = 0)

App · k + Ap′p
′ · k = 0

Bpp · k + Bp′p
′ · k + C = 0 , (5.27)

leading to the gauge invariant decomposition

Γµ(s, u) = iγ5

(
(pµp

′ · k − p′µp · k)Ãp + (pµ/k − p · kγµ)B̃p + (p′µ/k − p′ · kγµ)B̃p′ + D/kγµ

)
.

Hence the amplitude Vfi can be represented by the standard set of four gauge invariant
amplitudes as in [53]:

Vfi = ū(p′, s′)
4∑

j=1

AjMju(p, s) with

M1 = −iγ5/ε/k

M2 = 2iγ5( ε·p k · p′ − ε·p′ k · p)

M3 = iγ5(/εk · p− /k ε·p )

M4 = iγ5(/εk · p′ − /k ε·p ′) , (5.28)

where

A1 = D

A2 = − Ap′

2p · k =
Ap

2p′ · k
A3 = −Bp

A4 = −Bp′ . (5.29)

Using Eq. (5.29) the F1 to F4 of Eq. (5.18) reduce to the well-known photoproduction
case (cf. Eq. (B9) in [53]3)).

If one considers virtual photons, care has to be applied in the transition from Eq. (5.16)
to Eq. (5.17). Since now k2 = /k2 6= 0, one has to keep two more terms in Eq. (5.17)
proportional to kµ for ensuring gauge invariance (kµΓµ = 0):

Γµ(s, u) = iγ5

(
Appµ + Ap′p

′
µ + Akkµ + (Bppµ + Bp′p

′
µ + Bkkµ)/k + Cγµ + D/kγµ

)
.(5.30)

3)Note that there are four misprints in Eq. (B9) in [53]: The A4 term in F1 and F2 should have a
minus sign, A3 in F3 and F4 should be an A2.
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The new terms do not contribute to the actual amplitude (kµε
µ = 0) but are important

for imposing gauge invariance:

App · k + Ap′p
′ · k + (Ak + D)k2 = 0

Bpp · k + Bp′p
′ · k + Bkk

2 + C = 0 . (5.31)

The idea is to extend the set for real photons to the case of virtual photons. Since
Ap′p

′ · k = −App · k it follows that Ak = −D, and M1 → −iγ5(γµ/k − kµ)εµ. M2, M3, and
M4 are identical to the real photon case. The second condition in Eq. (5.31) leads to a
new gauge invariant pseudovector: M5 = iγ5(/kkµ − k2γµ)εµ.

Due to the fact that Ak has been identified with −D, there is still a need for one more
independent Lorentz pseudovector. It has to be constructed in such a way, that it does
not influence gauge invariance in the real photon case. Thus it has to be proportional
to k2 and/or only enter in Ak, D, or Bk. The usual choice (cf. [14, 38]) is proportional
to (p− p′)µ (which, of course, could also be expressed by the other three four-momenta):
A6k

2(p − p′)µε
µ. To make sure gauge invariance is still fulfilled, one also has to add a

term −A6(p− p′) · kkµε
µ.

Thus the resulting amplitudes can be rewritten

Vfi = ū(p′, s′)
6∑

j=1

AjMju(p, s) , (5.32)

where the 6 Lorentz pseudovectors are given by

M1 = −iγ5(γµ/k − kµ)εµ = −γ5
1
2
γµγνF

µν

M2 = 2iγ5( ε·p k · p′ − ε·p′ k · p) = −γ5(p
′ + p)µ(p− p′)νF

µν

M3 = iγ5(/εk · p− /k ε·p ) = −γ5pµγνF
µν

M4 = iγ5(/εk · p′ − /k ε·p ′) = −γ5p
′
µγνF

µν

M5 = iγ5(/kkµ − k2γµ) = −γ5k
′
µγνF

µν

M6 = iγ5(k
′
νkµ − kνk

′
µ)kµεµ = −γ5(p− p′)µkνF

µν

with the antisymmetric photon field tensor F µν = ∂µεν − ∂νεµ = i(εµkν − ενkµ). The Ai

are related to the functions in Eq. (5.30) by

A1 = D

A2 =
Ap + Ap′

2k · p′ − 2k · p− k2

A3 = −Bp

A4 = −Bp′

A5 =
1

k2(2k · p′ − 2k · p− k2)

(
(2k · p +

1

2
k2)Ap + (2k · p′ − 1

2
k2)Ap′

)

A6 =
1

k2

(
(k · p +

1

2
k2)Bp + (k · p′ − 1

2
k2)Bp′ + C

)
,

where we have neglected the terms Ak and Bk since they do not contribute to the actual
amplitude and are restricted by Eq. (5.31). In the literature of pion electroproduction [14,
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38], usually an extension of the Chew-Goldberger-Low-Nambu (CGLN) photoproduction
amplitudes [28] is used:

M̃1 = −γ5
1
2
γνγµF

µν

M̃2 = −γ5(p
′ + p)µ(k′ − 1

2
k)νF

µν

M̃3 = −γ5(p + 1
2
k)µγνF

µν

M̃4 = −γ5(p
′ − 1

2
k)µγνF

µν

M̃5 = −γ5(p− p′)µkνF
µν

M̃6 = −γ5k
′
µγνF

µν .

The functions M̃i are related to the Mi by

M̃1 = M1, M̃2 = −M2, M̃3 = M4 −M3, M̃4 = −M4 −M3 − 2mBM1,

M̃5 = M6, M̃6 = M5, .

The set presented here is more convenient as compared to the CGLN invariants for the
use in cases where the incoming and outgoing baryons differ in mass.

5.4.2 Photoproduction of Vector Mesons

In the case of vector meson photoproduction γN → V N , applying gauge invariance to
the Clifford algebra operator of Eq. (5.21) requires Γµνk

µ = 0. Using the independence
of 114 and /k and of the four-momenta pµ and p′µ leads to the following 6 conditions:

Appp·k + Ap′pp
′ ·k − Ag = 0

App′p·k + Ap′p′p
′ ·k + Ag = 0

Bppp·k + Bp′pp
′ ·k −Bg + Cp = 0

Bpp′p·k + Bp′p′p
′ ·k + Bg + Cp′ = 0

Epp·k + Ep′p
′ ·k = 0

Fpp·k + Fp′p
′ ·k + G = 0 . (5.33)

Hence the reduction from 18 down to 12 independent amplitudes is in line with the 6
conditions arising from gauge invariance.

5.4.3 Compton Scattering

In addition to the restrictions (5.33) found in the previous Section (5.4.2), gauge invariance
for Compton scattering also applies to the outgoing photon: Γµνk

′ν = 0 and the following
6 additional conditions hold true:

Appp·k′ + App′p
′ ·k′ + Ag − 2p′ ·kFp = 0

Ap′pp·k′ + Ap′p′p
′ ·k′ − Ag − 2p′ ·kFp′ − 2G = 0
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Bppp·k′ + Bpp′p
′ ·k′ + Bg + Ep + 2mNFp = 0

Bp′pp·k′ + Bp′p′p
′ ·k′ −Bg + Ep′ + 2mNFp′ − 2H = 0

Cpp·k′ + Cp′p
′ ·k′ + 2mNG + 2Hp′ ·k = 0

Dpp·k′ + Dp′p
′ ·k′ −G = 0 . (5.34)

This leads to a further reduction of the number of independent functions by 6, just as
is required by the reduction from 12 independent amplitudes for γN → V N down to
6 for γN → γN . A similar strategy for the reduction of the independent operators for
Compton scattering was presented by Bardeen and Tung [9]. Using gauge invariance and
finally comparing their results with the minimal set of operators presented in section 5.3
nµ ≡ {pµ, p

′
µ, kµ, εµαβδp

αp′βkδ}, combined with Γµν = nµnν ⊗ {/k, 1/γ5/k, γ5} these authors
were able to present a set of 6 operators.

An alternative approach directly based on the minimal set of Section 5.3 was given by
Prange [147]. Using charge-conjugation invariance and crossing symmetry, he reduced the
18 invariants to the necessary 6. These invariants were further modified by Hearn and
Leader [76] by normalization conditions. In [31, 76] the relation to a minimal operator
set in Pauli space F was also derived.

Since neither of these sets are used for the present calculation, we refer to the references
for the results.



Chapter 6

Partial Waves and Multipoles

In Chapter 4 we have presented an elegant and uniform way to decompose the angle-
dependent amplitudes entering the potential into helicity partial-wave amplitudes of good
total angular momentum J and parity P = (−1)J± 1

2 (4.13):

T J±
λ′λ = T J

λ′λ ± ηT J
λ′−λ with T J

λ′λ = 2π

∫ +1

−1

dxdJ
λλ′(ϑ)T fi

λ′λ . (6.1)

The characteristic parity factor is given by (4.11): η = ηkηp(−1)sk+sp+ 1
2 . Here, ηk (ηp)

and sk (sp) are the intrinsic parity and spin, resp. of the incoming meson (baryon).

In this chapter we establish the explicit expression of T J±
λ′λ for the various reaction chan-

nels1) and the relation of these amplitudes to the commonly used partial-wave decompo-
sitions based on the meson orbital-angular momentum `ϕ.

6.1 πN Scattering

The πN scattering case is a good introductary example because its partial-wave decom-
position is abundantly treated in the literature. Since the pion is a spinless particle the
total helicity of the πN final state is always ±1

2
and there are only two different partial

waves for a given total angular momentum J . Starting with Eq. (6.1) and using Eqs.

(5.2), (5.10), and η = ηπηN(−1)sπ+sN+ 1
2 = +1 one finds (x = cos ϑ):

T J±
1
2

1
2

(πN ← πN) = T J
+ 1

2
+ 1

2
± T J

+ 1
2
− 1

2

= −2π

√
pp′mB′mB

(4π)2
√

s

∫ +1

−1

dx
(
dJ

+ 1
2
+ 1

2
(ϑ)VJ

+ 1
2
+ 1

2
± dJ

− 1
2
+ 1

2
(ϑ)VJ

+ 1
2
− 1

2

)

= −
√

pp′

2

∫ +1

−1

dx

[
dJ

+ 1
2
+ 1

2
(ϑ) cos

ϑ

2

(
Ã + B̃

)
± dJ

− 1
2
+ 1

2
(ϑ) sin

ϑ

2

(
Ã− B̃

)]

1)For the readers convenience we write the commonly given T instead of K, where the latter one actually
underlies the partial-wave decomposition in the present calculation; cf. Chapters 4, 5, and Appendix C.

65
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= −
√

pp′

2(`π + 1)

∫ +1

−1

dx

[
cos2 ϑ

2

(
Ã + B̃

) (
P ′

`π+1(x)− P ′
`π

(x)
)±

sin2 ϑ

2

(
Ã− B̃

) (
P ′

`π+1(x) + P ′
`π

(x)
) ]

,

where we have used Eq. (B.7) with `π = J− 1
2

to introduce the derivatives of the Legendre

polynomials P ′
`π

(x) (see Appendix B). The functions Ã and B̃ are given in Eq. (5.6).
Splitting up this equation we can use (B.2) to find

T J+
1
2

1
2

= −
√

pp′

2(`π + 1)

∫ +1

−1

dx
[
Ã

(
P ′

`π+1(x)− P ′
`π

(x) cos ϑ
)

+ B̃
(
P ′

`π+1(x) cos ϑ− P ′
`π

(x)
)]

= −
√

pp′

2

∫ +1

−1

dx
(
ÃP`π(x) + P`π+1(x)

)

and

T J−
1
2

1
2

= −
√

pp′

2(`π + 1)

∫ +1

−1

dx
[
Ã

(
P ′

`π+1(x) cos ϑ− P ′
`π

(x)
)

+ B̃
(
P ′

`π+1(x)− P ′
`π

(x) cos ϑ
)]

= −
√

pp′

2

∫ +1

−1

dx
(
ÃP`π+1(x) + P`π(x)

)
.

If we now redefine the orbital-angular momentum by `π = J ∓ 1
2

these two equations can
be merged:

T ππ
`π± = −

√
pp′

2

∫ +1

−1

dx(ÃP`π(x) + B̃P`π±1(x)) .

This is identical2) to the commonly used decomposition of πN scattering which can be
found in many textbooks (e.g. [47, 56, 61, 88]) and is also derived in [51, 52]. The partial

waves T ππ
`π± have total angular momentum J = `π± 1

2
and parity P = −(−1)`π = (−1)J± 1

2 .

For the case of pion-induced production of a scalar (0+) meson, the partial waves of total

angular momentum J and parity P = (−1)J± 1
2 are given in the same way

T J±
1
2

1
2

(ζN ← πN) = T J
+ 1

2
+ 1

2
± T J

+ 1
2
− 1

2

and are therefore also identical to the ones in [51, 52].

6.2 Photoproduction

A vector particle (e.g. the photon) also carries an intrinsic spin of 1; therefore, the total
spin J and parity P are not sufficient to completely describe a V N helicity state. The

2)Usually, these partial waves are defined with a positive overall sign. This corresponds to a definition
of T fi

λ′λ different from (C.10) (and correspondingly also a change in (C.11)) requiring a different sign in
the rescattering part of the BS equation (2.11) and (2.12).
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additional characteristic is introduced as the total helicity λ and there are 6 independent
two-particle helicity states of total spin J (see Eq. (4.10)):

|J, λ;±〉 =
1√
2

(|J, +λ〉 ± η|J,−λ〉) with η = ηV ηN(−1)sV +sN+ 1
2 = −1 .

The parity of these states is P = (−1)J± 1
2 . The three different helicities λ = λV − λN

have been introduced in Section 5.2.1 and are given by λ = 0, 1
2
, 3

2
.

Instead of 2 helicity partial-wave amplitudes as in the πN → πN case there are now 6
different ones belonging to the total spin J :

T J±
1
2

3
2

(πN ← V N) = T J
+ 1

2
+ 3

2
∓ T J

+ 1
2
− 3

2

T J±
1
2

1
2

(πN ← V N) = T J
+ 1

2
+ 1

2
∓ T J

+ 1
2
− 1

2

T J±
1
2
0

(πN ← V N) = T J
+ 1

2
+0
∓ T J

+ 1
2
−0

.

The parity is always P = (−1)J± 1
2 . Note that the amplitudes T J±

1
2
0

are only non-vanishing

for vector mesons or virtual (k2 6= 0) photons.

In terms of a partial-wave decomposition, these helicity partial-wave amplitudes are suf-
ficient for the description of V N ↔ ϕN amplitudes. However, in the literature, the
additional spin degree of freedom is generally described as in classical and nuclear physics
by magnetic (M3)), electric (E), and scalar (S) (longitudinal) photon states, where the
latter one applies only to virtual photons. The first two are transversally polarized with
respect to the three-momentum k of the photon and are therefore given by combina-
tions of the polarization vectors of Eq. (A.33) with λγ = szγ = ±1 (ε±1), while the
last one is longitudinally polarized and hence proportional to ε 0. This so-called multipole
decomposition is also the one that is commonly used for the experimental partial-wave de-
composition of γN → πN , hence we deduce in the following (see Eq. (6.6)) the (general)
relation between our two-particle helicity states and the classical photon-nucleon states
|J ; M/E/S〉. With this relation, establishing the connection between the photoproduction
multipoles of any final state and the two-particle helicity amplitudes is straightforward,
and can also be easily achieved for more complicated reactions such as γN → π∆. This
is demonstrated below in Sections 6.2.1 and 6.2.2 for pion photoproduction and Compton
scattering, resp. on the nucleon.

The classification into magnetic and electric states is performed by assigning definite
parities to these photon states:

P̂ |γ; jγ,M〉 = −(−1)jγ|γ; jγ,M〉 and P̂ |γ; jγ, E〉 = (−1)jγ|γ; jγ, E〉 . (6.2)

Here, jγ denotes the total spin of the photon state and is given by jγ = `γ ⊕ 1, where
`γ is the photon angular momentum in the photon-nucleon system. Therefore, one has
jγ = `γ for the magnetic and jγ = `γ ± 1 for the electric states. The third (scalar) class of
states |γ; jγ, S〉 characterized by longitudinal polarizations (sγz = 0) also has jγ = `γ ± 1.
This can be easily seen by looking, e.g., at a hypothetical scalar state with jγ = `γ in

3)Not to be confused with the z-component of the total spin!



68 Chapter 6. Partial Waves and Multipoles

the c.m. system, where jγz = `γz = 0. This results in a vanishing Clebsch-Gordan
(jγ = `γ, 0|`γ, 0; 1, 0) = 0.

In terms of angular-momentum (spherical-harmonic) states the correctly normalized
transversal states are then given by [61]:

|γ; jγ, M〉 = |γ; jγ, `γ = jγ〉
|γ; jγ, E〉 =

1√
2jγ + 1

(√
jγ|γ; jγ, `γ = jγ + 1〉+

√
jγ + 1|γ; jγ, `γ = jγ − 1〉

)
.

Using the overlap between the angular momentum and the one-particle helicity states for
the photon three-momentum along the z-axis [83, 111]

〈γ; jγ, jγz; λγ|γ; jγ, jγz; `γ〉 =

√
2`γ + 1

2jγ + 1
(jγ, λγ|`γ, 0; 1, λγ) , (6.3)

which follows from the same reasons that lead to the normalization in Eq. (4.4), one finds
by working out the Clebsch-Gordan coefficients (jγ, λγ|`γ, 0; 1, λγ) the relation between
the helicity and the magnetic, electric, and scalar photon states:

|γ; jγ, M〉 =
1√
2

(|γ; jγ, λγ = −1〉 − |γ; jγ, λγ = +1〉)

|γ; jγ, E〉 =
1√
2

(|γ; jγ, λγ = −1〉+ |γ; jγ, λγ = +1〉)
|γ; jγ, S〉 = |γ; jγ, λγ = 0〉 . (6.4)

These pure photon states can be generalized to photon-nucleon states characterized by
the photon properties and the total spin J = jγ ⊕ 1

2
with z-component Jz = λγ − λN :

|J, Jz; jγ, λγ〉 ≡ |jγ, λγ〉|J, Jz〉. Since (cf. Eq. (6.3))

〈J, Jz; jγ, λγ|J, λγ − λN ; λγ, λN〉 =

√
2jγ + 1

2J + 1
(jγ, λγ;

1
2
,−λN |J, λγ − λN)δJz ,λγ−λN

(6.5)

these states are related to the two-particle helicity states |J, λ = λγ − λN〉 with total spin
J and total helicity λ in the following way [111]:

|J, Jz; jγ, +1〉 =
1√

2(jγ + 1)

(√
jγ|J, λ = +1− 1

2
〉+

√
jγ + 2|J, λ = +1 + 1

2
〉
)

|J, Jz; jγ,−1〉 =
1√

2(jγ + 1)

(√
jγ + 2|J, λ = −1− 1

2
〉+

√
jγ|J, λ = −1 + 1

2
〉
)

|J, Jz; jγ, 0〉 =
1√
2

(|J, λ = 0− 1
2
〉+ |J, λ = 0 + 1

2
〉)

for J = jγ + 1
2

and

|J, Jz; jγ, +1〉 =
1√
2jγ

(√
jγ + 1|J, λ = +1− 1

2
〉 −√

jγ − 1|J, λ = +1 + 1
2
〉
)

|J, Jz; jγ,−1〉 =
1√
2jγ

(√
jγ − 1|J, λ = −1− 1

2
〉 −√

jγ + 1|J, λ = −1 + 1
2
〉
)

|J, Jz; jγ, 0〉 =
1√
2

(|J, λ = 0− 1
2
〉 − |J, λ = 0 + 1

2
〉)



6.2. Photoproduction 69

Amplitude J P `π

T M
jγ+ jγ + 1

2
−(−1)jγ jγ

T M
jγ− jγ − 1

2
−(−1)jγ jγ

T E
jγ+ jγ + 1

2
(−1)jγ jγ + 1

T E
jγ− jγ − 1

2
(−1)jγ jγ − 1

T S
jγ+ jγ + 1

2
(−1)jγ jγ + 1

T S
jγ− jγ − 1

2
(−1)jγ jγ − 1

Table 6.1: Relation between the pion angular momentum `π and the total photon spin jγ

for the electromagnetic multipole amplitudes in pion electroproduction. The total spin J
and parity P of the amplitudes are also indicated.

for J = jγ − 1
2
. Using now Eq. (6.4), the relation between our two-particle helicity states

|J, λ;±〉 and the magnetic, electric, and scalar photon-nucleon states finally results in:

|J = jγ + 1
2
,M/E〉 = ∓ 1√

2(jγ + 1)

(√
jγ|J, 1

2
;±〉+

√
jγ + 2|J, 3

2
;±〉

)

|J = jγ − 1
2
,M/E〉 = ∓ 1√

2jγ

(√
jγ + 1|J, 1

2
;∓〉 −√

jγ − 1|J, 3
2
;∓〉

)
(6.6)

|J = jγ ± 1
2
, S〉 = ±|J, 0;∓〉 .

This relation was also given in [58]. Since the two-particle helicity states |J, λ;±〉 are of

parity P = (−1)J± 1
2 , this also holds true for the corresponding photon-nucleon multipole

states.

6.2.1 Photoproduction of Pions

Sandwiching the interaction matrix T between the multipole states (6.6) and the πN
parity helicity states of (4.10): 〈J, λ;±|πN = (〈J, +λ| ± 〈J,−λ|)/√2, one can project out
the desired multipole amplitudes for the transition to a pion nucleon helicity state and
the electromagnetic multipole amplitudes can be rewritten in terms of the γN → πN
helicity amplitudes:

T M/E
jγ+ = πN〈J, λ;±| T |jγ+,M/E〉 = ∓ 1√

2(jγ + 1)

(√
jγ T J±

1
2

1
2

+
√

jγ + 2 T J±
1
2

3
2

)

T M/E
jγ− = πN〈J, λ;∓| T |jγ−,M/E〉 = ∓ 1√

2jγ

(√
jγ + 1 T J∓

1
2

1
2

−√
jγ − 1 T J∓

1
2

3
2

)
(6.7)

T S
jγ± = πN〈J, λ;∓| T |jγ±, S〉 = ±T J∓

1
2
0

.

Here, Eq. (4.12) has been used and we have introduced the notation jγ±: J = jγ± 1
2
. The

relation between the pion angular momentum `π and the total photon spin jγ is given
in Table 6.1. Comparing these multipole amplitudes with the Chew-Goldberger-Low-
Nambu (CGLN) multipoles generally used in the literature (cf. Eqs. (B.6), (B.9) in [14],
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see also [28, 184]), one has to recall that those stem from an operatorial representation
of the multipole wave functions, where the magnetic multipole is given by [61, 156] iε ·
` γ/

√
jγ(jγ + 1) and the electric by iε · (k × ` γ)/

√
jγ(jγ + 1). The normalization factor

is usually omitted and hence absorbed in the definition of the multipoles. Therefore, they
are related to the above multipole amplitudes by4)

Mjγ+ ≡ +T M
jγ+√

kk′jγ(jγ + 1)
, Mjγ− ≡

−T M
jγ−√

kk′jγ(jγ + 1)

Ejγ+ ≡ −T E
jγ+√

kk′jγ(jγ + 1)
, Ejγ− ≡

−T E
jγ−√

kk′jγ(jγ + 1)

Sjγ+ ≡ −T S
jγ+√

kk′(jγ + 1)
, Sjγ− ≡

+T S
jγ−√

kk′jγ

, (6.8)

where the overall signs and the factors for the scalar multipoles correspond to the usual
convention. Note, that the multipole amplitudes in Eq. (6.7) are correctly normalized and
hence would have to be used in the rescattering equation of a coupled-channel formalism.

Combining Eqs. (6.7) and (6.8) and using the relations between `π and jγ (see Table 6.1)
the multipoles explicitly result for J = `π + 1

2
in5):

M`π+ = − 1√
2kk′(`π+1)

(
T J+

1
2

1
2

+
√

`π+2
`π

T J+
1
2

3
2

)

M(`π+1)− = + 1√
2kk′(`π+1)

(
T J−

1
2

1
2

−
√

`π

`π+2
T J−

1
2

3
2

)

E(`π+1)− = − 1√
2kk′(`π+1)

(
T J−

1
2

1
2

+
√

`π+2
`π

T J−
1
2

3
2

)

E`π+ = − 1√
2kk′(`π+1)

(
T J+

1
2

1
2

−
√

`π

`π+2
T J+

1
2

3
2

)

S(`π+1)− = − 1√
kk′(`π+1)

T J−
1
2
0

S`π+ = − 1√
kk′(`π+1)

T J+
1
2
0

.

(6.9)

These are also used in the experimental pion-photoproduction multipole decomposition
SP01 of Arndt et al. [221], since these authors applied the definitions from Walker [184].
In Section 8.4 our calculations are compared to this experimental extraction.

6.2.2 Compton Scattering

Proceeding in the same way as in pion photoproduction, the interaction matrix T is
sandwiched between incoming and outgoing multipole states (6.6) to project out the
desired multipole amplitudes, e.g.:

T MM
jγ+ = 〈jγ+,M | T |jγ+,M〉 ,

4)Note that Mjγ+ and Ejγ+ have the wrong sign in the relations given in [52].
5)Note that there are four sign typos in the relations given in [52].
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and so on. In the case of a multipole change from electric to magnetic or vice versa, the
total photon spin jγ has to change by one unit. For example, if jγ corresponds to the
total spin of the incoming photon, then we have, for the transition of an electric multipole
state with J = jγ + 1

2
to a magnetic state, a total spin of the outgoing photon of jγ + 1.

Therefore, it is convenient to rewrite the total spin J of the γN system in such a way that
we always have J = jγ + 1

2
, i.e. jγ− → (jγ + 1)−. Then, for the E → M case one has a

|jγ + 1
2
, E〉 → 〈(jγ + 1)− 1

2
,M | transition. Using the lower index of T to characterize the

incoming photon state, the Compton multipole amplitudes can be rewritten in terms of
the γN → γN helicity amplitudes in the following way:

T
MM
EE

jγ+ =
1

2(jγ + 1)

[
jγ T J±

1
2

1
2

+
√

jγ(jγ + 2)
(
T J±

3
2

1
2

+ T J±
1
2

3
2

)
+ (jγ + 2) T J±

3
2

3
2

]

T
MM
EE

(jγ+1)− =
1

2(jγ + 1)

[
(jγ + 2) T J∓

1
2

1
2

−
√

jγ(jγ + 2)
(
T J∓

3
2

1
2

+ T J∓
1
2

3
2

)
+ jγ T J∓

3
2

3
2

]

T
ME
EM

jγ+ =
−1

2(jγ + 1)

[√
jγ(jγ + 2)

(
T J∓

1
2

1
2

− T J∓
3
2

3
2

)
− jγ T J∓

3
2

1
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,

where the notation for the upper indices is MM : |γ, M〉 → 〈γ, M |, ME: |γ, E〉 → 〈γ, M |,
and so on. Using time reversal invariance6) manifested in Eq. (4.15), which reduces the
number of independent amplitudes from 8 to 6 (see Section 5.4), and the normalization
factor (not the phases) 1/

√
jγ(jγ + 1) of Eq. (6.8) one finds:
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f
ME
EM
(jγ+1)− = f

EM
ME
jγ+ . (6.12)

These Compton multipoles are identical to the ones given by Pfeil, Rollnik, and
Stankowski [143].

6)This is only possible if we do not deal with isospin-decomposed photons (cf. Appendix F.1.2);
otherwise one has to distinguish between isoscalar and isovector photons.
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Chapter 7

Experimental Data and Fitting
Strategy

For the determination of all parameters entering the model, the calculation has to be
compared to as many experimental data points as possible. This comparison is performed
via a χ2 minimization procedure. The χ2 (per datum) is defined by

χ2 =
1

N

N∑
n=1

(
xn

c − xn
e

∆xn
e

)2

, (7.1)

where N is the total number of data points, xn
c (xn

e ) the calculated (experimental) value
and ∆xn

e the experimental error bar. Unfortunately, for the various pion- and photon-
induced reactions, the experimental data situation varies both in quality and quantity and
the data points can not just be taken from the references for the inclusion in the fitting
procedure. In the pion production reactions (γ/πN → πN), abundant data covering a
complete set of observables (see Appendix G) have been taken in the last decades, while
for ωN production only very few data are available. Furthermore, not all data are of
the same quality and in most data references, not even systematic errors are included in
the given error bars, both leading to additional complications in the comparison. The
consequence is, e.g., the necessity of introducing minimum (relative and/or absolute)
errors for all data points in the fitting procedure, since otherwise the fit could attribute
too high credit to a specific data set or get stuck at trying to describe only a few points
with very small error bars.

Which data references are implemented in the fitting procedure and how the above is
taken into account for a global comparison between the calculation of all channels and all
available data points is discussed in this chapter.
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7.1 Partial-Wave Analyses

7.1.1 Pion Production

The availability of partial waves or multipole1) amplitudes greatly simplifies the analysis
of experimental data within a coupled-channel formalism. Not only is the experimental
input more closely related to the resonance properties (and thereby to the parameters
of the calculation), but also the number of fitted partial-wave/multipole datapoints is
significantly smaller (than the count of data on the experimental observables) up to orders
of magnitude and can account for issues associated with statistical and systematic errors,
data rejection, and so on.

In the photon- and pion-induced pion production, enough experimental data have been
taken, so that it is possible to reliably invert the relations between observables and partial
waves listed in Appendix G. The necessary requirement is not only the availability of a
complete set of observables, but also a sufficient coverage of these observables in the whole
energy and angle region. Only in this case it is possible to define reasonably small energy
bins, for each of which also higher partial waves with their real and imaginary parts can
be extracted and dispersion relations can be checked. This procedure generates a so-
called single-energy solution, which means that for each energy bin the partial waves are
extracted independently. This has been done by the VPI group (cf. Section 3.1.1), who
extracted single-energy solutions for πN → πN [277] and for γN → πN [221]. There are
also other partial-wave analyses available, however, they either consider only small energy
regions or only extract energy-dependent solutions. The latter means that some energy-
dependent function for the amplitudes is chosen, and the parameters of the functions are
determined by comparison with experiment. The disadvantage of this method is that in
the choice of the functions already some (model) assumptions enter and using the resulting
solutions for comparison with our calculation could at worst amount to adjust one model
to another model.

Rather than relying on a partial-wave analysis of some other group, the ideal procedure
would be, however, to directly compare the present model to all available experimental
data and thereby extract the partial waves directly from the model. As a consequence
of the huge data base in the pion production reactions and the lack of higher spin (≥ 5

2
)

resonances in our model (see also the beginning of Section 7.2 and in particular Fig.
7.1 below), this is not feasible at the present stage. Therefore, we use the partial-wave
analyses of πN → πN [277] and γN → πN [221] of the VPI group and compare the
partial waves and multipoles up to total spin J = 3

2
. Thereby, we take advantage of the

fact that in these partial-wave analyses the effects of the higher spin resonances do not
influence the extraction of the parameters of the resonances considered in the calculation.
In the following, our error treatment of these two partial-wave analyses is discussed.

1)The multipoles describe the photoproduction partial waves, where in addition to total spin and parity
also the two helicity combinations of the nucleon and the photon are taken into accout; see also Section
6.2.1.
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γN → πN

Unfortunately, the single-energy solution for γN → πN does not cover the complete
energy region for all multipoles. Therefore, for those energies where the single-energy
solution is not available, the gaps have been filled with the energy-dependent solution of
the VPI group [221]. To account for possible model dependencies of the latter one, the
data points of the two analyses are also treated differently:

• An absolute minimum error of 0.1 mfm (millifermi) for the single-energy solution
and of 0.2 mfm for the energy-dependent solution is assumed.

• At the same time, a relative minimum error 5% is assumed for both solutions.

This treatment is applied if either the absolute or the relative minimum error exceeds the
error given in [221]2).

For the same reason of model dependence, we have refrained from using also the so-
called speed extracted by the VPI group. The speed is given by the derivative of the
amplitude with respect to energy and can hence only be calculated from an energy-
dependent solution. To be as independent of other models as possible, the speed does
consequently not enter as input for the fitting procedure.

To emphasize certain (resonant) structures in the multipole data (cf. Figs. 8.20, 8.21,
and 8.22 in Section 8.4), however, we have refrained from the above treatment for some
multipoles and directly used the experimental errors of the single-energy solution as given
in [221]. In detail:

• in the real part of the Ep
0+ multipole around the S11(1535) and S11(1650) (between

1.56 and 1.65 GeV),

• in the imaginary part of the Ep
0+ multipole around the S11(1650) (between 1.62 and

1.69 GeV),

• in the imaginary part of the Ep
2− multipole around the D13(1520) (between 1.47 and

1.55 GeV),

• in the imaginary part of the Mp
2− multipole around the D13(1520) (between 1.47

and 1.55 GeV),

• in the imaginary part of the En
2− multipole around the D13(1520) (between 1.45 and

1.51 GeV),

• in the real and imaginary part of the E
3
2
1+ multipole around the P33(1232) (between

1.18 and 1.27 GeV),

• in the real and imaginary part of the M
3
2
1+ multipole around the P33(1232) (between

1.18 and 1.27 GeV),

2)Note, that in general, there are no experimental errors given for energy-dependent partial wave
analyses.
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• in the imaginary part of the M
3
2
1− multipole between 1.15 and 1.21 GeV.

Here, the upper index of the multipole denotes the isospin of the amplitude (cf. Appendix
F.1.2) and the lower one how the total spin is related to the pion angular momentum:
J = `π±1

2
(cf. Section 6.2.1).

Moreover, a glance at Figs. 8.20, 8.21, and 8.22 in Section 8.4.2 reveals, that the various
multipoles behave at quite different scales. Especially the imaginary parts of certain
multipoles are often well known to have extremely small values. A general error treatment
as introduced above would effectively mean to ignore this knowledge. Thus, for the
imaginary parts of the following multipoles we have refrained from the introduction of a
general minimal error and have used the experimental errors of the single-energy solution
as given in [221]:

• in the Ep
2− multipole above 1.7 GeV,

• in the Mp
1+ multipole above 1.5 GeV,

• in the Mp
1− multipole above 1.8 GeV,

• in the Mp
2− multipole above 1.65 GeV,

• in the En
1+ multipole above 1.59 GeV (here, we have also reduced the minimal error

for the energy-dependent solution to 0.05 mfm),

• in the Mn
1+ multipole above 1.48 GeV,

• in the Mn
2− multipole above 1.68 GeV,

• in the E
3
2
1+ multipole above 1.6 GeV.

The total number of data points included for this reaction amounts to 2772
(≡multipoles·isospin·(real+imaginary)·energy bins= 6 · 3 · 2 · 77).

πN → πN

The VPI single-energy analysis for πN → πN covers almost the complete considered
energy region from

√
s = mN + mπ up to 2 GeV, only in the low-energy tails of the

DI3 waves, and the P13 and P31 waves it has not been possible to extract single-energy
points. However, this is due to the fact that these partial waves are practically zero in
these ranges, which can be deduced from the energy-dependent solution and also results
from our calculation. Consequently, we have filled the corresponding bins with zeros.

The only remaining essential modification of the πN → πN partial-wave data is the in-
troduction of minimum error values: As in most other pion-induced reactions, a minimum
relative error of 3% is assumed for all partial waves and energies. The minimum absolute
error is set to 0.015. The total number of data points included for this reaction amounts
to 816 (≡total spin·total parity·isospin·(real+imaginary)·energy bins= 2 · 2 · 2 · 2 · 51).
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7.1.2 Two-Pion Production

Manley et al. [278] have performed a partial-wave analysis of pion-induced two-pion
production on the nucleon taking into account the two-pion isobar states π∆, ρN , σN ,
and πN∗(1440). Since in our model only one effective two-pion state (ζN) is included,
it is not possible to compare the calculation to the partial waves extracted in [278] for
the individual 2πN final states. To get a handle on the strength of the 2πN flux in the
various partial waves, we use as experimental input the πN → 2πN partial-wave cross
sections defined by

σIJP =
4π

k2

∑

λ,λ′
(J + 1

2
)
∣∣T IJP

λ′λ

∣∣2 ,

which were also extracted in [278]. These cross sections correspond to the sum of all
individual 2πN fluxes for one partial wave, thus representing the total 2πN inelasticity.
As a consequence of modelling the 2πN state by a two-body state within our model, one
cannot expect that all details of these data can be described within the model. In partic-
ular, the threshold and phase-space behavior is different from the individual three-body
final states. As it will turn out (cf. Section 8.1.3), however, a qualitative description up to
J = 3

2
is possible, even with the assumption that the ζ meson only couples to resonances

(cf. Section 3.2). Only in the low-energy region of the JP = 3
2

−
and the high-energy

region of the JP = 3
2

+
waves, the final calculations show noticeable discrepancies with

the Manley data (cf. Section 8.1.3). However, in the latter case the discrepancies might
not be due to the 2πN simplification within the present model. The same discrepancy in
the IJP = 1

2
3
2

+
πN → 2πN flux was also observed in the resonance parametrization of

Manley and Saleski [113], see Section 3.1.1. The underlying problem can be analyzed in
more detail by looking at the πN → πN inelastic partial-wave cross section:

σin
IJ± =

4π

k2

(
J +

1

2

) (
ImT IJ±

1
2

1
2

−
∣∣∣T IJ±

1
2

1
2

∣∣∣
2
)

. (7.2)

Comparing the inelastic with the 2πN partial-wave cross sections allows to figure out,
in which partial waves inelastic contributions apart from 2πN are important and where
there are inconsistencies between the πN and 2πN partial-wave analyses.

The IJP = 1
2

3
2

+
inelasticity grows up to 4 mb from 1.52 GeV up to the ωN threshold (cf.

Figs. 8.5 and 8.6 in Section 8.1.3), while the 2πN partial-wave cross section extracted in
[278] is still zero. At the same time the total cross sections from all other open inelastic
channels (ηN , KΛ, and KΣ) add up to significantly less than 4 mb in this energy region.
This indicates that either the extracted 2πN partial-wave cross section is not correct in
the 1

2
3
2

+
partial wave or another inelastic channel (i.e., a 3πN channel as ρ∆) contributes

significantly to this partial wave. Note that this effect is only observed in this partial
wave and that above the ωN threshold the inelasticity and the 2πN data can again be
described simultaneously in the 1

2
3
2

+
partial wave, see Section 8.1.3.

In the 3
2

3
2

+
partial wave, the 2πN data and πN inelasticity show the need for an additional

inelastic channel with a flux contribution of about 1 mb in the energy region between 1.7
and 1.9 GeV. Since this lack of inelasticity cannot be explained by KΣ, the only remaining
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channel contributing to I = 3
2

(cf. Fig. 8.5 in Section 8.1.3), this is also an indication that
there could be a need for an additional 3πN state not included in the model. However,
since apart from this small energy window in the JP = 3

2

+
partial waves a satisfying

simultaneous description of all observables and partial waves can be achieved, the set of
final states included in the present model can be well justified.

At the same time, such discrepancies have to be taken into account carefully when prepar-
ing the data base for the comparison between experiment and calculation. For example,
in the nucleon resonance analysis of [33] and [183] the errors of the πN → 2πN data
extracted by Manley et al. have been weighed with additional factors of 3 and 2, respec-
tively. Here, we deviate from this procedure and perform more detailed modifications on
the πN → 2πN partial-wave cross section data of Manley et al. [278] (see also Figs. 8.5
and 8.6 in Section 8.1.3):

• Due to the aforementioned inconsistencies in the 1
2

3
2

+
wave, we effectively neglect

the 2πN data points in the energy region between 1.52 and 1.725 GeV by enlarging
the error bars such that they increase smoothly from 0.06 mb for 1.52 GeV to 1.03
mb for 1.725 GeV.

• An error of 1 mb is added to the 1
2

3
2

−
partial-wave errors up to 1.46 GeV. See also

the discussion of this partial wave in Sections 8.1.2 and 8.2.3. At the energies 1.7
and 1.79 GeV the errors have been doubled due to the contradiction with the πN
inelasticity.

• For the same reason of contridicting the πN inelasticities an error of 1 mb is added
to the 3

2
3
2

−
partial-wave errors up to 1.5 GeV and an error of 0.6 mb to the 3

2
1
2

−

partial-wave errors above 1.87 GeV.

• A minimum absolute error of 0.015 mb and a relative minimum error of 3% are
assumed in all partial waves.

The total number of data points included for this reaction amounts to 168.

The same agreement as in the pion-induced 2πN production cannot be expected in the
2πN photoproduction reaction. It has been shown [78, 120, 121] that the γN → 2πN
reactions require strong background contributions from, e.g, ρ contact interactions as
given in Eq. (3.8), which can only be included in the present model by the introduction
of separate 2πN final states. Furthermore, there is no partial-wave decomposition of
this reaction as the one by Manley et al. for πN → 2πN [278]. As pointed out above,
in Manley’s partial-wave analysis the total 2πN partial-wave flux is extracted, which is
the only way for comparing our ζN production with experiment. For example, with the
isovector ζ meson it is impossible to generate a γp → 2π0p cross section, which can, e.g.,
result from the decay of a π∆ intermediate state. Therefore, the γN → 2πN reaction is
calculated in the model and included in the rescattering summation (cf. Appendix F.2.2),
but not compared to experimental data (see, however, Section 8.4.7). The inclusion of
the 2πN photoproduction data in the fitting procedure will only become reasonable upon
the introduction of physical 2πN final states as ρN , π∆, etc., see Chapter 3. Only then it
would also be possible to find agreement between the model calculation and measurements
on photo-absorption on the nucleon, see Section 8.4.7.
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Figure 7.1: Comparison of the total π−p → π−p cross section of calculation C-p-π+ (see
Chapter 8) with experimental data [105].

7.2 Direct Comparison with Observables

As discussed in the previous Section 7.1, due to the neglect of higher spin (≥ 5
2
) resonances

in the potential of the model, a problem arises in the comparison with experimental
observables. It is well known [67], that there are at least three spin-5

2
resonances with

masses below 2 GeV (D15(1675), F15(1680), and F35(1905)), that couple strongly to πN
and γN . As can be seen from Fig. 7.1, our calculated total cross section for π−p →
π−p starts deviating from the experimental data above the D13(1520) resonance, where
the spin-5

2
resonances start to become important. Note, that the hump around 1.66

GeV is caused by the S11(1650) resonance. Furthermore, the neglect of these higher-spin
contributions can lead to angle-dependent structures which cannot be explained within
the present model. The consequence is that the fitting procedure tries to compensate the
lack of these contributions by other effects, thereby shifting weight in the wrong direction.

On the other side, only in the pion-production reactions the data base is large enough
for the extraction of single-energy partial-wave solutions. For some other channels, as
e.g. πN → KΛ (cf. [165] and references therein) or πN → KΣ [22, 37], there were also
attempts to perform energy-dependent partial-wave analyses3). But since these analyses
are inconsistent with each other and in order to avoid the influence of the model depen-
dencies of the extracted partial waves on our results (see discussion in Section 7.1 above),
we use cross sections and polarization observables as experimental input for the ηN , KΛ,
KΣ, and ωN reactions. In this way, one can also extract information, in which reaction
and energy regime it is not possible to explain the experimental observables within our
model and higher-spin resonances might be important.

To account at least correctly for the angular structure of all contributions entering our
potential, in particular the t- and u-channel diagram contributions, the partial-wave de-

3)For πN → KΣ, there is also a single-energy partial-wave analysis [106]. However, the energy bins are
rather large, no errors are given, and the two presented solutions are contradictory; hence this analysis
cannot be used in the present calculation.
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composition is performed up to a total spin of Jmax = 27
2

4). The necessity of including
that many partial waves only becomes evident in reactions with large spin-0 exchange
contributions as γN → ωN , see Section 8.4.6.

In the following sections, the implemented data base for the ηN , KΛ, KΣ, ωN reactions,
and Compton scattering is presented in detail. For almost all reactions, the total cross
sections that were taken before 1988 are also summarized in [105].

7.2.1 γN → γN

The differential cross sections of various measurements [204, 205, 207, 208, 209, 210, 211,
212, 213, 214, 216, 218, 219, 220] are included, where the most recent ones [207, 208, 211]
have not been considered in [52, 53]. Furthermore, the beam-polarization data of [203,
206, 207] are implemented. The recoil-proton polarization data of [215, 217] are not used
for fitting because of their large error bars.

Looking at the photon helicity couplings given in [67], it is certain, that for higher energies
contributions from the spin-5

2
resonances D15(1675) and F15(1680) will be important.

Therefore, Compton scattering is only compared to experimental data up to a maximum
energy of 1.6 GeV. Only in that energy region one can be sure, that effects of these
resonances are negligible and all important contributions are contained in the potential.

To account for the fact that even the most recent measurements [207] and [208] tend to
be inconsistent with each other, all data on Compton scattering are treated such that a
minimum absolute error of 2 nb and a relative minimum error of 10% is assumed.

The total number of data points included for this reaction amounts to 538.

7.2.2 γN → ηN

In the threshold region up to 1.54 GeV the precise Mainz differential cross section data
of Krusche et al. [237] are used, for the higher energies the data of Refs. [222, 224, 225,
227, 228, 240] are implemented. The differential and total cross sections of [229, 231, 232,
235, 236, 238, 239, 241] are not used since there are more precise measurements for the
same kinematics available. All the published cross section data above concentrate almost
exclusively on the energy region below 1.7 GeV. Only recently, the CLAS Collaboration
[230] has also accessed the energy region above 1.7 GeV. Therefore, the preliminary CLAS
data are important to get a handle on the high-energy region of η photoproduction and
are consequently included.

For the various polarization observables, we use the following data:

• recoil polarization: [233, 236],

• beam polarization: [222, 223, 241],

4)Note that [51, 52, 53] performed the partial-wave decomposition only up to Jmax = 11
2 .
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• target polarization: [226].

Furthermore, the differential neutron-proton ratio dσn/dσp of [234] measured on deu-
terium also enters the fitting procedure.

All data on η photoproduction are treated such that a minimum absolute error of 0.02 µb
and a relative minimum error of 5% is assumed. To account for the high quality threshold
data of Krusche et al. [237], the error bars of these data points remain unchanged.

The total number of data points included for this reaction amounts to 533.

7.2.3 γN → KΛ

In the calculation the differential and total cross sections of [242, 243, 245, 247, 249, 250,
251, 253, 255, 257] and the Λ-polarization measurements of [250, 252, 253, 254, 256, 257]
are included. The older SAPHIR data of Bockhorst et al. [244] are not included, since
they have been reanalyzed in [257].

A thorough examination of the early γp → K+Λ photoproduction data taken from the late
1950s until the early 1970s [242, 243, 245, 247, 248, 249, 250, 251, 253, 255] was pursued
by Adelseck and Saghai [1]. They found internal and external inconsistencies among these
data and here we follow their suggestion to account for systematic errors and increase the
errors of some measurements. Furthermore, they deduced internal inconsistencies – and
also discrepancies with the other measurements – of the Orsay differential cross section
data [246] and consequently excluded this data set. This is also done here.

In addition to the suggestions by [1], all data points on KΛ photoproduction are treated
such that a minimum absolute error of 0.02 µb and a relative minimum error of 5% is
assumed.

The total number of data points included for this reaction amounts to 226.

7.2.4 γN → KΣ

For this reaction, experimental data are available on three different charge reactions:

• γp → K+Σ0:
In this reaction, the most data points are included: The differential and total cross
sections of [258, 260, 261, 263, 262, 265, 266, 267] and the Σ0-polarization measure-
ment of [267] are included.

• γp → K0Σ+:
In this reaction, basically only the recent SAPHIR measurement [264] has extracted
data and hence their differential and total cross sections and Σ+-polarization data
are included. In addition, one total cross section data point of [261] is taken into
account.
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• γn → K+Σ−:
The first reference of [258] has been a measurement on deuterium and two data
points on K+Σ− production have been extracted. Unfortunately, the error bars
are rather large and therefore these points are not included in the calculation, but
displayed for comparison in Section 8.4.5.

Since Adelseck and Saghai [1] rejected the Orsay data [246] in KΛ photoproduction due
to inconsistencies (see above), the KΣ measurement of the same group is neither included
in the fitting procedure. Similarly, the older SAPHIR data of Bockhorst et al. [259] are
not taken into account, since they have been reanalyzed in [267].

For all data points on KΣ photoproduction a minimum absolute error of 0.02 µb and a
minimum relative error of 5% is assumed as in the KΛ case. The number of data points
included for γp → K+Σ0 amounts to 157 and for γp → K0Σ+ to 28, leading to a total of
185 γN → KΣ data points.

7.2.5 γN → ωN

For this reaction, only the cross section measurements of the ABBHHM Collaboration
[271] and of Crouch et al. [270] are published up to now. There have been several Ph.D.
theses of the SAPHIR Collaboration [272, 274, 276], but no publication yet besides a
NStar contribution [273]. Also, the data taken at JLAB by the CLAS Collaboration have
not yet been published but only presented at conferences [275]. Using only the published
data, even in combination with the pion-induced data, it is difficult to extract the ωN
couplings reliably. Thus, in addition to the ABBHHM data also the preliminary data
of the SAPHIR Collaboration [269] are included in the fitting procedure, supplemented
by those differential cross section data of [273], where no other data are available, i.e.
at 1.898 GeV. There are conference contributions for beam-polarization measurements of
ωN photoproduction of the GRAAL Collaboration [268], but since these data are still
very preliminary, they are not included in the fitting procedure.

For the error treatment, we adopted the procedure of ηN photoproduction, i.e. a minimum
absolute error of 0.02 µb and a relative minimum error of 5% is assumed. The total number
of data points included for this reaction amounts to 182.

7.2.6 πN → ηN

For the adjustment procedure, besides the total and differential cross section data [280,
281, 283, 284, 285, 287] also used in [51, 52], the data of [282, 286] have been added.
In view of their resonance model analysis of πN → πN and πN → ηN (see Section
3.1.1), Batinić et al. [10, 29] have evaluated the data of [280, 281, 283, 284, 285, 287]
concerning consistency among each other and possible systematic error sources. We follow
the suggestion of Batinić et al. and perform the following modifications on the data set:

• A systematic error of 10% (at least 0.01 mb) is added to all data because the given
errors are usually only of statistical nature.
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• Compared to the other references, the data of Brown et al. [280] are systematically
too low, which is due to an error in the beam momentum calibration. Batinić et al.
have deduced, that no smooth parametrization of resonance contributions is able to
describe these data. This makes the data at lower energies (1.511, 1.542, and 1.571
GeV) unusable. At higher energies, it is safe to just shift the beam momentum
downwards by 4%.

• The data taken at the energy of 1.507 GeV by Richards et al. [287] tend to be too
low compared to the “world trend”. Therefore, an additional systematic error of
0.04 mb is added to the data from this reference. For similar reasons, a systematic
error of 0.02 mb is added to the data from Debenham et al. [283].

• In total, a minimum absolute error of 0.015 mb and minimum relative error of 6%
is assumed for all data points.

The few available experimental data on the target polarization by Baker et al. [279] are
not implemented since in this experiment the same apparatus as in Brown et al. [280]
has been used and the cross sections of the latter experiment entered the analysis for
normalization. For comparison, these data are shown in Section 8.1.4.

The total number of data points included for this reaction amounts to 321.

7.2.7 πN → KΛ

In addition to the data on differential and total cross sections [288, 295], which have been
used in Refs. [51, 52], four more references are included [290, 292, 293, 296]. Furthermore,
although the differential cross sections of Knasel et al. [294] have large error bars, these
points are used where no other data are available, i.e. at the energies 1.687, 1.701, and
1.743 GeV. To reduce the statistical uncertainty of the Knasel data points the angle
intervals have been rebinned by combining always two neighboring intervals.

The Λ-polarization measurements of Refs. [279, 291, 295] are also included, however, due
to the large errors these values do not have a large effect on the extracted parameters.
Even worse is the situation for the spin-rotation (see Appendix G) measurement of Bell
et al. [289], which is consequently not used.

For the general treatment of the errors of the πN → KΛ data base, we follow Refs.
[51, 52]: A minimum absolute error of 0.015 mb and a relative minimum error of 3% are
assumed for all data points.

The total number of data points included for this reaction amounts to 392.

7.2.8 πN → KΣ

For this reaction, experimental data are available on three different charge reactions:
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• π+p → K+Σ+:
The differential and total cross sections of [298, 301, 302, 309] and the Σ+-
polarization measurements of [299, 301, 307, 309] are taken into account.

• π−p → K0Σ0:
The differential and total cross sections of [297, 300, 303, 308] and the Σ0-
polarization measurement of [308] are included in the fitting procedure. The differ-
ential cross section data of [310] are not used because of their large error bars.

• π−p → K+Σ−:
For this reaction, only differential and total cross sections [292, 304, 305, 293] are
available and thus considered in the fit.

The treatment of the errors of the πN → KΣ data base is performed in analogy to
πN → KΛ, i.e. a minimum absolute error of 0.015 mb and a relative minimum error of
3% are assumed for all data points.

The number of data points included for π+p → K+Σ+ amounts to 270, for π−p → K0Σ0

to 223, and for π−p → K+Σ− to 90, leading to a total of 583 πN → KΣ data points.

7.2.9 πN → ωN

In the 70’s a series of experiments [311, 314, 313] has been performed to measure the
π−p → ωn cross section just above threshold. As pointed out in Chapter 3, prior to the
present calculation these data have resisted a consistent theoretical description, mainly
caused by too large Born contributions [97]. As a consequence these diagrams have been
either neglected (see [145] and the second reference in [109]) or suppressed by very soft
formfactors [179]. These findings have motivated a discussion in the literature about the
experimentalists’ way to extract the two-body cross section [73] and readjustments of the
published π−p → ωn cross section data have been performed [75, 163, 179].

The cause of the discussion is the experimentalists’ unusual method to cover the full
range of the ω spectral function. An integration over at least one kinematical variable is
necessary to make sure that all pion triples with invariant masses around mω are taken
into account, so that the ω spectral function with a width of 8 Mev is well covered.
Instead of fixing the incoming pion momentum and integrating out the invariant mass
of the pion triples directly, the authors of [311, 313, 314] fixed the outgoing neutron
laboratory momentum and angle and have performed an integration over the incoming
pion momentum.

Led by the observation that the cross sections of [311, 313, 314] result in a hard-to-
understand energy dependence of the transition matrix element the authors of [73] have
claimed that due to the experimental method just described the count rates have covered
only a fraction of the ω spectral function. As a consequence, the authors of [73, 163,
179] have advocated that the two-body total cross sections given in [313, 105] should be
modified. Imposing this modification on the threshold cross section, in [73] a practically

constant transition matrix element up to 1.74 GeV corresponding to an S11 (IJP = 1
2

1
2

−
)
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Figure 7.2: Left: S11 inelastic partial wave cross section of πN → πN as deduced from
SM00 [277] ◦ and πN → 2πN partial wave cross section as deduced by [278] •. Right:
πN → ωN total cross section. Data are from ◦: [313], 5: [105], 2: [312]. In both panels,
the solid curve gives the result of C-p-γ+, see Chapter 8.

or D13 (IJP = 1
2

3
2

−
) [74] (since the pion momentum is almost constant in this region)

wave production mechanism has been deduced.

This modification, however, immediately raises another problem. Taking into account this
“spectral function correction” increases the ωN cross section for 1.72 ≤ √

s ≤ 1.74 up to
σ ≥ 3 mb, which is in contradiction to the inelasticity deduced from πN → πN partial
wave analyses (e.g. SM00 [277]). As can be seen in Fig. 7.2 the πN → πN inelasticity
in the S11 partial wave is already saturated by πN → 2πN in this energy region, i.e.
an additional ωN contribution of σS11 ≥ 3 mb would lead to a gross overestimate of the
inelasticity:

σS11
in ≥ σS11

2πN + σS11
ωN

≥ 2.5 mb + 3 mb À 2.4 mb ≈ σS11
in (SM00) . (7.3)

The same argument holds for the D13 wave (see Figs. 8.5 and 8.6 in Section 8.1.3).

Because of this inconsistency of the modified cross sections with existing inelasticities
and because of the importance of the πN → ωN cross section for both unitary models
analyzing reactions on the nucleon in the c.m. energy range 1.7 ≤ √

s ≤ 2.0 GeV as
the present one and in-medium models of vector mesons (see [98, 145] and also the last
reference in [109]) we reanalyze the extraction method used in Refs. [311, 313, 314] by
presenting in the following a complete derivation (given in parts in [311]) of the relation
between the experimental count rates and the extracted two-body cross section for πN →
ωN .
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Count Rates and Two-Body Cross Sections

The experimental count rates are given by (B3) (we label all equations to be found in
[311] with the letter B and those in [73] by the letter H):

N̄ = NH

∫

∆ΩL

∫

∆p′L

d3σ

dΩLdp′L
dΩLdp′L , (7.4)

where the cross section σ describes the process π−p → nπ+π−π0. All variables are taken
in the c.m. system, unless they are denoted by the label L (laboratory frame). p (k)
and p′ (q) denote the incoming proton and outgoing neutron (incoming π and outgoing
ω) four momenta. Absolute values of three momenta are denoted by upright letters, s
and t are the usual Mandelstam variables. ΩL is the neutron laboratory solid angle and
NH the number of target particles per unit area. The integral ranges in (7.4) refer to the
binning of the count rates, i.e. they are the integrals to be performed for averaging over
the experimental resolution intervals ΩL ±∆ΩL and p′L ±∆p′L and are not related to an
integration over the ω spectral function. This will become clearer below (cf. Eq. (7.21)).
The kinematics of the reaction are extracted from the center values of these intervals.
Using

t = (pL − p′L)2 = m2
p + m2

n − 2mpEnL

= m2
p + m2

n − 2mp

√
m2

n + p′L
2 (7.5)

and

(qL − pL)2 = (kL − p′L)2 , EωL = EπL + mp − EnL

=⇒ q2 = m2
π + m2

n + m2
p + 2(mpEπL −mpEnL − EπLEnL + kLp′LxL) (7.6)

(xL = cos ϑL) one finds

N̄ =
NH

2π

∫

∆ΩL

∫

∆p′L

d2σ

dtd
√

q2
JP dΩLdp′L , (7.7)

assuming the cross section is independent of the neutron azimutal angle ϕ. The Jacobian
JP is given by

JP =

∣∣∣∣
d
√

q2/dp′L d
√

q2/dxL

dt/dp′L dt/dxL

∣∣∣∣ =
2mpkLp′L

2

√
q2EnL

, (7.8)

because dt/dxL = 0. Since in the actual experiment the time of flight τL of the neutron
over a distance d,

τL =
1

βL

d

c
(7.9)

with the velocity βL = p′L/EnL, is measured – not its three-momentum –, the count rate
is reexpressed in terms of the time of flight:

N̄ =
NH

2π

∫

∆ΩL

∫

∆τL

d2σ

dtd
√

q2
JτdΩLdτL , (7.10)
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with

Jτ = JP
dp′L
dτL

. (7.11)

The factor linking the Jacobians is

dp′L
dτL

=
dp′L
dβL

dβL

dτL

=
p′L

2EnL

m2
n

c

d
because of

dβL

dp′L
=

m2
n

En
3
L

. (7.12)

We now relate this count rate to the two-body cross section [82]

dσ2b

dt
=

1

64πsk2

1

2

∑

λp,λn,λω

|M(s, t)|2 (7.13)

of π−p → ωn, assuming a stable ω. In order to do so, we deviate from the derivation in
[311] and start with the general cross section formula for πN → 3 + 4 + 5 + . . . + l in the
c.m. system [82]:

dσ =
1

4k
√

s

1

2

∑
|M̃|2(2π)4

l∏
j=3

d3k′j
(2π)32E ′

j

δ4(p + k −
∑l

j=3
k′j) , (7.14)

where the sum stands for summing over initial and final spins. Here (for simplicity, we
assume that the ω only decays into 3 pions: π−p → nω → nπ+π−π0), the matrix element
reads:

M̃ = Mµ
π−p→ωnD

ω
µν(q

2)Hν
ω→3π (7.15)

with Dω
µν(q

2) =
∑

λω
ε†µ(λω)εν(λω)∆ω(q2) and ∆ω(q2) = (q2−m2

ω + i
√

q2Γω→3π)−1. Thus,

in |M̃|2 a sum over λω and λ′ω appears. However, since the ω decay amplitude ελω ·
Hω→3π can be decomposed into spherical harmonics Y1λω and the outgoing pion angles
are integrated out, there are only contributions for λω = λ′ω. To introduce the ω spectral
function ρω(q2) in (7.14), we note that we can evaluate the decay ελω · Hω→3π in the ω
rest frame, which is hence independent of the polarization λω. Then the width of the ω
is given by

Γω→3π(q2) =
1

2
√

q2

∫ 6∏
j=4

d3k′j
(2π)32E ′

j

∣∣εµ
λω
· Hµ

∣∣2 (2π)4δ4(q −
∑6

j=4
k′j), (7.16)

valid for any λω, and related to the ω spectral function in the following way:

ρω(q2) = − 1

π
Im∆ω(q2)

=
1

π

∣∣∆ω(q2)
∣∣2 √

q2Γω(q2)

=
1

π

∣∣∆ω(q2)
∣∣2 1

2

∫ 6∏
j=4

d3k′j
(2π)32E ′

j

|εµ
λω
· Hµ|2(2π)4δ4(q −

∑6

j=3
k′j) .
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Now, we can rewrite the cross section of Eq. (7.14) by introducing 1 =
∫

d4qδ4(q−∑6
j=3 k′j)

and using the spectral function:

d2σ =
1

4k
√

s

1

2

∑

λp,λn,λω

∫
|M · ελω |2 (2π)4δ4(p + k − p′ − q)

d3p′

(2π)32En

2π

(2π)4
ρω(q2)d4q

=
1

4k
√

s

1

(2π)2

1

2

∑

λp,λn,λω

∫
|M · ελω |2

d3p′

2En

ρω(q2)

∣∣∣∣∣∣
q=p+k−p′

=
1

8k
√

s

1

2π

1

2

∑

λp,λn,λω

|M · ελω |2
p′2dp′

En

dxρω(q2)

∣∣∣∣∣∣
q=p+k−p′

(7.17)

=
p′

32π
√

sk2

1

2

∑

λp,λn,λω

|M · ελω |2
dp′dt

En

ρω(q2)

∣∣∣∣∣∣
q=p+k−p′

(7.13)
= 2

√
q2

dσ2b

dt
ρω(q2)dtd

√
q2

∣∣∣∣
q=p+k−p′

,

where we have used

t = (p− p′)2 = m2
p + m2

n − 2(EpEn − kp′x) (7.18)

=⇒
∣∣∣∣
dt

dx

∣∣∣∣ = 2kp′ ,

and

En =
s + m2

n − q2

2
√

s
(7.19)

=⇒ dp′

d
√

q2
=

dp′

dEn

dEn

d
√

q2
=

√
q2En

p′
√

s
.

Thus we have

d2σ

dtd
√

q2
= 2

√
q2

dσ2b

dt
ρω(q2)

∣∣∣∣
q=p+k−p′

and finally for the experimental count rate

N̄ =
NH

2π

∫

∆ΩL

∫

∆τL

2
√

q2
dσ2b

dt
ρω(q2)

∣∣∣∣
q=p+k−p′

JτdΩLdτL. (7.20)

To eliminate the ω spectral function, the experimentalists [311, 314, 313] have performed
an integration over the incoming pion three-momentum kL by summing over all beam
settings, which can be transformed into an integration over the ω four-momentum squared:

N =

∫
dkLN̄
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=
NH

2π

∫
dkL

∫

∆ΩL

∫

∆τL

2
√

q2
dσ2b

dt
ρω(q2)JτdΩLdτL

=
NH

2π

∫

∆ΩL

∫

∆τL

dσ2b

dt
JkJτdΩLdτL , (7.21)

where we have used the normalization of the spectral function
∫

ρω(q2)dq2 = 1 and the
assumption that the matrix element in Eq. (7.13) only varies slightly around the peak of
the ω spectral function5) for fixed t corresponding to fixed p′L via Eq. (7.5)6). In the first
line, due to four-momentum conservation, the ω momentum is restricted to q = p+k−p′.
The Jacobian Jk is given by

Jk ≡ dkL

d
√

q2

(7.6)
=

√
q2

kL

EπL
(mp − EnL) + p′LxL

. (7.22)

In the derivation of Eq. (7.21) two more assumptions enter that are checked in the
following:

• Sufficient coverage of the ω spectral function for all kinematics extracted, even at
low p′ values:
The incoming pion lab-momentum range has been kL ∈ [1.04, 1.265] GeV, which
translates into a c.m. energy range of

√
s ∈ [1.6938, 1.8133] GeV. Using p′ ∈

[0.03, 0.21] GeV, this leads to the following ranges for the upper and lower lim-
its in the q2 integration: q2

+ ∈ [0.8222, 0.8692] GeV2 and q2
− ∈ [0.72, 0.7532] GeV2.

Even in the worst case the integration extends over at least 7 half widths Γω/2 on
either side of m2

ω and thus covers more than 92% of the spectral function.

• Constancy of the product of the Jacobians JkJτ :
By using Eqs. (7.5), (7.6), (7.18), and (7.19) one can easily show that the product

JkJτ =
2mpkLp′L

4

m2
n

[
kL

EπL
(mp − EnL) + p′LxL

] c

d

varies for fixed t by less than 2.5 percent in the interval
√

q2 ∈ [mω−2Γω, mω +2Γω]
for all kinematics considered in the experiment.

Since the countrate of Eq. (7.21) is identical to the one given between Eqs. (B9) and (B10)
in [311], the method used in Refs. [311, 313, 314] and correspondingly their two-body
cross sections are correct.

It is important to note that in the data analysis both p′L and xL are needed to fix the
kinematics of the measured events. During the count rate corrections (flux normalization
in dependence on kL, background subtraction via missing mass spectra), for each kL beam

5)The approximate constancy of the matrix element is the basic assumption for extracting the two-body
cross section from any experiment dealing with decaying final state particles.

6)Remember that the integral range ∆τL in Eq. (7.21) corresponds to the experimental resolution.
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setting the measured p′L and xL translate into
√

q2 (see (7.6)) and can also be Lorentz
transformed into their c.m. values p′ = p′(EπL, p′L, xL) and x = x(EπL, p′L, xL). The
events can now be regrouped in p′,

√
q2, and x intervals. Then, after having performed

the integration over all
√

q2 as in (7.21), the translation of a given p′ into
√

s can only
be done by assuming that the main contribution to the corrected count rates comes from
around the peak of the omega spectral function q2 ∼ m2

ω.

The main assertion of Ref. [73], manifested in Eq. (H4), is that instead of (7.21) only a
fraction of the cross section for the production of an unstable particle had been measured
in [311, 313, 314]. This fraction is determined by translating the experimental p′ binning
intervals given in [313] into interval bounds for the integration over the ω spectral function.
Equation (H4), which is used for the cross section corrections in [75, 163, 179], is identical
to the third line of Eq. (7.17) under the assumption that p′ is bound to the p′ binning
intervals. However, as pointed out above, in an experimental event EπL, p′L, and xL are
fixed and hence Eq. (7.20) has to be applied to the experimental count rate for a fixed
pion momentum.

The experimental integration over the incoming pion momentum is introduced in Ref.
[73] only in the subsequent discussion between Eqs. (H9) and (H10). In the paragraph
following Eq. (H16) the authors of Ref. [73] argue that the range of this integral is
narrowed due to the p′ binning (as in (H4)). The ω mass is thus allowed to vary only
in the interval given by the p′ interval ranges for a fixed pion momentum. But as shown
above, fixing p′ only fixes the incoming pion momentum if one assumes a specific ω mass.
Hence the pion momentum integration performed in the data analysis indeed translates
into an ω mass integration only bounded by the pion momentum range and thus leads to
Eq. (7.21). This relation between the neutron momentum p′, the pion momentum k, and
the ω mass were thus treated improperly in Ref. [73].

The second correction factor extracted in Ref. [73] due to the neutron momentum binning
of ∆p′ = 10 MeV is nothing but the result of averaging the third line of Eq. (7.17) over the

neutron c.m. momentum: (∆p′)−1
∫ p′+∆p′

p′−∆p′ p̃2dp̃ = p′2+(∆p′)2/12 (cf. (H10)). This differs

at most (“worst” case: p′ = 30 MeV) by 1 percent from p′2 and is therefore negligible.

Furthermore, it is obvious from Fig. 7.3 that the differential ωN data from all three
references [311, 313, 314]7) are completely in line with each other and also with Ref.
[312]8). The same holds true for the total cross sections of Ref. [313] in comparison with
other experiments9), see Fig. 7.2. There is, therefore, no reason to hypothesize – as in
[75] – that the formalism developed in [311] could have been used incorrectly in [314] and
[313].

In this context we stress one more point. Very close to threshold, the two-body cross
section π−p → ωn extracted from experimental count rates could be influenced by the
strong πN interaction for slow pions stemming from ω → 3π. However, this point has

7)The total cross sections given in Refs. [311, 314] are actually angle-differential cross sections (mostly
at forward and backward neutron c.m. angles) multiplied with 4π.

8)The differential cross sections are extracted from the corrected cosine event distributions given in
Ref. [312] with the help of their total cross sections.

9)Note, that all other experiments measured π+n → ωp.
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Figure 7.3: Differential cross section for left: backward and right: forward ω c.m. angles.
The data points are from •: [311], 4: [314], ◦: [313], and 2: [312]. The curve gives the
result of the calculation C-p-γ+, see Chapter 8.

been checked in Ref. [314] by also looking at ω → π0γ; they did not find any deviations
between the two ways of extraction.

Summarizing, we have shown that the extraction method presented in [311] and also
used in [314, 313] is indeed correct. There is no reason to doubt the correctness of the
data presented in these references; they are in line with each other and also with other
experimental data. The reanalysis of the ωN -production data in Ref. [73], on which the
theoretical descriptions of Refs. [163, 179] are based, as well as the speculations in Ref.
[75] thus lack any basis.

Consequently, we use the angle-differential cross sections of [311, 313, 314] and also of
[312] (see footnote 8)) and the total cross sections of [105, 312, 313] as input for the
fitting procedure. The total number of data points included for this reaction amounts to
113. As in the other pion-induced reactions, for all these data, a minimum absolute error
of 0.015 mb and a relative minimum error of 3% have been assumed.

7.3 Data-Base Balance and Fitting Strategy

As pointed out in the introduction and in previous sections of this chapter, the experi-
mental data situation is very different for the various reactions and also for the various
energy regions, which makes a simultaneous fitting procedure involved. Just taking all
available data points would lead to stressing those energies where the most data are avail-
able far more than the others, misbalancing the analysis of the complete energy region.
Therefore, a strategy has to be implemented to balance the different energy regions and
reactions. Consequently, the numbers for the implemented data points of the various
reaction channels are not identical to the sum of data points as given in the references.
Here, we bin the complete considered energy region (mN ≤ √

s ≤ 2 GeV) into 96 energy
bins and allow for each angle-differential observable up to 10− 15 data points per energy
bin. This still allows to stress – but not overstress – those energy bins where more data are
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Totala γN → γN γN → πN γN → ηN γN → KΛ γN → KΣ γN → ωN
6829 538 2772 533 226 185 182

Total π πN → πN πN → 2πN πN → ηN πN → KΛ πN → KΣ πN → ωN
2393 816 168 321 392 583 113

Table 7.1: Number of data points used during the fitting procedure. a: This number
includes all pion- and photon- induced data points.

available. The resulting situation of the data points included in the individual reactions
is summarized again in Table 7.1.

However, even when using this binning and also taking into account that the covered
energy regions can be quite different (e.g. γN → πN : (mN +mπ) → 2.0 GeV as compared
to γN → ωN : 1.72 → 2.0 GeV), the data base is still not well balanced. This leads to
the necessity of additionally introducing different weights for some channels.

Since a special interest of the present calculation is on the ω production mechanism, the
πN → ωN data base has to be modified. In this channel there are only few data points
(113) available and the data above 1.77 GeV have large error bars. Thus, the errors of the
total cross sections of this reaction are reduced in the following way (cf. Fig. 7.2 above):

• For the three Karami total cross section data points [313] above 1.745 GeV the error
is reduced to 0.03 mb.

• For the Danburg data [312] at 1.95 and 2.0 GeV, the total cross section error is
reduced to 0.045 mb.

Fortunately, with the preliminary SAPHIR data [269], being of high quality and uni-
formly distributed over the energy range, a similar procedure is not necessary for ωN
photoproduction.

In KΣ photoproduction, one faces another weighing problem: For the reaction γp →
K+Σ0 there are 157 data points included, while for γp → K0Σ+ only 28 with large
error bars are considered. A direct fitting of these two reactions without modifying the
statistical weights would effectively amount to neglecting the K0Σ+ reaction, in particular
because the pion-induced KΣ data are considered simultaneously. Therefore, we assign
additional weight to the K0Σ+ reaction by reducing the errors of the total cross sections
in the following way (cf. Fig. 8.29 in Section 8.4.5):

• For the energies below 1.76 GeV, the total cross section errors of the data from [261]
and [264] is reduced to 0.05 µb.

• For the energies above 1.76 GeV, the total cross section errors of the SAPHIR data
[264] is reduced to 0.07 µb.

Furthermore, additional remarks on the pion production reactions in a global fit, i.e.
including all pion- and photon-induced data, are in order. Firstly, one has to take into
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account that the implemented data points of the partial-wave analyses represent a much
larger amount of originally measured data points. This is especially important for πN →
πN , since we only include 8 partial waves (J ≤ 3

2
) and thus 16 data points per energy

bin (see Section 22). At the same time, there are 18 multipoles for γN → πN and thus
36 data points per energy bin (see Section 21), with also smaller error bars and available
for more energy bins. Including the data points for these two reactions (γN → πN :
2772, πN → πN : 816) without any modification in a global fit would lead to a large
overweighing of the photoproduction reaction. Therefore, we choose to reduce the γN →
πN statistical weight by a factor of 2 and enlarge the πN → πN weight by a factor of 3.
Since the pion photoproduction data still dominates the total χ2 value, the final quality of
the description of this channel hardly changes (≤ 5%) due to the weight reduction, while
the elastic scattering is significantly better described. On the other side, the quality of
the description of all other reactions remains practically unchanged. Since in the other
reactions the situation between pion- and photon-induced data is rather well balanced,
no additional weighing is needed (besides what is described above for πN → ωN and
γp → K0Σ+).

A consequence of the implemented additional weights is that the final χ2 value does not
necessarily reflect the “real” χ2 minimum, but only the one with the above reduced and
enlarged statistical weights. For means of comparison, however, in the χ2 results given in
Chapter 8, the additional weights described in this Section 7.3 are taken out again and
the only modifications entering the final χ2 calculation are the error procedures described
in the Sections 21 to 7.2.9 above.

7.4 Fitting Strategy

This section is supposed to provide a short overview of the strategy that has been applied
to find the results presented in Chapter 8. Working out a strategy is not only important
in view of the data-base situation but also in view of the number of parameters included,
since the less parameters are allowed to vary simultaneously the easier a χ2 minimum is
found.

For all parameter sets extracted, the starting point is always a fitting of the pion-induced
data alone (“hadronic fits”). The idea is to account for all unitary effects correctly and
only after a reasonable splitting of the partial-wave flux contributions of the different
channels is found, it is reasonable to further include the photoproduction data (“global
fits”).

In the hadronic fits, we start from the results of the preferred global fit SM95-pt-3 of
[52, 53], which forms a reliable basis for the energy range up to 1.9 GeV. Since the most
dominant flux contributions stem from πN and 2πN , in a first step, only the πN , 2πN
parameters, and masses of the resonances are allowed to vary until convergence is reached.
Then the free parameter space is extended to include the next important contributions
ηN and ωN . For the subsequent inclusion of the associated strangeness channels KΛ
and KΣ, one can take advantage of splitting all reaction channels into the two isospin
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channels10): First, all KΣ, πN , and 2πN parameters contributing to isospin 3
2
, i.e. the

∆ resonance parameters and the K∗ΣN and K∗
0ΣN couplings are determined by fitting

the πN → πN/2πN I = 3
2

partial waves and the copious data on π+p → K+Σ+, a
pure I = 3

2
reaction. When all these I = 3

2
parameters are fixed, one switches over to the

I = 1
2

section keeping the I = 3
2

parameters unchanged. There, first only the KΛ and KΣ
I = 1

2
parameters are varied, and afterwards all I = 1

2
final state parameters are varied, i.e.

the nucleon couplings to ηN , ωN , KΛ, and KΣ and all isospin-1
2

resonance parameters.
Finally, the hadronic fits are terminated by including all hadronic parameters, i.e. both,
the parameters of the I = 1

2
and I = 3

2
channels.

The strategy for the global fits, i.e. when the photoproduction data are included, is similar
to the hadronic fitting strategy with the exception, that the splitting into I = 1

2
and I = 3

2

is not possible anymore. This is due to the fact that experimentally, Compton scattering
cannot be isospin decomposed and γp → γp contains I = 1

2
and I = 3

2
contributions

(see Appendix F.1.2). Moreover, in KΣ photoproduction not enough data have been
taken yet to be able to perform an isospin decomposition as in pion photoproduction
and both measured reactions γp → K+Σ0, γp → K0Σ+ are composed of isospin-1

2
and

isospin-3
2

amplitudes. Therefore, the global fitting strategy is as follows. Starting from
a final hadronic set, first only the photon couplings are varied. Thereby it turns out,
that due to the comparison to 6 photoproduction channels simultaneously and the much
more precise data implemented, it is not possible any more as in [52, 53], where only
4 photoproduction channels (γN → γN/πN/ηN/KΛ) have been compared to data, to
already find a satisfactory description of the global data base when keeping the hadronic
parameters fixed. Note, that, in the γN → ηN reaction, the data base used in [52,
53] has essentially ended at 1.7 GeV and Compton scattering has only been fitted up
to 1.6 GeV. This means that only in the energy window from 1.49 to 1.7 GeV three
photoproduction channels have been fitted simultaneously; above and below effectively
only two photoproduction channels have had to be considered at the same time. In the
present calculation, especially the fitting of the ω photoproduction channel turns out to
be difficult by using the ω couplings determined by a comparison to only 113 πN → ωN
data points. A similar observation is made in η photoproduction due to the poor quality
of the πN → ηN data, see Section 7.2.6. In the channels with associated strangeness
production, a problem arises due to the Born couplings. Since they only play a minor role
in the hadronic reactions, but become much more important in photoproduction due to
the gauging procedure prohibiting the introduction of a formfactor at the electromagnetic
vertex (cf. Section 3.7.2), the comparably large NKΛ and NKΣ couplings extracted in
the pion-induced reactions lead to a large overestimation of the photoproduction cross
sections, especially in the threshold region. Consequently, the best fit with keeping the
hadronic couplings fixed has only resulted in an overall χ2 of about 15, with even much
higher values (∼ 50) in the ω photoproduction channel. Therefore, results of those fits
are not presented here as has been done in [52, 53]. This also shows, that for a reliable
extraction of resonance parameters, the pion-induced data base alone is not sufficient and
the consideration of the photon-induced data is mandatory. After convergence has been
achieved by varying only the photon couplings, the set of free parameters is extended to

10)This is only possible because the u-channel contributions of the resonances to the other isospin
channels do not vary largely during the fitting procedure.
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also include the hadronic couplings to the four most important hadronic flux states: πN ,
2πN , ηN , and ωN . This, of course, also requires the inclusion of the pion-induced data in
the comparison. Then, keeping all the γN , πN , 2πN , ηN , and ωN parameters fixed, the
KΛ and KΣ parameters are varied while comparing to the complete data base. Finally,
all parameters11) are allowed to vary in the global fit.

The parameter ranges are initialized by the ranges given by the PDG [67] when available;
the range for the spin-3

2
off-shell parameters a is chosen as −2 ≤ a ≤ 2. Only when a

parameter approaches the boundary of the interval, the interval is moved. The fits are
performed using the IMSL library routines ZXSSQ and ZXMWD [80], where the first one
is based on a Levenberg-Marquardt and the second on a quasi-Newton algorithm (see, e.g.,
[130]). In general, during the fitting process we switch between the two IMSL routines to
prevent the fitting from getting stuck at a local minimum due to the implemented routine.
Furthermore, additional starting points are continously Monte-Carlo generated to avoid
staying in a local minimum. The minimum found by the above strategy is accepted as the
global minimum after convergence with a free parameter set is reached. Final cross-checks
are performed by
1) reducing the free-parameter set by taking out those parameters, which change only
slightly as e.g. the P33(1232) mass,
2) applying in addition a simulated-annealing minimization algorithm, which, however,
has not given any improvement.
In view of the number of free parameters, however, it cannot be excluded that there
exists a better global minimum; but in view of the smallness of the final χ2 in comparison
with other calculations and the good convergence reached in the fitting procedure, we do
not expect that there is a much better (> 5%) description possible within the presented
K-matrix model.

11)At this stage, those parameters that turn out to hardly vary at all in the fits (e.g. the P33(1232)
mass) are kept fixed to minimize the number of parameters that are varied simultaneously.
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Chapter 8

Results

After having discussed all the ingredients of the model, the results of the fitting procedure
are presented in this chapter. Section 8.1 concentrates on the pion-induced reactions,
where the results from the fits to the pion-induced data (hadronic fits) are also compared
to those from the fits to pion- and photon-induced data (global fits). The extracted
hadronic background and resonance parameters are presented in Sections 8.2.1 and 8.2.3,
followed by Section 8.4, where the results for the photon-induced reaction channels are
discussed. The extracted electromagnetic properties of the resonances are discussed in
Section 8.4.8.

We have started the fitting procedure with an extension of the preferred global fit parame-
ter set SM-95-pt3 of Feuster and Mosel [52, 53]. The first step has been the inclusion of the
KΣ and ωN data in a fit to the pion-induced reaction data. In addition to the t-channel
exchange processes included in [51, 52, 53], we have taken into account the exchange
of the two scalar mesons K∗

0(1430) and σ to improve the description of the associated
strangeness production and pion-nucleon elastic scattering, respectively, as compared to
[51, 52, 53]. Furthermore, this allows for more background contributions in the extended
energy range up to

√
s = 2 GeV. The σ exchange is supposed to model the correlated

isoscalar-scalar two-pion exchange in πN → πN . Since the direct coupling of the scalar
a0 meson to πη (L = −ga0ma0πηa0) was chosen in [51, 52, 53], this coupling has also been
used for the K∗

0 and the σ meson in our first calculation, thereby also accessing chiral
symmetry breaking effects as in [62, 63], see Section 3.3.2. At the same time, in this first
calculation we have tried to minimize the number of parameters and only varied a subset
of all possible ωN coupling constants, i.e. in the fitting process we have allowed for two
different couplings (g1 and g2) to ωN for those resonances, that lie at or above the ωN
threshold (P11(1710), P13(1720), P13(1900), D13(1950)1)) and one coupling (g1) for the
sub-threshold resonance highest in mass: S11(1650).

Since it has turned out in this calculation, that especially in the ωN channel (and to some
minor degree also in KΛ and ηN production) large background contributions, manifested
by large spin-3

2
off-shell parameters (cf. Eq. (3.19)), are needed, the subsequent calcu-

lations have been performed by also allowing for more contributions from sub-threshold

1)The D13(1950) is denoted by D13(2080) by the PDG [67].

97
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resonances — as, e.g., S11(1535) → KΛ — and coupling possibilities2). Note, that in the
coupled-channel model of Lutz et al. [109], the authors have also found large sub-threshold
contributions to γN/πN → ωN , in particular a contribution assigned to the D13(1520).
Recently, Titov and Lee [180], Zhao [199], and also Oh et al. [132] have extracted impor-
tant D13(1520) and S11(1535) contributions in γN → ωN . Similarly, Post and Mosel [145]
have extracted in their VMD analysis strong couplings from the subthreshold S11(1650)
and D13(1520) resonances. Moreover, allowing for all coupling possibilities is the only way
to fully compare to predictions from quark models as e.g. [151], and to model all different
helicity combinations of the ωN production mechanism (see Eqs. (E.29) and (E.39)). It
is important to note, that due to the coupled-channel calculation, the couplings to one
specific final state are not only determined by the comparison to the experimental data
of this channel, but via rescattering also strongly constrained by all other channels. Fi-
nally, upon the inclusion of the photoproduction data in the global fitting analysis, the
extracted parameters can be further pinned down.

Not unexpected, the inclusion of the chiral symmetry breaking σππ coupling does not
improve the description of πN elastic scattering significantly. Therefore, and to be in
conformity with chiral symmetry, all subsequent fits have been performed with the chirally
symmetric derivative σππ coupling (cf. Eq. (3.11)). The effects of the chiral symmetry
breaking coupling in comparison with the chiral symmetric one are discussed in Section
8.1.1.

Feuster and Mosel [51, 52, 53] have found similarly good descriptions of experimental
pion- and photon-induced data on the final states γN , πN , 2πN , ηN , and KΛ up to 1.9
GeV, when either using the formfactor Fp (Eq. (3.29)) or Ft (Eq. (3.30)) for the t-channel
meson exchanges. Since it is not a priori clear, whether these findings will hold true for
the extended energy region and model space, calculations have been performed using both
formfactors. In addition, we have checked the dependence of the results on the choice of
the spin-3

2
resonance vertices (see Section 3.4.1) and the a priori unknown gωρπ coupling

sign.

Choosing the following notation for the labeling of the fits

• “C” or “P” denotes whether the conventional or Pascalutsa couplings are used for
the spin-3

2
resonance vertices.

• The following letter “p” or “t” denotes whether the formfactor Fp or Ft (cf. Eqs.
(3.29) and (3.30) and Section 3.7.4) is used in the t-channel contributions.

• The following symbol denotes whether the fit is a purely hadronic (“π”) or global
(“γ”) fit.

• The concluding symbol denotes the sign of the gωρπ coupling.

• For the chiral symmetry breaking calculation, a /χ is inserted.

2)Since the ωN couplings of the S11(1650) have always turned out to be very small in the hadronic
fits, finally only one coupling has been used in these fits.
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the 7 hadronic fits and 4 global fits, which have been performed, can be summarized as
follows:

• Using the conventional spin-3
2

vertices, 4 fits have been carried out allowing for both
formfactor shapes (Fp (3.29) or Ft (3.30)) in the t-channel and also both signs of
the couplings of gρωπ:
C-p-π+, C-p-π−, C-t-π+, C-t-π−.
For the results of the last two fits, see in particular Section 8.2.1.

• One calculation has been performed with the chiral symmetry breaking direct σπ π
coupling (see Section 3.3.2):
C-p-π/χ+.3)

• Since in the conventional coupling fits, it has turned out that the Fp t-channel
formfactor results in a better χ2 result, only two fits using the Pascalutsa spin-3

2

vertices have been carried out:
P-p-π+, P-p-π−.

• For the global fits, we have extended the best hadronic fits (C-p-π±, C-t-π±) to
also include the photon-induced data:
C-p-γ+, C-p-γ−, C-t-γ+, C-t-γ−.
For the results of the last two fits, see in particular Section 8.2.1.

8.1 Results on Pion-Induced Reactions

The extension of the Giessen model to also include a vector meson final state requires
some checks whether the new final state is incorporated correctly. As pointed out in
Chapter 4, in the presented partial-wave formalism this inclusion is straightforward by
simply splitting up the ωN final state into its three helicity states ωN 3

2
, ωN 1

2
, ωN0, where

the same helicity notation for ωN is used as given in Section 5.2. Thus, effectively one
has introduced three new final states. The correct inclusion of these three final states has
been checked by simulating a single-channel problem, where just one resonance, which
couples to only one ωN helicity state, has been initialized with the help of Eqs. (E.29)
and (E.39), while all other final states are switched off. It has been shown in [51, 52],
that the resulting partial-wave K-matrix

KIJ±
ωλωλ

∼ −√sΓωλ
(s)

s−m2
R

(8.1)

leads via (4.20) to a T -matrix that resembles a conventional relativistic Breit-Wigner.
This artificial situation is then similar to the low-energy P33 πN → πN partial wave,
which can be well approximated by a single resonance (P33(1232)) only decaying and
consequently contributing to πN . Thus, we have successfully checked that the partial-
wave amplitude T IJ±

ωλωλ
resulting from the single-helicity ωN situation has the correct width

3)Some of the results of this calculation are published under G. Penner and U. Mosel, Phys. Rev.
C65, 055202 (2002).

http://link.aps.org/abstract/PR/VC65/P055202�
http://link.aps.org/abstract/PR/VC65/P055202�
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Fit Total π χ2
ππ χ2

π2π χ2
πη χ2

πΛ χ2
πΣ χ2

πω

C-p-π+ 2.66 3.00 6.93 1.85 2.19 1.97 1.24
C-p-π− 2.69 2.76 6.86 1.84 2.40 2.36 1.12
P-p-π+ 3.53 3.72 9.62 2.47 2.69 2.92 2.17
P-p-π− 3.60 3.96 8.49 2.50 3.31 2.79 2.03
C-p-π/χ+ 3.09 3.75 6.79 2.07 2.16 2.47 2.13
C-t-π+ 3.09 3.32 7.46 2.06 2.48 2.42 3.48
C-t-π− 3.03 3.24 6.74 1.91 2.84 2.48 2.81
C-p-γ+ 3.78 4.23 7.58 3.08 3.62 2.97 1.55
C-p-γ− 4.17 4.09 8.52 3.04 3.87 3.94 3.73
SM95-pt-3 6.09 5.26 18.35 2.96 4.33 — —

Fit Totala χ2
γγ χ2

γπ χ2
γη χ2

γΛ χ2
γΣ χ2

γω

C-p-γ+ 6.57 5.30 10.50 2.45 3.95 2.74 6.25
C-p-γ− 6.66 5.15 10.54 2.37 2.85 2.27 6.40
SM95-pt-3 24.40 16.45 42.07 8.01 4.64 — —

Table 8.1: Resulting χ2 of the various fits. For comparison, we have also applied the
preferred parameter set SM95-pt-3 of [52, 53] to our extended and modified data base
for energies up to 1.9 GeV. For the χ2 results of the fits C-t-γ±, see text. a: This value
includes all pion- and photon-induced data points.

and energy behavior and that all poles due to the resonance denominator in (8.1) cancel
in the matrix inversion (4.20).

The resulting χ2 values for all calculations performed are presented in Table 8.1. Note,
that in contrast to [51, 52, 53], we have included in the present calculation all experimental
data up to the upper end of the energy range, in particular also for all partial-wave and
multipole data up to J = 3

2
. At first sight it seems that the global χ2 is only fair; however

one has to note that the main part of this value stems from the pion-photoproduction
multipoles [221], which have very small error bars but also scatter a lot (cf. Figs. 8.20,
8.21, and 8.22 in Section 8.4.2 below). Note, that in this channel there are 40% of all
data points. Taking this channel out, the total χ2 per data point is reduced from 6.56
to 3.87 for the preferred global fit. Thus, a very good simultaneous description of all
reactions is possible, especially if only the pion-induced reactions are considered. This
shows that the measured data for all reactions are compatible with each other, concerning
the partial-wave decomposition and unitarity effects. As a guideline for the quality of the
present calculation, we have also included a comparison with the preferred parameter set
SM95-pt-3 of [53] applied to our extended and modified data base. It is interesting to
note that although this comparison has only taken into account data up to 1.9 GeV for
the final states γN , πN , 2πN , ηN , and KΛ, the present best global calculation C-p-γ+
results in a better description in almost all channels; only for πN → ηN the χ2 of [53] is
slightly better. This is a consequence of the fact, that for example for the understanding
of KΛ production, the coupled-channel effects due to the final states KΣ and ωN have
to be included. This is discussed in Sections 8.1.5 and 8.4.4 below.

The results for the hadronic fits in Table 8.1 also reveal, that while ωN production
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seems to be rather independent of the sign of gωρπ, the effect of sign-switching becomes
most obvious in the KΛ and KΣ results, showing that both reactions are very sensitiv
to rescattering effects due to the ωN channel. Only the global fitting procedure gives
a significant preference of the positive sign for gωρπ, especially in the pion-induced ωN
production. It is also interesting, that while in [51] similar results have been found using
either one of the formfactors Ft and Fp for the t-channel meson exchanges, the extended
data base and model space shows a clear preference of using the formfactor Fp for all
vertices, i.e. also for the t-channel meson exchange. Especially in the global fitting
procedure, not even a fair description of the experimental data has been possible using
Ft. This is discussed in detail in Section 8.2.1.

Therefore, we do not display the results of the fits C-t-π±/C-t-γ± in the following; fur-
thermore, for reasons of clarity, we restrict ourselves in this section to displaying the
pion-induced results for the best global fit C-p-γ+, the best hadronic fit C-p-π+, and
the calculation using the Pascalutsa spin-3

2
vertices P-p-π+. Only in those cases, where

important differences are found, also the other calculations are discussed.

In the subsequent sections, we start with a discussion of the influence of the treatment
of the σ meson and the spin-3

2
vertices on πN elastic scattering. Then the different pion-

induced channels are discussed separately and the section ends with the presentation of
the background and resonance properties.

8.1.1 σ meson, Chiral Symmetry, and Spin-3
2 Vertices

As compared to the calculation of [51, 52, 53] we have added a σ meson t-channel ex-
change. In Section 3.3.2 it has been pointed out, that the inclusion of a σ meson is not
necessary from the viewpoint of chiral symmetry, when pseudovector πNN coupling is
used. However, the σ meson can still be used to simulate the correlated two-pion scalar-
isoscalar exchange, but conformity with chiral symmetry then requires a derivative σππ
coupling. The preference of a chirally symmetric coupling has become obvious, when we
have switched from the chiral symmetry breaking coupling (calculation C-p-π/χ+) to the
chirally symmetric derivative coupling (calculation C-p-π+): Even without any refitting
the χ2 in the πN partial waves improves by about 10 percent. This improvement comes
especially from the threshold region in the S11 (and also P13) partial wave, see Fig. 8.1,
and even extends up to the energy region of the second resonance (

√
s ≈ 1.65 GeV).

The importance of the inclusion of a chirally symmetric σ meson becomes especially
obvious in the calculations, where the Pascalutsa spin-3

2
vertices (cf. Section 3.4.1) are

used. It turns out in the present model that the use of the chirally symmetric coupling
is mandatory: With the non-derivative coupling, not even a fit to low-energy (up to
1.4 GeV) πN -scattering has been possible. In [51, 52, 53], where the σ meson was not
included, it was shown, that in particular the πN S31 partial wave can hardly be described
when the spin-1

2
off-shell contributions of the P33(1232) were neglected. In the present

calculations, however, we find that the inclusion of a chirally symmetric σ meson exchange
with a derivative σππ coupling allows the description of low-energy πN elastic scattering
even without this off-shell contributions, i.e. using the Pascalutsa prescription for the
spin-3

2
vertices. From Fig. 8.2 it is obvious, that a good description of the S31 partial
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Figure 8.1: Effect of the chirally symmetric (calculation C-p-π+: dash-dotted) as com-
pared to the chiral symmetry breaking σππ (calculation C-p-π/χ+: dash-double-dotted)
coupling in the S11 πN elastic partial wave. Left: real part, right: imaginary part. Data
are from [277].
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Figure 8.2: Effect of the σ meson exchange on the real part of the S31 partial wave in πN
scattering. P-p-π+ (solid line), P-p-π+ without σ (dotted), C-p-π+ (dashed), C-p-π+
without σ (dash-dot), C-p-π+ without P33(1232) (dash-double-dotted). Data are from
[277].
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wave is indeed possible when the Pascalutsa couplings are used. At the same time it
turns out, that the σ meson as a background contribution is enhanced as compared to
when the conventional spin-3

2
couplings are used. This is not only manifested in the

increase of the σ couplings (see Table 8.3 below), but also the t-channel cutoff parameter
Λt (see Table 8.4 below) increases by a factor of 2, meaning that the missing spin-1

2

off-shell background contributions of the spin-3
2

resonances are compensated by larger
t-channel diagram contributions in the lower partial waves of all reaction channels. The
resemblance of the calculations P-p-π+ without the σ meson and C-p-π+ without the
P33(1232) resonance also asserts the finding of Pascalutsa [138] and Pascalutsa and Tjon
[137] that the two prescriptions for the spin-3

2
vertices become equivalent when additional

background contributions are included, i.e. when the spin-1
2

off-shell contributions are
reshuffled into other contributions. Similar observations concerning the importance of
the inclusion of a σ meson have also been made in the full BSE πN → πN model of
Lahiff and Afnan [104]. These authors have also allowed for the inclusion and neglect of
the P33(1232) spin-1

2
off-shell contributions by using conventional and Pascalutsa πN∆

couplings. A ten times smaller gσNNgσππ value in the conventional as compared to the
Pascalutsa case was found. At the same time, the cutoff value of the σ formfactor in the
conventional case has been much softer thus reducing the σ contribution even further.

8.1.2 πN → πN

The resulting descriptions of the πN elastic scattering partial waves are shown in Figs. 8.3
and 8.4. In most partial waves, the hadronic calculations using the Pascalutsa (P-p-π+)
and conventional (C-p-π+) spin-3

2
vertices are very similar and equally well reproduce the

πN → πN single-energy data points of [277]. The largest differences are found in the

• P11 wave around the P11(1710) resonance. Since there is no prominent structure in
the πN elastic scattering data, the width of this resonance is difficult to fix resulting
in the different structures in Fig. 8.3. This also explains why the P11(1710) mass as
given by the references in the PDG review [67] ranges from about 1.69 to 1.77 GeV.

• S11 wave around the S11(1650) resonance. Due to the missing off-shell contributions
a more pronounced resonance behavior is needed in the Pascalutsa calculation to
be able to describe the high-energy tails of the real and imaginary part.

• S31 wave above 1.7 GeV. In this partial wave, it has turned out that adding a second
resonance (besides the S31(1620)) around 1.98 GeV improves the χ2 considerably
in the Pascalutsa calculation. However, the same does not hold true for the other
calculations, which consequently show less structure in the high energy tail. See
also Section 8.2.3 below.

• D13 wave above 1.8 GeV. In this partial wave, it has also turned out that adding
a third resonance between 1.7 and 1.8 GeV, improves the χ2 considerably in the
Pascalutsa calculation. Since the resulting resonance is rather narrow (Γtot ≈ 55
MeV), the difference to the other calculations remains small and is only visible in
the imaginary part between 1.7 and 1.8 GeV. See also Section 8.2.3 below.
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Figure 8.3: πN → πN partial waves for I = 1
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The calculation with the chiral symmetry breaking σ contribution is not shown in Figs.
8.3 and 8.4 since it is very similar to the calculation C-p-π+; the main differences are
contained in the low-energy tails of the spin-1

2
partial waves and especially in the S11

wave, see Fig. 8.2 above.

For the extension of the model up to 2 GeV it turns out to be essential to add a resonance
in the P13, P31, and P33 partial waves as compared to [51, 53]. This is in line with
Manley and Saleski [113], who found additional states around 1.88, 1.75, and 2.01 GeV,
respectively. Without these resonances, those three partial waves cannot completely be
described above 1.8 GeV in our model, see also [51, 53]. However, in the PI3 waves, the
new resonances are at the boundary of the energy range of the present model. This means
that their properties cannot be extracted with certainty, but in both partial waves there
is a clear indication for an additional contribution. See also Section 8.2.3 below.

The most striking differences between the global and the purely hadronic fits can be seen
in the low-energy tails of the S11 and P11 waves, which in the latter case is accompanied by
an increase of the mass and widths of the P11(1440). While in the hadronic calculations the
threshold behavior of all J = 1

2
partial waves is nicely reproduced, which also leads to ρNN

couplings in line with the KSRF relation (see Section 8.2.1 below), in the global calculation
this description is inferior. The reason for this behavior can be found in the necessity of the
reduction of the nucleon formfactor cutoff ΛN in the global fits due the E

p/n
0+ multipoles, see

Section 8.4.2. Thereby the low-energy interference pattern in πN scattering between the
ρ meson and the nucleon is misbalanced and deteriorates in comparison with the hadronic
fits. Moreover, the resonant structure due to the P13(1900) in the P13 wave turns out to
be more pronounced in the global fits as compared to the hadronic calculations. This
is a consequence of the necessity of an enhanced P13 contribution in the ωN production
mechanism, see Sections 8.1.7 and 8.4.6. In the isospin-3

2
partial waves, there is hardly

any difference between the hadronic and the global fit results. The reason is, that the
I = 3

2
resonances only contribute to pion and KΣ photoproduction, and are hence not

submitted to that many additional constraints of the photoproduction data as the isospin-
1
2

resonances.

For a detailed discussion of the individual resonance contributions to the partial waves
and the discrepancies in the D13 partial wave below 1.45 GeV, see Section 8.2.3 below.

8.1.3 πN → 2πN

Although the 2πN production is simplified in the present model through the isovector-
scalar ζ meson, the 2πN flux is well reproduced in most partial waves, see Fig. 8.5.
This indicates, that the pion-induced 2πN production is indeed dominated by baryon
resonances, which represent the only production mechanism for the ζ meson in our model.
Since the 2πN final state clearly dominates all partial-wave inelasticities besides S11,
P11, and P13 (see below), cf. Fig. 8.5, the qualitative description of this channel is
mandatory in a unitary model. The various calculations for the 2πN partial-wave cross
sections are very similar in all partial waves, with the exception of the S11 wave. There,
the Pascalutsa calculation results in a largely decreased S11 2πN production above 1.7
GeV, below the 2π production data. Although the S11 ωN partial-wave cross section is
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Figure 8.5: πN → 2πN partial-wave (JP ) cross sections for I = 1
2

(upper panel) and
I = 3

2
(lower panel). The solid dots (•) are taken from [278], the open dots (◦) are the

inelastic πN → πN partial-wave cross sections extracted from the VPI analysis [277].
Notation as in Fig. 8.3.
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increased simultaneously by about 0.5 mb as compared to the conventional calculations,
the resulting total inelasticity is still reduced, see Fig. 8.6. All calculations show a kink
structure in the S11 and the D13 2πN flux at the KΣ and the ωN thresholds, respectively,
indicating that 2πN flux is moved to the corresponding channels.

The largest changes in the 2πN production upon inclusion of the photoproduction data
can be observed in the P11 and D13 waves above the ωN threshold. The inclusion of the
very precise preliminary ωN photoproduction data of the SAPHIR Collaboration [269]
requires, that inelastic contributions are moved from 2πN to ωN in the P11 wave and
vice versa in the D13 case. This can also be seen in the dramatic change of the total
πN → ωN cross section behavior when the photoproduction data are included, see Fig.
8.16 below. Otherwise, similarly to the πN → πN case, also the 2πN production is only
slightly changed by the inclusion of the photoproduction data. A small, but interesting
change can, however, be observed in the high energy tail of the P31 and P33 waves, which
can be traced back to the shift of inelasticity caused by KΣ from P33 in the hadronic
calculations to P31 in the global calculations; see also Section 8.1.6.

The only obvious discrepancy between the calculated 2πN partial-wave cross sections and
the Manley et al. [278] data is given in the P13 partial wave. In the energy region between
1.55 and 1.72 GeV the inelasticity increases up to 4 mb in line with the calculated 2πN
cross section, while the measured 2πN cross section is still zero. At the same time the
total cross sections from all other open inelastic channels (ηN , KΛ, and KΣ) add up to
significantly less than 4 mb. This indicates that either the extracted 2πN partial-wave
cross section is not correct in the P13 partial wave or another inelastic channel (i.e. an
additional 3πN channel) gives noticeable contributions to this partial wave. The same
problem with the P13 inelasticity has also been observed in a resonance parametrization
of πN → πN and πN → 2πN by Manley and Saleski [113]. Since this is the only partial
wave where such a large discrepancy is observed, no additional final state is introduced
in the present model, but instead, we have largely increased the error bars of the 2πN
data points in this energy region. However, it would be desirable to account for 3πN
contributions in future investigations by the inclusion of, e.g., a ρ∆ final state. This
might also clarify, whether there is a missing (3πN) contribution in the P33 wave above
1.7 GeV, see Fig. 8.5 and Section 8.2.3 below. So far, no analysis has given such a
contribution.

In addition, there is the same problem as in πN scattering with the description of the
rise of the 2πN production in the DI3 waves, i.e. in the D13 wave below 1.45 GeV and in
the D33 wave below 1.55 GeV, see Fig. 8.5. This effect is probably due to the effective
description of the 2πN state in the present model; see the detailed discussion in Section
8.2.3 below.

It is interesting to note that the inelasticities of πN → πN scattering only enter the fitting
procedure indirectly, since the real and imaginary part of the partial waves are the input
for the calculations. Therefore, the very good description of the partial-wave inelastic
πN cross sections in all calculations, see the upper panel in Fig. 8.6, is an outcome of
summing up the partial-wave cross sections of all other πN -induced channels. Note, that
the inelasticities for the I = 3

2
partial waves are not shown for the different calculations,

since due to the smallness of the KΣ contributions, the results are almost identical to
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Figure 8.6: Inelastic partial-wave cross sections of πN → πN for I = 1
2
. Data as in

Fig. 8.5. Upper panel: Notation as in Fig. 8.3. Lower panel: Decomposition of the
inelasticities for calculation C-p-γ+. Partial-wave cross section of 2πN : dotted, +ηN :
dashed, +KΛ: dash-dotted, +KΣ: dash-double-dotted, total (+ωN): solid line.
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the 2πN partial-wave cross sections. From Figs. 8.5 and 8.6 we can thus deduce, that
not only the PWD of all inelastic channels is on safe grounds, but also that all important
channels for the considered energy region are included. At the same time, this shows that
the experimental data on the various reactions are indeed compatible with each other, in
particular no significant discrepancy between the measured πN inelasticity and the sum
of all partial-wave cross sections is observed. The only exceptions are the aforementioned
indications for missing (3πN) contributions in the PI3 waves.

Note also, that the inclusion of the photoproduction data only slightly changes the total
inelasticities of the individual partial waves. The only noticeable differences between the
hadronic and global calculation is a decrease of the S11 inelasticity between 1.6 and 1.7
GeV, and an increase in the P13 inelasticity around the P13(1720).

In the lower panel of Fig. 8.6, the decomposition of the πN inelasticity of the best global
fit C-p-γ+ is shown. It can be deduced that the πN inelasticities are made up in all
partial waves mainly by the 2πN channel. This also allows to deduce, that the Manley
2πN data [278] are in line with the πN inelasticitis of the VPI analysis [277]. The only
contradictions can be observed in the D13 wave at 1.6, 1.7, and 1.8 GeV, in the S31 wave
above 1.85 GeV and the D33 wave between 1.7 and 1.85 GeV.

Besides the 2πN channel, there are in all partial waves important contributions to the
inelasticities from other channels. Thus, the necessity of the inclusion of a large set of
final states in a coupled-channel calculation can be seen in various partial waves:

• In the S11 wave there is the well known ηN contribution around the S11(1535). Note,
that the ηN inelasticity also exhibits a second hump, which is due to the interference
between the S11(1535) and the S11(1650) resonances, although the latter only has a
very small ηN width. See also Section 8.1.4.

• In the P11 wave there is also an important contribution by the large ηN and ωN
widths of the P11(1710) resonance. This contrasts previous analyses [53, 113], where
this contribution has been assigned to the KΛ channel.

• The P13 wave contains important contributions from ηN and ωN as well, where
the first one stems from the P13(1900) resonance, while the latter one consists of
important contributions from both P13 resonances.

• The D13 wave is also fed by a smoothly increasing ωN contribution.

The other final states, i.e. the associated strangeness channels KΛ and KΣ, are only of
minor importance for the πN inelasticities. While both give visible contributions in the
S11 wave, KΛ also shows up in the P13 and KΣ in the P11 wave.

8.1.4 πN → ηN

In the first coupled-channel effective Lagrangian model on ηN production by Sauermann
et al. [157], this channel has been described by a pure S11 mechanism for energies up to
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Notation as in Fig. 8.3. Right: Partial-wave decomposition of the total cross section for
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2

+
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2
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dotted line; 3
2

−
(D13): dash-double-dotted line (in brackets the πN notation is given). The

sum of all partial waves is given by the solid line.

√
s = 1.75 GeV. As Fig. 8.7 shows, the πN → ηN reaction is indeed dominantly composed

of the S11 contribution due to the S11(1535), however, only for energies up to ≈ 1.65 GeV.
Due to its large ηN width the P11(1710) dominates in the following energy window up to
1.8 GeV, while for the highest energies, the P13(1900) resonance is strongest. The double
hump structure in the S11 contribution is due to the destructive interference between the
S11(1535) and S11(1650) resonances, even though the latter one has a much smaller ηN
decay ratio. This interference pattern exhibits maximal destructive interference at the
S11(1650) resonance position, while above 1.7 GeV the S11 contribution is resurrected.

The importance of the P11(1710) contribution has also been found in the resonance
parametrization of πN → πN for I = 1

2
and πN → ηN by Batinić et al. [10], who

extracted a total width for this resonance of about 120 MeV and an ηN decay ratio of
almost 90%. However, in contrast to the results of these authors, we also find in the
present calculation important contributions of the P13(1900) at higher energies. These
contributions are in line with the observed differential cross section at higher energies,
see Fig. 8.8. However, some deviations in the differential cross section behavior between
calculation and experimental data are observed and the angular structure cannot be fully
described. But one has to note, that at higher energies, there are almost only experimen-
tal data available from Brown et al. [280], which enter with enlarged error bars due to
problems with the momentum calibration in the experiment, see [10, 51] and Section 7.2.6.
Hence these discrepancies hardly influence the fitting procedure and the resulting χ2 is
still rather good. Since at energies above 1.8 GeV, there are almost only data available
from Brown et al. [280], a reliable decomposition in this region can only be achieved after
the inclusion of the ηN -photoproduction data.

In this reaction channel, large differences between the Pascalutsa and conventional cal-
culations are observed. This is related to the visible differences in the S11 πN → πN
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Figure 8.9: π−p → ηn polarization measurement. Note that the displayed data from [279]
are not used in the fitting procedure. Notation as in Fig. 8.3.

partial wave, since this partial wave constitutes the largest contribution in the ηN pro-
duction mechanism. An obvious difference is that the Pascalutsa calculation results in
less angular structure of the angle-differential cross section at higher energies, however
influencing the resulting χ2 only to a minor degree, see above. On the other side, the
inclusion of the photoproduction data hardly changes the total cross section behavior.
Only the P11(1710) contribution is slightly emphasized, which also leads to the observed
differences in the differential cross section. Moreover, the ωN threshold effect in the P11

wave can be clearly observed in calculation C-p-γ+ and C-p-π+.

For comparison, we have also included the resulting angle-differential polarization in Fig.
8.9. Note that the displayed data from Baker et al. [279] have not been included in
the fitting procedure, since they are based on the apparatus and angle-differential cross
sections of Brown et al. [280]. The resulting behavior is rather similar for the hadronic
calculations, while the global calculation shows the opposite behavior at forward angles
due to the sign switch of the t-channel a0 contribution, see Table 8.3 below.



114 Chapter 8. Results

1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05
0.0

0.2

0.4

0.6

0.8

1.0

 

σ  
[m

b]

√s [GeV]
1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05

0.0

0.2

0.4

0.6

0.8

1.0

 

σ  
[m

b]

√s [GeV]

Figure 8.10: π−p → K0Λ total cross section. For the data references, see Section 7.2.7.
Left: Results of the different calculations. Line code as in Fig. 8.3. Right: Partial-wave
decomposition of the total cross section. Notation as in Fig. 8.7.

8.1.5 πN → KΛ

KΛ production turns out to be a channel which is very sensitive to rescattering effects.
The inclusion of the KΣ and ωN final states strongly alters the total cross section in this
reaction, especially in the hadronic calculations, see Fig. 8.10. In both of the displayed
hadronic calculations, the KΣ channel leads to a kink in the S11 partial wave, which has
already been observed in the coupled-channel chiral SU(3) model of [148] including only
S and P waves, while the ωN channel strongly influences the P waves. The inclusion
of these coupled-channel effects and of the P13(1900) resonance are major improvements
as compared to [51, 53]. There, these mechannisms were not included and thus, the
KΛ channel was not subjected to any threshold effect and the peaking behavior around
1.7 GeV had to be fully described by the P11(1710) resonance. In the extended model
space, this resonance-like behavior is mainly caused by the P13(1720) resonance, but also
influenced by the opening of these two channels.

The S wave behavior in the Pascalutsa calculation P-p-π+ differs from that in the con-
ventional calculation C-p-π+ (see Section 8.1.2 and Fig. 8.3). The largest differences
between these calculations can be observed in the S11 wave contribution, which is more
pronounced in the Pascalutsa calculation giving rise to a slightly different behavior at
the lowest energies and at the KΣ threshold. The coupled-channel effects become less
obvious once the photoproduction data are included. In the global calculation C-p-γ+
the S11 and P13 waves are only slightly influenced by the ωN threshold, while the KΣ
threshold effect has completely vanished. Note, that the P13 wave dominates over almost
the complete considered energy region. The second most important part comes from the
S11 staying almost constant in the upper energy range, while close to threshold, a slight
peak caused by the S11(1650) is visible.

Although the new P13(1900) only has a small KΛ width, it improves the description
of the reaction significantly due to rescattering, similarly to the S11(1650) resonance in
πN → ηN . Thus the P13(1900) gives rise to a good description of the angle differential
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Figure 8.11: π−p → K0Λ angle-differential cross sections (upper panel) and polarization
measurements (lower panel). Data are from [288] (2), [294] (4), [290] (◦), [291] (•), [295]
(¥), [293] (?), [289] (×). Notation as in Fig. 8.3.
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Fit Total χ2
πΣ χ2(π−p → K0Σ0) χ2(π−p → K+Σ−) χ2(π+p → K+Σ+)

C-p-π+ 1.97 2.14 1.85 1.97
C-p-π− 2.37 3.08 1.86 1.96
P-p-π+ 2.93 3.34 1.67 3.01
P-p-π− 2.80 3.04 1.90 2.91
C-p-π/χ+ 2.48 2.63 2.29 2.42
C-t-π+ 2.42 3.18 1.61 2.05
C-t-π− 2.48 3.67 1.92 1.66
C-p-γ+ 2.97 2.76 2.06 3.45
C-p-γ− 3.94 4.06 4.90 3.53

Table 8.2: Resulting χ2 of the various fits for the three different charge reactions of
πN → KΣ.

observables, while in [51] only contributions from the S11(1650) and P11(1710) resonances
were found. The improvement becomes most visible in the high energy region, where
the full angular structure of the cross section and polarization of the KΛ channel can be
described, see Fig. 8.11. Especially for a description of the upward bending behavior of
the differential cross section at backward angles at the highest energies, the inclusion of
the P13(1900) turns out to be important. Note, that due to the change of the K∗

0 coupling
(cf. Table 8.3), the extreme forward peaking behavior of the hadronic calculations is not
visible any more in the global calculation.

The polarization data hardly influence the determination of the parameters due to the
large error bars, see Fig. 8.11. However, all calculations give a good description of
the angular and energy dependent structure, in particular the pure positive polarization
for lower energies and the change to negative values for the backward angles at higher
energies.

8.1.6 πN → KΣ

Due to the isospin structure of the KΣ final state, the πN → KΣ channel is similar to πN
elastic scattering. The reaction process is determined by two isospin amplitudes (I = 1

2

and I = 3
2
), while data have been taken for the three charge reactions π+p → K+Σ+,

π−p → K0Σ0, and π−p → K+Σ−. Since the first reaction is purely I = 3
2
, it allows a

stringent test of the I = 3
2

(resonance) contributions in the present model, while the other
two are a mixture of I = 1

2
and I = 3

2
contributions (see Eqs. (F.10)). Within our model

it is possible to describe all three charge reactions with approximately the same quality,
see Table 8.2, corroborating the isospin decomposition of the KΣ channel in the present
calculation. From the total cross section behavior, shown in Fig. 8.12, one deduces,
that the threshold behavior of the reactions with I = 1

2
contributions is influenced by a

strong S11 wave, arising from the S11(1650) just below the KΣ threshold, and PI1-wave
dominance for increasing energies, which stem from the P31(1750) and in particular the
P11(1710). However, the P13(1900) is also visible in the K+Σ− channel. In the pure I = 3

2

reaction the S wave importance is largely reduced, and the P waves dominating over
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Figure 8.12: πN → KΣ total cross sections for the different charge reactions. Notation
as in Fig. 8.3. For the data references, see Section 7.2.8. Left: Results of the different
calculations. Notation as in Fig. 8.3. Right: Partial-wave decomposition of the total
cross section for the calculation C-p-γ+. JP = 1

2

−
(SI1): dashed line; 1

2

+
(PI1): dotted

line; 3
2

+
(PI3): dash-dotted line; 3

2

−
(DI3): dash-double-dotted line. The sum of all partial

waves is given by the solid line.
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the complete energy range. Note, that the JP = 3
2

−
waves do not give any noticeable

contribution to the cross sections, see also below. In the hadronic reactions it turns out,
that the main contribution to the I = 3

2
channel comes from the P33(1920), however, the

inclusion of the photoproduction data moves this strength over to the P31(1750); see also
Section 8.1.3 above. A similar observation is made in the I = 1

2
sector, where strength

is also moved over from the P13 to the P11 waves and the latter one is realized in a large
P11(1710) KΣ width.

These contributions result in a very good description of the differential cross sections and
polarization measurements for all three reactions, see Figs. 8.13, 8.14, and 8.15. As
pointed out above, the three reaction channels, which are built up by only two isospin
amplitudes, allow for strong constraints on the partial wave decomposition of the KΣ
production. Within our model the full angular structure of all three charge reactions can
be well described, while in the SU(3) model of [148] problems have been observed with
the description of the backward peaking behavior of the angle differential π−p → K+Σ−

cross section at higher energies. This large difference to the other two charge reactions,
who both show a forward peaking behavior in this energy range, can, however, be easily
explained with the help of the t-channel meson contributions of K∗ and K∗

0 . Since both
are I = 1

2
particles, they can only contribute to π−p → K0Σ0 and π+p → K+Σ+, but not

to K+Σ− production, which consequently tends to small values at forward angles. The
lack of t-channel contributions also explains the good result of the calculation C-t-π+ for
π−p → K+Σ−, where the formfactor Ft has been used, although this formfactor leads in
general to worse results (see Tables 8.1 and 8.2). On the other hand, the very good result
of C-t-π− for π+p → K+Σ+ has to be compensated by a much worse π−p → K0Σ0 result.

This is also related to the observed difference between the Pascalutsa and the conventional
calculations in the differential cross section of KΣ production at higher energies. The
large forward peaking behavior for higher energies in the K+Σ+ and K0Σ0 production
cannot be described in the Pascalutsa calculation. Due to the lack of the spin-3

2
offshell

contributions, in this calculation a larger cutoff value Λt is extracted, thus giving rise
to more background contributions over the complete angle and energy range. At the
same time, a description of the forward peaking behavior at high energies requires large
couplings to the t-channel mesons, but in the Pascalutsa calculations this would spoil
the agreement at backward angles and lower energies. Consequently, the most striking
differences between the Pascalutsa and conventional calculations are found in the high-
energy region. For more details on the t-channel formfactors and couplings, see the
discussion in Sections 8.2.1 and 8.2.1.

While the polarization measurements for π−p → K0Σ0 hardly influence the parameter
extraction due to the large error bars, the measurements for π+p → K+Σ+ largely con-
strain the I = 3

2
contributions, see Figs. 8.13 and 8.14. The change of negative to positive

polarization values at forward angles with increasing energy, peaking around cos ϑ ≈ 0.4 is
nicely described as a result of the P33(1920) contribution, confirming the strong necessity
of KΣ flux in the P33 partial wave at higher energies. Note further, that although the con-
tribution of the D33(1700) to the total cross section is negligible (cf. Fig. 8.12), it leads to
the negative bump at cos ϑ ≈ 0.7 in the Σ+ polarization close to threshold, thus affirming
the necessity of sub-threshold contributions. Polarization measurements of comparable
quality for the reactions with isospin-1

2
contributions would be very interesting for testing
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Figure 8.13: π+p → K+Σ+ differential cross sections (upper panel) and Σ+-polarization
measurements (lower panel). Notation as in Fig. 8.3. Data are from [301] (2), [302] (4),
[309] (•), [299] (?), [298] (×), [307] (5).
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Figure 8.14: π−p → K0Σ0 differential cross sections (upper panel) and Σ0-polarization
measurements (lower panel). Notation as in Fig. 8.3. Data are from [303] (2), [297] (4),
[308] (•), [300] (?), [310] (×).
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Figure 8.15: π−p → K+Σ− angle-differential cross section. Notation as in Fig. 8.3. Data
are from [303] (2), [305] (5), [304] (¥), [306] (◦).
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the importance of the various resonance contributions, since due to the large error bars,
the different calculations for the polarization measurement in π−p → K0Σ0 result in a
quite different behavior. The only common characteristic of the different calculations in
the K0Σ0 polarization is caused by the D33(1700) and P33(1920) resonances, enforcing
the change from negative polarization values at low energies to positive values at high
energies in the forward region.

8.1.7 πN → ωN

As can be seen from Fig. 8.16 the ωN channel, which strongly influences all other re-
actions, cannot be completely fixed by using the pion-induced data alone. While in
the hadronic calculations C-p-π+ and P-p-π+, the total cross section is dominated by a
JP = 3

2

−
wave, resonating below 1.85 GeV and accompanied by a strong 3

2

+
wave, this pic-

ture is changed once the much more precise ωN photoproduction data from the SAPHIR
Collaboration [269] are included. In the global calculation, the 1

2

+
and 3

2

+
waves dominate

up to energies of 2 GeV. The P11(1710) leads to the peaking in the 1
2

+
wave around 1.76

GeV, while the P13(1900) gives rise to the peaking behavior of the 3
2

+
contribution around

1.9 GeV, see Fig. 8.16. This decomposition leads to a slower increase of the total cross
section at energies above 1.745 GeV; a property, which is also indicated by the precise
Karami total cross section data [313]. This is especially interesting in comparison with
the coupled-channel model of Lutz et al. [109], where πN → ωN is described by a pure
3
2

−
production mechanism. This is due to the fact that in the model of [109] no P wave

contributions are included. These authors’ findings seem to lead to an overestimation of
the πN inelasticity in the 3

2

−
(D13) channel, which just starts overshooting the experi-

mental data at the ωN threshold. Unfortunately, they do not compare their calculation
to the angle-differential Karami cross section [313], which would allow for a further evalu-
ation of the quality of their calculation. There has also been a single-channel analysis on
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Figure 8.17: π−p → ωn angle-differential cross section. Line code as in Fig. 8.3. In addi-
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πN → ωN by Titov et al. [179]4). These authors have extracted dominant contributions
from the subthreshold S11(1535), S11(1650), and P11(1440) resonances, which only give
minor contributions in the present calculation. These authors also neglected the P11(1710)
and resonances beyond the P13(1720), both of which turn out to be most important in
the present calculation.

This once again shows the necessity of the inclusion of photoproduction data for a reliable
analysis of resonance properties, especially in channels (as the ωN production), where only
few precise pion-induced data are available.

The differential cross section shows an almost flat behavior close to threshold, see Fig.
8.17, even for the global calculation dominated by P waves. To get a handle on the angle-
differential structure of the cross section for higher energies (

√
s ≥ 1.8 GeV) we have used

the corrected cosine event distributions given in Ref. [312] to also extract differential cross
sections with the help of the given total cross sections. While the differential cross section
at forward angles is almost constant above 1.8 GeV, the backward cross section decreases.

4)Note that Ref. [179] has not used the correct experimental data, but followed the claim of Ref. [73];
see Section 7.2.9.
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These data points strongly constrain the nucleon u-channel contribution thereby restrict-
ing the ωNN coupling constants, and the downbending behavior is best described by the
global fit. At these energies also the forward peaking behavior becomes visible which is
due to the t-channel ρ meson exchange. This contribution is also the reason why the
forward peaking behavior is more pronounced in the Pascalutsa calculation. Although
the extracted ρNN coupling is smaller than in the other calculations, the cutoff value Λt

(cf. Tables 8.3 and 8.4 below) is much larger than in the other calculations resulting in an
effectively larger contribution, see also the discussion in Sections 8.2.1 and 8.2.1 below.

It should also be noted, that the ωN parameters are not constrained by the ωN data points
alone but also greatly influenced by the πN inelasticities and cusp effects appearing in
ηN , KΛ, and KΣ production due to the ωN threshold opening. Therefore, the extracted
partial-wave decomposition of πN → ωN is on safe grounds, since all other channels and
in particular the πN → πN partial waves and inelasticities and the pion-induced 2πN
production are well described in the energy region above the ωN threshold. However,
more precise cross section measurements at energies above 1.76 GeV and polarization
measurements of the πN → ωN production would be the perfect tool to corroborate the
present findings.

8.2 Extracted Hadronic Parameters

8.2.1 Background Contributions and t-Channel Formfactors

The values of all Born and t-channel coupling constants, which have been varied during
the calculation, are listed in Table 8.3. Note, that no other background parameters are
used in the calculations, emphasizing the reduced freedom of the background in our model
as compared to analyses driven by resonance models (see, e.g., [183]).

Born Couplings

Our values of gπNN are consistently lower than the values extracted by other groups, for
example the value of gπNN = 13.13 from the VPI group [277]. However, one has to keep
in mind that the present calculation considers a large energy region using only one πNN
coupling constant, thereby putting large constraints through all production channels on
this coupling and the threshold region only plays a minor role. For example in the global
fits, the πNN coupling is especially influenced by the t-channel pion exchange mechanism
of ωN photoproduction, which is due to the restriction of using only one cutoff value
Λt = 0.7 GeV for all t-channel diagrams (see Table 8.4 below).

For the other couplings of the nucleon to the pseudoscalar final state mesons, the situation
in the pion-induced reactions is different. As found in previous analyses [157, 51, 53] the
ηNN coupling turns out to be very small and the precise value thus hardly influences
the χ2 of ηN production. Also in πN → KΛ/KΣ, the Born couplings are only of minor
importance due to the large offshellness of the nucleon and the associated large reduction
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g value g value g value g value

gNNπ 12.85 gNNσ · gσππ 22.92 gNNρ 4.53 κNNρ 1.47
12.75 25.14 4.40 1.41
12.77 26.88 5.59 1.51
12.80 39.16 2.71 1.16
13.01 13.66 2.21 1.30

gNNη 0.10 gNNa0 −70.60 gNNω 3.94 κNNω −0.94
0.12 −45.82 3.87 0.17
0.06 39.56 4.06 0.48
0.07 −2.98 3.90 0.59
0.29 8.60 3.94 -0.90

gNΛK −12.20 gNΛK∗
0

52.54 gNΛK∗ −27.61 κNΛK∗ −0.50
−12.88 2.32 −28.29 −0.55
−18.48 −25.56 −27.85 −0.36
−14.35 2.36 3.10 0.01
−11.53 −11.58 −5.86 −0.39

gNΣK 2.48 gNΣK∗
0

−52.30 gNΣK∗ 4.33 κNΣK∗ −0.86
1.56 −54.44 3.88 −0.98

15.39 65.28 2.29 0.40
12.44 −2.14 −4.22 −0.33
2.50 11.06 0.71 −0.11

gNΛK1 −19.20 κNΛK1 −1.83 gNΣK1 22.80 κNΣK1 2.40
−24.35 −1.99 23.29 2.06

Table 8.3: Nucleon and t-channel couplings. First line: C-p-γ+, 2nd line: C-p-γ−, 3rd
line: C-p-π+, 4th line: P-p-π+, 5th line: C-t-π+. The values for the K1 meson are given
for the global calculations C-p-γ+ and C-p-γ−.

of its contributions by the hadronic formfactor. For example, a doubling of the KNΛ/Σ
coupling constants keeping all other contributions fixed leads to a worsening in χ2 for
π−p → K0Σ0/K+Σ− of only about 10%, and for π−p → K0Λ of about 15%. This also
explains, why the NKΣ coupling extracted from the pion-induced data alone, always
ends up to be large compared to SU(3) expectations. However, the situation changes
drastically when the photoproduction data is included. As a result of gauge invariance,
the importance of the Born diagrams is enhanced in the photoproduction reactions and
allows to determine the Born couplings more reliably. The resulting relations between
the Born couplings for the pseudoscalar mesons of our best global fit are actually close
to SU(3) relations with αFD = F/(F + D) ∈ [0.25; 0.41] (see, e.g., [42]), which is around
the value of αFD ≈ 0.35 predicted by the Cabibbo-theory of weak interactions and the
Goldberg-Treiman relation [42].

The ωNN coupling constants, however, have more influence on the angular dependent
behavior of the pion-induced reaction process than the NKΛ and NKΣ couplings and
can therefore be better fixed already in the hadronic fits, see Table 8.3. This is a result of
the nucleon u-channel contribution, which strongly influences the behavior of the angle-
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differential cross section in the backward direction at higher energies, and explains, why
the resulting values for this coupling are very similar in all calculations. This is displayed
in Fig. 8.17 in Section 8.1.7. There, we have included the results of a calculation with the
parameters of C-p-γ+, where the ωNN couplings are replaced with the values used in [53]:
gωNN = 7.98, κωNN = −0.12. While for energies close to threshold (see

√
s = 1.764 GeV),

this calculation hardly differs from C-p-γ+, a large difference can be seen for
√

s = 1.9
GeV at backward angles. For the energies above 1.8 GeV, one can also see an effect
at forward angles, since the interference pattern between the t-channel ρ exchange and
the nucleon contribution is altered. Note, that a value gωNN ≈ 4 is extracted in our
calculations, even though the same nucleon cutoff ΛN ≈ 1 GeV (see Table 8.4 below) is
used for all final states, which is in contrast to the results found in single-energy analysis
(see, e.g., [179]).

t-Channel Formfactors

It is interesting to compare our value of gωNN ∼ 4 with, e.g., the value of 15.9 which
has been extracted in the Bonn-model for nucleon-nucleon scattering [112]. In nucleon-
nucleon scattering, the ω only contributes via t-channel exchange and thus its coupling is
always modified by a formfactor. The actual shape of the formfactor and the kinematic
region are thus of great importance for the applicability of the extracted coupling.

We have examined the influence of the formfactor shape by performing calculations with
two different formfactors Fp (3.29) and Ft (3.30) for the t-channel exchanges. In [51] no
significant differences in the resulting quality of the fits have been found, when either of
the two formfactors has been used and consequently, in [53] only calculations using Ft

have been performed. However, as Table 8.1 shows, this result is not valid any more for
the extended channel space and kinematic region of the present model. The calculations
C-t-π±, which use Ft instead of Fp as in C-p-π±, result in an overall description, which
is worse by more than 10%, with the largest differences in the πN → ωN reaction. This
reaction differs from ηN , KΛ, and KΣ, which have comparable χ2, in that respect, that
in the t-channel the ρ-meson is exchanged. Since this exchange also contributes to πN
elastic scattering, the combination of coupling and formfactor for the NNρ vertex is
tested in two different reactions and thus in a wide kinematic region. As a result of the
larger data base for πN elastic scattering, the value of gρNN is adjusted to this reaction
and there is no freedom left for πN → ωN . Since the calculations using Fp can describe
both reactions simultaneously, the formfactor shape Fp seems to be applicable to a wider
kinematic region than Ft.

This finding is even fortified, when we look at the global fits. We have also tried to
perform global fitting calculations using Ft in the t-channel exchange processes (C-t-γ±),
but have not found any satisfactory parameter set for a global description in this case.
Even when the fitting procedure has been reduced to the five most important final states
— γN , πN , 2πN , ηN , and ωN — we have found for γ/πN → ηN χ2s of only ≈ 5 and for
γN → ωN (πN → ωN) of ≈ 30 (≈ 7), while pion production and Compton scattering
have been only slightly worse as compared to C-p-γ±. The much worse description using
Ft in the global fits can be explained by the fact, that for the photon-induced reactions,
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ΛN [GeV] Λh
1
2

[GeV] Λγ
1
2

[GeV] Λh
3
2

[GeV] Λγ
3
2

[GeV] Λh
t [GeV]

0.96 4.00 1.69 0.97 4.30 0.70
0.96 4.30 1.59 0.96 4.30 0.70
1.16 3.64 — 1.04 — 0.70
1.17 4.30 — 1.02 — 1.80
1.11 3.80 — 1.00 — 0.70

Table 8.4: Cutoff values for the formfactors. First line: C-p-γ+, 2nd line: C-p-γ−, 3rd
line: C-p-π+, 4th line: P-p-π+, 5th line: C-t-π+. The upper index h or γ denotes,
whether the value is applied to a hadronic or electromagnetic vertex, while the lower
one denotes the particle going off-shell, i.e. N : nucleon, 1

2
: spin-1

2
resonance, 3

2
: spin-3

2

resonance, t: t-channel meson.

the NNω coupling now not only appears as a final state coupling, but also contributes
in the production of πN and ηN . Vice versa, the πNN coupling constant is now also of
great importance in ω photoproduction. Thereby, the validity of the formfactors is tested
in a wide kinematical region, since in our model, many of the t-channel meson couplings
contribute to several reactions and also as final state couplings (cf. Table 3.1 in Section
3.8). We conclude, that Fp is preferabable over Ft for the wide kinematic region accessed
in the calculations. To find satisfactory results with the formfactor Ft in the present
model, it would be necessary to lift the restriction of using only one cutoff value Λt for
all t-channel diagrams.

t-Channel Couplings

Having performed calculations with two different t-channel formfactor shapes allows us
to compare those couplings, which only contribute to t-channel processes. As can be seen
from Table 8.3, large differences in these couplings are found comparing the calculations
with the conventional spin-3

2
couplings, with the Pascalutsa couplings, and with the use

of Ft instead of Fp in the t-channel, while in the two global fits C-p-γ±, differing only
by the sign of gωρπ, the couplings are almost identical. The reduction of the t-channel
couplings when Ft is used is not surprising, since the formfactor shape (3.30) leads to
less damping than Fp (3.29). In the case of the Pascalutsa calculations, the need for
background contributions also in lower partial waves is enhanced, thereby leading to
larger cutoff values Λt, see Table 8.4. At the same time, the corresponding couplings
have to be reduced to prevent an overshooting at forward angles and higher energies as
in πN → KΣ, see Section 8.1.6 above. Comparing the last three lines in Table 8.4,
where basically three different background models have been used, one still finds that
the off-shell behavior of the nucleon and resonance contributions are similarly damped,
thus leading to similar resonant structures in the three calculations C-p-π+, P-p-π+, and
C-t-π+.

Thus our analysis shows, coupling constants extracted from t-channel processes strongly
depend on the chosen cutoff function and cutoff value. As in the πN → ωN reaction, this
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can in particular lead to the effect that a calculation with a smaller t-channel coupling (P-
p-π+) results in larger t-channel contributions than a calculation with a smaller coupling
(C-p-π+), see Fig. 8.17 above. Only when those couplings are also tested close to the on-
shell point or a wide kinematic range, the applicability of the couplings and formfactors is
subjected to more stringent test and the extracted values and formfactor shapes become
meaningful. In the present model, this holds true for NNρ and NNσ in πN elastic
scattering, and the NNω, NNπ, and NNη couplings, where the latter three appear
simultaneously in s-, u-, and t-channel processes.

Hence couplings as gωNN from, e.g., the Bonn-model [112], can only be interpreted in
combination with the cutoff used and in the kinematic region where it has been applied
to. This point has also been examined by Pearce and Jennings [139]. These authors have
shown that the use of formfactors as ours as compared to the one in the Bonn potential
leads to large differences in the off-shell behavior of the effective couplings.

A similar consideration as for the πNN coupling has also to be applied to the ρNN
coupling. Due to the fitting of the complete energy region from threshold up to 2 GeV,
the resulting ρNN coupling represents an averaged coupling which can deviate from
values extracted in a restricted kinematic regime. Furthermore, the ρNN coupling is also
influenced by π and η photoproduction and also pion-induced ω production. Thus, it
is a priori not clear, how well the resulting coupling reproduces the KSRF relation. As
pointed out in Section 3.3.2, the KSRF relation, which relates the ρ t-channel exchange
to the Weinberg-Tomazawa contact term, requires a coupling of gρNN = 2.84. At first
sight, it seems from Table 8.3 that only in the calculations when the Pascalutsa spin-
3
2

couplings is used, this relation is fulfilled. However, the only meaningful quantity
entering the calculations is the product of formfactor and coupling constant. Evaluating
Fp for Λt = 1.804 (0.705) as in calculation P-p-π+ (C-p-π+) for q2 = 0 shows that

geff
ρNN = gρNN · Fp(q

2 = 0) = 2.62 (2.31) at threshold; thus both calculation result in
a similar effective coupling close to the KSRF-value. Although the ρ tensor coupling
κρ ≈ 1.6 turns out to be small compared to the empirical VMD value of 3.71, it points
in the direction of the value recently extracted in a model based on a gauge formalism
including ρ mesons, baryons, and pionic loop contributions [87].

It is interesting to note that the ρNN coupling constant is decreased in the global fits
as compared to the purely hadronic fits, thus deviating from the KSRF relation. The
reason for this behavior is related to the cutoff value ΛN of the nucleon formfactor. It
is well known that the ρ and nucleon contributions interfere in low-energy πN elastic
scattering. Since the pion photoproduction multipoles E

p/n
0+ , see Fig. 8.23 below, demand

a reduced nucleon contribution at higher energies, ΛN is decreased from 1.15 GeV for
the hadronic fits to 0.95 GeV for the global fits, thereby damping this contribution. At
the same time, this also affects the interference between ρ and nucleon at lower energies,
leading to the necessity of simultaneously reducing the ρNN coupling. Nevertheless, the
same interference as in the hadronic fits cannot be achieved and the low-energy tails of
the S11 and P11 are not as well described, see Fig. 8.3 above.

As we have pointed out above, chosing the chirally symmetric σππ coupling leads to
consistently better results in πN elastic scattering, even in the intermediate energy region.
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Our final results always require a positive gσNNgσππ value as in Pearce and Jennings [139]5),
which means that the σ contribution is attractive in the S waves and repulsive in the P
waves. The actual value of the σ coupling strongly depends on the choice of the spin-3

2

couplings. When the Pascalutsa couplings are used, we always find a larger value for this
coupling, thereby indicating the need for stronger background contributions in πN elastic
scattering, see Section 8.1.1 above.

The other t-channel couplings (a0, K∗, K∗
0 , and K1), in particular those of the scalar

mesons a0 and K∗
0 , turn out to be large in almost all calculations. However, since the

value of t is rather negative and thus the t-channel meson far off-shell, the effective
contribution is strongly damped by the formfactor in the corresponding processes. For
KΛ and KΣ production, we have included two t-channel processes in the pion- (K∗ and
K∗

0) and two in the photon-induced (K∗ and K1) reactions. In the purely hadronic fits,
the differentiation between the K∗

0 and K∗ meson is difficult; in the global fits, however,
the freedom of the relative importance of the mesons is reduced, since the K∗ contributes
to both the hadro- and the photoproduction reactions. Note, that the only t-channel
meson which exclusively contributes to photoproduction reactions in the present model,
is the K1 meson. Although the K1 couplings are almost identical in both calculations, we
find that it only plays a minor role in KΛ and KΣ photoproduction; far more important
are the contributions from K∗ exchange (see also Sections 8.4.4 and 8.4.5).

In the case of using the Pascalutsa spin-3
2

couplings, the t-channel couplings differ sig-
nificantly from the values of the other calculations. This is because the missing spin-1

2

off-shell contributions of the spin-3
2

resonances have to be compensated by other back-
ground, i.e. t-channel, contributions and thus the extracted cutoff value for the t-channel
processes Λt becomes much larger. This also means that the t-channel contributions are
not only important in the extreme forward region (low |t|), but rather for the complete
cos ϑ range. Consequently, very large t-channel couplings for a0, K∗, and K∗

0 would not
be in line with the angle-differential observables and thus the couplings are reduced; see
also the discussion about KΣ production in Section 8.1.6.

8.2.2 Scattering Lengths

The scattering lengths and effective ranges extracted from the present analysis are in
general agreement with the values obtained by other groups, see Table 8.5. For the
vectormeson state ωN we follow the notation of Lutz et al. [109] for the extraction of the
scattering length:

ā
1
2 = 1

3
ā

1
2 (J = 1

2
) + 2

3
ā

1
2 (J = 3

2
) (8.2)

and similarly for r̄
1
2 . The upper index denotes the isospin. The ωN helicity state combi-

nations contributing at threshold are [109]:

|ωN ; J = 1
2
〉 = |ωN, 1

2
; J = 1

2
〉+ 1√

2
|ωN, +0; J = 1

2
〉

|ωN ; J = 3
2
〉 = |ωN, 3

2
; J = 3

2
〉+ 1√

3
|ωN, 1

2
; J = 3

2
〉+

√
2
3
|ωN, +0; J = 1

2
〉 . (8.3)

5)Note, that Pearce and Jennings [139] found a very large σ coupling of gσNNgσππ ≈ 1800.
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present Lutz et al. [109] Others

πN a
1
2 0.197 0.246a

r
1
2 0.660

a
3
2 −0.117 −0.130a

r
3
2 18.33

ηN a
1
2 0.991 + i0.347 0.43 + i0.21 0.710(30) + i0.263(23)b

r
1
2 −2.081− i0.812

KΛ a
1
2 −0.154 + i0.084 0.26 + i0.10

r
1
2 −3.021 + i0.187

KΣ a
1
2 −0.270 + i0.172 −0.15 + i0.09

r
1
2 −4.032 + i2.064

a
3
2 −0.011 + i0.005 −0.13 + i0.04

r
3
2 34.79− i3.561

ωN ā
1
2 (J = 1

2
) −1.093 + i0.958 −0.45 + i0.31

r̄
1
2 (J = 1

2
) −0.001 + i7.765

ā
1
2 (J = 3

2
) −0.228 + i0.621 −0.43 + i0.15

r̄
1
2 (J = 1

2
) 13.31− i17.11

ā
1
2 −0.516 + i0.733 −0.44 + i0.20 1.6 + i0.30c

r̄
1
2 8.873− i8.820

Table 8.5: Scattering length (in fm) from the present analysis in comparison with other
calculations. The upper index denotes the isospin. a: [277]. b: [10]. c: [98].

The extracted scattering lengths, however, have to be taken with care, since the present
analysis does not concentrate on the threshold regions of the reactions, but aims on a
description of a large energy range. This can result in significant differences to well known
values, as, e.g., in the πN elastic scattering, see the discussion in Sections 8.1.2 and 8.4.2.
Furthermore, in particular in the ωN case, more polarization measurements are needed
for a reliable determination of the exact decomposition of the production mechanism close
to threshold, see Sections 8.1.7 and 8.4.6.

8.2.3 Resonance Masses and Widths

In the extension of the energy range and final state space, the inclusion of more resonances
as compared to Feuster and Mosel [51, 53] has become necessary. We find striking evidence
for three more resonances, which are of vital importance for a satisfactory description of
all experimental data below 2 GeV: a P31(1750), a P13(1900), and a P33(1920), which are
only rated by the PDG [67] by one star, two and three stars, respectively. Omitting one
of these resonances, the calculations result in a considerably worse total χ2 by more than
15%. We can furthermore corroborate the findings of Feuster and Mosel [51, 53], that
there is a strong need for a D13 resonance in the energy range between 1.9 and 2 GeV.

In the global calculations, the properties of almost all considered resonances can be very
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L2I,2S mass Γtot RπN R2πN RKΣ

S31(1620) 1611 196 34.3 65.7(−) 0.14a

1614 209 34.4 65.6(−) 0.16a

1612 175 36.0 64.0(−) 0.94a

1630 177 43.4 56.6(+) 0.48a

S31(1900)P 1984 237 30.4 69.5(−) 0.1(−)

P31(1750) 1712 660 0.8 99.1(+) 0.1(+)
1712 626 1.0 98.9(+) 0.1(+)
1752 632 2.3 97.2(+) 0.6(+)
1975 676 19.5 79.4(+) 1.1(−)

P33(1232) 1228 106 100.0 0.021(−)b —
1228 107 100.0 0.040(−)b —
1231 101 100.0 0.002(+)b —
1230 94 100.0 0.000(+)b —

P33(1600) 1667 407 13.3 86.7(+) 0.03a

1667 388 13.1 86.9(+) 0.05a

1652 273 13.7 86.3(+) 0.22a

1656 350 13.2 86.8(+) 0.28a

P33(1920) 2057 494 15.9 81.6(−) 2.4(−)
2058 557 15.0 83.2(−) 1.8(−)
2057 527 15.5 79.5(−) 5.0(−)
2056 435 9.1 86.8(−) 4.1(−)

D33(1700) 1678 591 13.9 86.1(+) 0.75a

1679 621 14.1 85.9(+) 0.97a

1680 591 13.6 86.4(+) 2.09a

1674 678 14.6 85.4(+) 3.68a

Table 8.6: Properties of I = 3
2

resonances considered in the present calculation. Mass and
total width Γtot are given in MeV, the decay ratios R in percent of the total width. In
brackets, the sign of the coupling is given (all πN couplings are chosen to be positiv). P :
Only found in calculation P-p-π+. a: The coupling is given since the resonance is below
threshold. b: Decay ratio in 0.1h. 1st line: C-p-γ+, 2nd line: C-p-γ−, 3rd line: C-p-π+,
4th line: P-p-π+.

well fixed (see Tables 8.6 − 8.9), even the couplings of the sub-threshold resonances are
practically identical for C-p-γ+ and C-p-γ−. The only exceptions are the P11(1710),
P13(1900), and the exact decomposition of the ωN strength into the ωN helicities. Note,
that the properties of the P11(1710) also differ largely when comparing the references given
in the PDG review [67]. Moreover, Arndt et al. [6] had similar problems with fixing the
P11(1710) properties. However, in contrast to [6], in the present calculation the properties
of the S11(1535) can be well fixed due to the simultaneous inclusion of ηN production
data.

In the K-matrix formulation the resonance properties are identified with the implemented
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L2I,2S mass Γtot RπN R2πN RηN RKΛ RKΣ RωN

S11(1535) 1524 121 36.6 9.8(+) 53.6(+) −1.28a 0.83a —
1528 137 35.6 11.2(+) 53.3(+) −1.62a 1.00a —
1542 148 37.7 11.5(+) 50.8(+) 0.02a 0.27a —
1545 117 36.6 0.9(−) 62.6(+) −4.46a 0.26a —

S11(1650) 1664 131 67.6 28.3(+) 1.6(−) 2.4(−) −0.59a —
1667 155 61.8 34.7(+) 0.4(−) 3.1(−) −0.72a —
1671 158 65.1 22.7(+) 5.1(−) 7.1(−) −0.54a —
1699 276 68.2 14.7(−) 3.8(+) 13.3(−) −0.50a —

P11(1440) 1512 628 57.2 42.8(+) 1.69a −2.70a 0.53a —
1522 709 57.1 42.9(+) 1.79a −6.65a 6.78a —
1490 463 61.5 38.5(+) 3.27a 3.43a −1.01a —
1515 639 60.6 39.4(+) 4.17a 1.97a 3.64a —

P11(1710) 1749 445 7.4 38.5(−) 24.9(+) 3.4(+) 12.6(−) 13.4
1755 327 21.7 12.1(−) 47.0(+) 7.4(+) 0.0(−) 11.7
1770 430 2.0 42.7(+) 31.6(−) 0.9(+) 6.3(−) 16.4
1701 348 8.5 25.7(−) 38.3(+) 26.3(−) 1.3(−) —

P13(1720) 1696 165 19.1 69.0(+) 0.1(+) 11.8(−) 0.0(−) —
1715 310 14.8 79.1(+) 0.4(−) 5.6(−) 0.1(−) —
1724 295 15.4 65.2(+) 1.2(+) 9.9(−) 7.5(−) 0.7
1700 148 14.2 83.1(+) 0.0(+) 1.7(+) 1.0(+) —

P13(1900) 2003 581 14.6 42.7(−) 9.4(−) 0.1(−) 2.0(−) 31.2
1898 664 17.9 14.7(+) 19.2(−) 0.0(+) 0.0(−) 48.1
1962 683 19.1 58.2(−) 11.9(+) 1.9(−) 0.8(+) 8.1
1963 694 15.7 58.2(−) 3.0(+) 0.1(+) 0.0(+) 22.9

D13(1520) 1509 99 55.8 44.2(−) 2.0b(+) −0.09a 1.13a —
1510 102 55.5 44.5(−) 2.7b(+) −0.35a 0.84a —
1512 95 58.7 41.3(−) 3.1b(+) 0.44a 1.20a —
1509 91 60.1 39.9(−) 2.2b(+) 0.86a −3.23a —

D13(1700)P 1745 55 1.6 43.4(+) 1.7(+) 6.7(−) 1.2(−) 45.3
D13(1950) 1946 865 12.9 67.2(+) 5.4(+) 0.0(−) 0.3(+) 14.1

1946 852 10.7 51.3(+) 8.6(+) 0.4(−) 1.1(−) 27.9
1946 885 16.2 49.1(+) 2.2(−) 1.2(+) 1.9(+) 29.4
1943 573 13.3 50.8(+) 0.0(−) 2.2(−) 0.7(+) 32.9

Table 8.7: Properties of I = 1
2

resonances considered in the calculation. Notation as in
Table 8.6.

parameters [183], thus the given decay widths and branching ratios are calculated at the
resonance mass (

√
s = mR) with the help of Eqs. (E.25), (E.26), and (E.37). Since the

widths are energy dependent and the RNφ vertices are modified by formfactors, the total
decay widths do not necessarily respresent the full width at half maximum (FWHM),
which can, e.g., be observed in the πN elastic partial waves.

Just as the extracted resonance masses and couplings, the spin-3
2

off-shell parameters a,
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L2I,2S mass Γtot RωN R0
ωN R

1
2
ωN R

3
2
ωN

S11(1535) 1524 121 — 3.64a1 6.10a2 —
1528 137 — 1.77a1 5.66a2 —
1542 148 — −4.51a1 −2.61a2 —
1545 117 — 2.50a1 4.99a2 —

S11(1650) 1664 131 — 4.75a1 −1.78a2 —
1667 155 — 3.24a1 3.42a2 —
1671 158 — −0.15a1 0.00a2 —
1699 276 — 1.84a1 5.35a2 —

P11(1440) 1512 628 — −18.73a1 10.14a2 —
1522 709 — 15.56a1 10.82a2 —
1490 463 — −1.55a1 2.09a2 —
1515 639 — −6.30a1 3.95a2 —

P11(1710) 1749 445 13.4 0.0(−) 13.3(−) —
1755 327 11.7 0.0(−) 11.7(−) —
1770 430 16.4 10.1(−) 6.3(+) —
1701 348 — 5.2a1 −5.3a2 —

P13(1720) 1696 165 — −14.0a1 −21.3a2 5.3a3

1715 310 — −9.4a1 −15.9a2 −7.5a3

1724 295 0.7 1.5(+)b 7.8(+)b 62.1(+)b

1700 148 0.0 8.8a1 −2.8a2 −2.8a3

P13(1900) 2003 581 31.2 0.0(−) 7.8(+) 23.4(+)
1898 664 48.1 16.7(−) 19.3(+) 12.1(+)
1962 683 8.1 0.9(+) 0.0(−) 7.2(+)
1963 694 22.9 5.3(+) 0.0(+) 17.6(+)

D13(1520) 1509 99 — −21.33a1 −7.12a2 −7.71a3

1510 102 — −11.68a1 14.67a2 16.32a3

1512 95 — −13.07a1 21.37a2 −3.91a3

1509 91 — −3.98a1 −5.36a2 7.04a3

D13(1700)P 1745 55 45.3 14.2(−) 7.5(−) 23.6(−)
D13(1950) 1946 865 14.1 13.0(+) 1.1(−) 0.0(+)

1946 852 27.9 7.0(+) 14.7(+) 6.2(+)
1946 885 29.4 9.8(+) 2.1(+) 17.5(+)
1943 573 32.9 12.1(+) 0.1(+) 20.7(+)

Table 8.8: ωN helicity decay ratios of I = 1
2

resonances. The total widths are given in
MeV, all ratios in percent. a1 (a2, a3) : The coupling g1 (g2, g3) is given. b: The ratio is
given in 0.1h. P : Only found in calculation P-p-π+. 1st line: C-p-γ+, 2nd line: C-p-γ−,
3rd line: C-p-π+, 4th line: P-p-π+.

given in Table 8.9, are also very similar in the two global calculations with the exception
of the ωN values. Large differences only occur, when the coupling of the resonance to
the final state is also largely changed, thus keeping the product g · a in the same range.
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L2I,2S aπN aζN aηN aKΛ aKΣ aωN 1 aωN 2 aωN 3

P13(1720) −0.658 0.832 −4.000 0.573 −0.473 0.679 −3.072 3.495
−0.005 0.768 −3.999 0.018 −3.998 1.758 −4.000 2.648

0.183 0.587 1.943 −0.625 −2.728 1.108 −3.499 −1.858
0.258 0.726 −1.953 −0.053 — — — —

P13(1900) −1.249 −0.457 −0.003 0.852 −3.999 2.920 0.897 −3.874
2.123 −0.362 −1.628 −3.828 −4.000 −0.945 −3.647 −0.180
0.205 0.437 −0.739 3.410 −3.687 2.195 0.092 1.454

NC — — — — — — —

D13(1520) 0.872 −0.249 0.366 0.794 0.501 −2.442 −4.000 −4.000
0.871 −0.407 0.744 1.164 0.318 0.774 −3.998 2.562
0.861 −0.351 1.796 0.856 2.692 0.344 −0.445 −1.050
0.819 −0.158 1.146 — — — —

D13(1950) 0.789 0.588 0.353 1.661 2.091 −0.685 −0.247 −2.000
0.663 0.365 1.025 0.503 0.215 −0.153 −3.986 0.284
0.966 0.668 0.211 1.019 0.663 −0.016 −0.976 −1.152
0.924 1.387 1.016 1.116 — — — —

P33(1232) 0.222 −1.156 — — — — — —
0.211 −1.006 — — — — — —
0.233 4.000 — — — — — —
0.148 — — — — — —

P33(1600) 1.798 0.363 — — −3.047 — — —
1.937 0.363 — — −4.000 — — —
1.266 0.291 — — −0.783 — — —
0.400 −0.253 — — — — — —

P33(1920) −2.827 1.244 — — −1.762 — — —
−2.492 1.111 — — −1.683 — — —
−3.137 1.264 — — −1.145 — — —

NC — — — — — — —

D33(1700) −0.282 0.414 — — −0.156 — — —
−0.288 0.413 — — 0.001 — — —
−0.220 0.425 — — 0.473 — — —
−0.181 0.867 — — — — — —

Table 8.9: Off-shell parameters a of the spin-3
2

resonances. 1st line: C-p-γ+, 2nd line:
C-p-γ−, 3rd line: C-p-π+, 4th line: SM95-pt-3 of [53]. “NC”: not considered (energy
range ended at 1.9 GeV).

Note, that our values are also very close to the preferred global fit SM95-pt-3 of [53] and
that the observed discrepancies can be explained by the additional resonances considered
in the present calculation.

In Tables 8.10 and 8.11 we give a direct comparison of the extracted resonance properties
of the best global fit C-p-γ+ with the values given by the PDG [67], extracted by Feuster



8.2. Extracted Hadronic Parameters 135

L2I,2S mass Γtot RπN R2πN RKΣ

S31(1620) 1611 196 34 66
1620 150 25(5) 75(5)
1579 153 21 79
1617(15) 143(42) 45(5)

S31(1900)P 1984 237 30 70 0.1
1900 200 20(10)
NC
1802(87) 48(45) 33(10)

P31(1750) 1712 660 1 99 0.1
1750 300 8
NF
1721(61) 70(50) 6(9)

P31(1910)P 1975 676 19 79 1.1
1910 250 23(7)
NC
1995(12) 713(465) 29(21)

P33(1232) 1228 106 100 0.02a

1232 120 > 99 0
1228 110 100
1234(5) 112(18) 100(1)

P33(1600) 1667 407 13 87
1600 350 18(7) 82(8)
1721 485 15 85
1687(44) 493(75) 28(5)

P33(1920) 2057 494 16 82 2.4
1920 200 13(7)
NC
1889(100) 123(53) 5(4)

D33(1700) 1678 591 14 86
1700 300 15(5) 85(5)
1677 387 14 86
1732(23) 119(70) 5(1)

Table 8.10: Properties of I = 3
2

resonances for the calculation C-p-γ+ (1st line) in compar-
ison with the values from [67] (2nd line), [53] (3rd line), and [183] (4th line). In brackets,
the estimated errors are given. The mass and total width are given in MeV, the decay
ratios in percent. “NC”: not considered (energy range ended at 1.9 GeV). a: The decay
ratio is given in 0.1h. P : Calculation P-p-π+, see text and Tables 8.6, 8.7 above.

and Mosel [53], and extracted by the πN → πN/2πN analysis of Vrana et al. [183]. Note,
that in some cases (e.g. P11(1710) mass and width, D13(1950) and P33(1920) mass, etc.)
noticeable differences to the estimated values of the particle data group [67] are found.
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L2I,2S mass Γtot RπN R2πN RηN RKΛ RKΣ RωN

S11(1535) 1524 121 36 10 54
1535 150 45(10) 6(5) 43(12)
1549 215 31 6 63
1542(3) 112(19) 35(8)

S11(1650) 1664 131 68 28 1.6 2.4
1650 150 72(17) 15(5) 6(3) 7(4)
1684 194 73 22 1 5
1689(12) 202(40) 74(2)

P11(1440) 1512 628 57 43
1440 350 65(5) 35(5)
1479 513 62 38
1479(80) 490(120) 72(5)

P11(1710) 1749 445 7 39 25 3.4 13 13
1710 100 15(5) 65(25) 15(10)
1709 284 0 51 32 17
1699(65) 143(100) 27(13)

P13(1720) 1696 165 19 69 0.1 12 0.0
1720 150 15(5) > 70 8(7)
1801 637 21 75 4 1
1716(112) 121(39) 5(5)

P13(1900) 2003 581 15 43 9 0.1 2.0 31
1900 500 26 45
NC
NF

D13(1520) 1509 99 56 44 2.0a

1520 120 55(5) 45(5)
1512 93 56 44 4.3a

1518(3) 124(4) 63(2)
D13(1700)P 1745 55 2 43 1.7 7 1.2 45

1700 100 10(5) 90(5) < 3
NF
1736(33) 175(133) 4(2)

D13(1950) 1946 865 13 67 5 0 0.3 14
2080
1940 412 10 75 14 0
2003(18) 1070(858) 4(2)

Table 8.11: Comparison of I = 1
2

resonance properties. Notation as in Table 8.10.

In the following, the extracted resonance properties are discussed in detail for each partial
wave. We refer in particular to Figs. 8.3 − 8.6 in the discussion.
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Isospin-1
2

Resonances

S11 :
For the two four-star resonances in this partial wave (S11(1535) and S11(1650)), the pa-
rameters can be well fixed in the present model; the differences between the global and
purely hadronic fit parameters are not very large. The exact properties of S11(1535) can,
however, only be extracted in the simultaneous analysis of pion- and photon-induced data,
which has already been pointed out by Feuster and Mosel [52, 53]. The second S11 reso-
nance has an almost negligible ηN width, but nevertheless interferes desctructively in the
πN → ηN reaction with the S11(1535), see Section 8.1.4. In the purely hadronic fits the
extracted properties of the S11(1535) and S11(1650) are very similar to the values of Vrana
et al. [183] and Batinić et al. [10], who found the masses 1.542 (1.543) and 1.689 (1.668)
GeV and the widths 112 (155) and 202 (209) MeV. The inclusion of the photoproduction
data, however, requires the lowering of the S11(1535) mass and total width, in particular
for a description of the Ep

0+ multipole, cf. Fig. 8.20 below. Note, that the decay ratios of
the S11(1535) are almost identical in the global and hadronic calculations. Furthermore,
it is worth mentioning, that the KΛ decay ratio of the S11(1650) is considerably lowered
as compared to Feuster and Mosel [53]. This is a consequence of the fact, that in the
best global calculation C-p-γ+, the KΛ production is now explained by a dominating
P13 mechanism, while the S11(1650) is only important very close to threshold, see Section
8.1.5 above.
Since in the resonance analyses of Vrana et al. [183], Batinić et al. [10], and Manley
and Saleski [113] a third S11 has been found below 2 GeV (i.e. at 1.82, 1.705, and 1.93
GeV, resp.), we have also checked whether the inclusion of a third S11 below 2 GeV would
improve the results. However, the fit has always decreased all partial decay widths of
such a resonance to zero. Hence, we do not find any hint for a third S11 resonance below
2 GeV in our analysis.

P11 :
The mass and width of the Roper P11(1440) resonance turn out to be rather large in the
global fits in comparison with other analyses (note, however, the range of the width given
by Vrana et al. [183]: 490±120 MeV, and that Cutcosky and Wang [33] found in analyzing
the πN → πN and πN → 2πN data for the P11 partial wave values for the width of 661
and 545 MeV, depending on the πN → πN single energy partial wave analysis used). The
reason for these large values is, that the P11(1440) parameters are extremely sensitive to
background contributions, i.e. to the interference pattern between nucleon and ρ. Since
in the global fit, the nucleon cutoff has been reduced for a better description of the E

p/n
0+

photoproduction multipoles (see Section 8.4.2 below), the description of the P11 wave (and
also S11) at low energies has become worth. The fit has tried to compensate this effect
by increasing the P11(1440) mass and width. This problem might also be related to the
fact, that there are hints, that the P11(1440) resonance is a quasi-bound σN state [102],
which cannot be generated in the present K-matrix approach. The decay ratios into πN
and 2πN , however, turn out to be reliably determined in all calculations.
Once the photoproduction data are included, the mass of the largely inelastic P11(1710)
resonance is fixed at around 1.75 GeV due to its important contributions to ηN and ωN ;
a mass, which is 40 MeV above the PDG [67] estimate. In all calculations, it turns out
to have a decay ratio of more than 10% to ωN and more than 25% to ηN . The latter
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result has also been found by Batinić et al. [10]. The KΣ decay ratio seems not to be well
determined, since the large value of 12.6% of C-p-γ+ is not confirmed in the calculation
C-p-γ−. However, also in C-p-γ− a large P11 contribution to KΣ is found, which can
be seen by the increase of the KΣ coupling constant of the P11(1440). Since the switch
of the sign of gωρπ leads to a change of sign of κωNN (see Table 8.3) due to interference
effects in ωN production, also the behavior of the P11 KΣ wave, which reacts sensitiv
on ωN rescattering, has to be altered. However, since the simultaneous description of
photon- and pion-induced data is much better in the calculation C-p-γ+ (see Table 8.1),
the large P11(1710) KΣ decay ratio seems to be favored by the experimental data. In
contrast to Feuster and Mosel [53] and the PDG [67], we find a reduced KΛ decay ratio
of the P11(1710), which is due to the shift of this strength to the P13 sector. Note that
the increasing πN inelasticity of the P11 wave above 1.6 GeV (see Fig. 8.6) is caused by
the ηN channel.
Manley and Saleski [113] have found a third P11 around 1.88 GeV, while Vrana et al.
[183] have identified such a resonance only around 2.08 GeV, but with a huge width of
more than 1 GeV, thus also having a large influence on this partial wave below 2 GeV.
Therefore, we have checked the contribution of an additional P11 around 1.9 GeV, but
just as in the S11 wave, its contribution is always decreased to zero in the fit, and we do
not find any indication for a missing P11 contribution below 2 GeV.

P13 :
In all calculations, the mass of the first P13 is well fixed between 1.695 and 1.725 GeV.
We find important contributions of this resonance to KΛ and also ωN ; in the latter case
although the resonance position is below threshold. In comparison to Feuster and Mosel
[53] the P13(1720) plays a less important role in ηN (which is mainly due to the inclusion
of a second P13, see below), but turns out to be much more important in KΛ production.
Guided by the observation of Feuster and Mosel, that there are contributions missing
in this partial wave for higher energies (

√
s > 1.8 GeV), we have included apart from

the well established P13(1720) the PDG two-star P13(1900) resonance in the calculation.
Although the mass of the second resonance cannot be well fixed in the present calculation
(1.9 ≤ mR ≤ 2 GeV), it turns out that this second resonance gives very important con-
tributions in all pion-induced reactions – in particular the ηN , KΛ, and ωN production
–, and to some minor degree also in the photoproduction reactions. The inclusion of this
second P13 also strongly influences the properties of the P13(1720). As compared to [53],
the P13(1720) ηN decay ratio and the mass are reduced. Note that the P13(1720) mass
now turns out to be in the PDG region, in contrast to the value found in [53]. In the
higher energy region (

√
s > 1.8 GeV), a reasonable fit to the various reactions is virtually

impossible without including a second P13 resonance. Especially in the ωN production,
the resulting χ2 turns out to be at least 2 times worse when such a resonance is excluded.
It is interesting to note, that Manley and Saleski [113] have also found a second P13

resonance at 1.88 GeV with a large width of about 500 MeV, a third of which has been
attributed to the (effective) ωN channel.
As discussed in Section 8.1.3, we also find indications for missing flux in this partial
wave, i.e. contributions of a final state which is not included in the present model (e.g. a
3πN state).
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D13 :
In this partial wave, we find discrepancies in the description of the lower tail of the
D13(1520) resonance. The asymmetric behavior around the D13(1520) partial wave cannot
be described within our model, neither in elastic πN scattering, see Fig. 8.3, nor in
πN → 2πN , see Fig. 8.5 (nor in the E2− and M2− proton and neutron multipoles, see
Figs. 8.20 and 8.21 below). Even after allowing different cutoff values in the πN and
the 2πN channel or using a different cutoff shape, i.e. a cutoff Ft(q

2) (3.30), for this
resonance, the slope of the partial wave below the D13(1520) resonance position cannot
be reproduced, in neither channel. From the inelasticity and the 2πN production (see
Figs. 8.5 and 8.6 above) one deduces, that this might be due to the description of the
2πN channel by an effective ζ meson with a fixed mass. Both the inelastic and the 2πN
production cross sections rise steeper than in the present calculation. A more physical
2πN description by including π∆ and ρN might change this behavior because of the
spectral functions of the ∆ and the ρ. Furthermore, in the JP = 3

2

−
wave, the ρN and

π∆ states can be produced in an S wave, leading to a stronger rise of the 2πN production
cross section, while our ζ meson can only be produced in a P wave for JP = 3

2

−
.

This is confirmed by the analyses of Manley and Saleski [113] and Vrana et al. [183], since
both groups extracted a dominant 2πN S wave decay of the D13(1520) into ρN and π∆.
It is also interesting to note, that the rise of the 2πN partial wave cross section in the
P33 partial wave (see Fig. 8.5), where ρN and π∆ cannot be produced in an S wave, is
well described in the present model. Since we have not yet included these effects in the
calculation, an increase of the errors of the D13 2πN partial wave cross section by 1 mb
up to 1.46 GeV is introduced to prevent the calculation from putting too much weight
into this shortcoming of the present model. Upcoming investigations will reveal whether
the inclusion of more realistic two-pion nucleon final states, which allow for the correct
partial-wave behavior and account for the spectral functions of the two-body states will
resolve this problem.
Furthermore, we confirm the finding of Refs. [4, 51, 53] that there is no strong evidence – if
at all – for a resonance in this partial wave between 1.7 and 1.9 GeV, see below. Moreover,
we corroborate the importance of a D13 resonance between 1.9 and 2 GeV as in [51, 53],
especially in ηN and ωN production at higher energies; although the ηN decay ratio is
found to be small as compared to [53]. Due to rescattering, this resonance also gives
large background contributions at higher energies in the πN elastic amplitude. It is also
interesting to note, that when only the pion-induced data are considered, the importance
of this resonance is even stronger in the ωN channel and becomes also visible in KΣ
production. We have checked this finding by also performing fits without this resonance,
but always ended up with much higher χ2, no matter which spin-3

2
couplings and gρωπ

coupling sign have been initialized. The final structure of this resonance is always very
broad, having a width of more than 600 MeV. Note, that also other resonance analyses
identified a very broad D13 resonance in this energy region: For example, Batinić et al.
[10] (analyzing πN → πN for I = 1

2
and πN → ηN) and Vrana et al. [183] (analyzing

πN → πN , πN → 2πN , and using the results from [10]) both have found a D13 resonance
at 2 GeV with a large width of about 1 GeV.
When we allow for another D13 resonance in the energy region between 1.7 and 1.9 GeV
for the calculation using the conventional spin-3

2
couplings, the fit systematically decreases

the resonance’s width until it is only be visible via its off-shell contributions in the spin-1
2
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waves. The outcome is a very narrow (Γtot ≤ 30 MeV) resonance, and the best χ2 in this
situation is still worse than in the calculation when such a resonance is neglected. However,
the situation is slightly different in the case when using the Pascalutsa couplings. Adding
a D13(1700) in this case improves the overall χ2 by about 5 − 10 percent. The resulting
total width is 50-55 MeV, half of which are due to 2πN and the other half due to ωN .
The πN decay ratio is only about 2%, hence the resulting resonance is similarly inelastic
as in the analysis of Vrana et al. [183] and Batinić et al. [10]. Since we only find small
χ2 improvements due to this resonance in the Pascalutsa calculations, the indication for
a D13(1700) in the experimental data seems to be only weak and not of resonant nature,
and can thus also be described by non-resonant contributions generated by spin-3

2
off-shell

(or additional other background) contributions. It is interesting to note that the slight
hump around 1.76 GeV in the imaginary part of the πN → πN partial wave is close to
the ωN and KΣ thresholds and could therefore be due to kinematic effects of these two
channels.

Isospin-3
2

Resonances

In the isospin-3
2

sector, a very good agreement among the resonance parameters extracted
from the different calculations can be observed, cf. Table 8.6 above. Even the inclusion
of the photoproduction data basically only changes the KΣ couplings and decay ratios.

S31 :
In all our calculations, the first S31 resonance is found around 1.62 GeV with a width of
about 175 MeV. Depending on the spin-3

2
prescription, the value for its mass is either 1.61

or 1.63 GeV, for the conventional and the Pascalutsa, resp., couplings. The former value

is corroborated upon taking into account the pion-photoproduction multipoles. The E
3
2
0+

multipole helps to pin down the exact resonance properties, in particular the mass, see
Fig. 8.22 below. In the global fits, the mass is fixed at 1.611 GeV, in agreement with the
value of the pion-photoproduction analysis of Arndt et al. [6], but smaller than the PDG
[67] value.
The particle data group [67] lists a second S31 resonance around 1.9 GeV with a two-
star status, which has been found by Manley and Saleski [113] and Vrana et al. [183].
However, in the latter analysis, this resonance turns out to be very narrow with large
uncertainties in the width: Γtot = 48 ± 45 MeV. We have also checked the importance
of such a resonance in the present model, and only found very weak indications for its
existence. Upon inclusion of a second S31 above 1.85 GeV, the χ2 is greatly enhanced in
the πN elastic and πN → 2πN channels for the case of the conventional spin-3

2
couplings.

Using the Pascalutsa spin-3
2

couplings, additional strength is needed in the S31 partial
wave above 1.9 GeV, and thus a second S31 resonance improves the χ2 slightly. The mass
is found in P-p-π+ and P-p-π− between 1.9 and 1.99 GeV, while the width is 180 to 240
MeV, about 30% of which are due to πN and the other 70% due to 2πN . This shows,
similarly to the D13(1700) case, that the indications for a second S31 resonance are only
weak and rather of non-resonant nature. Hence the needed S31 strength above 1.85 GeV
can also be explained easily by background contributions. Note, that Arndt et al. [4]
have not found a S31(1900) either.
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P31 :
In this partial wave, the particle data group [67] lists two resonances below 2 GeV, a
one-star at 1.75 GeV and a four-star at 1.91 GeV. Therefore, we have checked the im-
portance of these two resonances, which have not been considered by Feuster and Mosel
[51, 53]. As in the S31 partial wave, we do not find a resonance in the energy region above
1.85 GeV when using the conventional spin-3

2
couplings. Again, the inclusion of such a

resonance deteriorates the χ2 tremendously in the πN elastic and πN → 2πN channel.
However, there is a strong need for a very inelastic P31(1750) resonance below 1.8 GeV
to be able to correctly reproduce the change of slope in the real part of the πN elastic
partial wave. This is in stark contrast to the four-star rating of the P31(1910) and the
one-star rating of the P31(1750) PDG [67]. Only in the calculation with the Pascalutsa
couplings, the P31 resonance moves to approximately 1.98 GeV with a broad inelastic
width of around 700 MeV. But as is obvious from Fig. 8.4, this resonance can rather
be seen as a compensation of missing background in the high energy region, since the
high-energy tail of the P31 partial wave starts deviating from the data in this calculation.
In the conventional coupling calculation, this additional strength is generated by spin-3

2

off-shell contributions. Thus also the indication for a P31(1910) is very weak in the ex-
perimental data and seems to be only of non-resonant nature. This finding is confirmed
upon inclusion of the photoproduction data, which allows to additionally nail down the

P31(1750) properties. The change of slope of the imaginary part of the M
3
2
1+ multipole

(see Fig. 8.22) leads to a reduction of the P31 mass by about 40 MeV, while its total
width and inelasticity stay about the same.

P33 :
In all calculations, the extracted properties of the P33(1232) are almost identical. A strik-
ing difference, however, is seen in the total width extracted in the Pascalutsa calculation,
which is rather low with 94 MeV. However, this value is not surprising. As a result of
the additional factor s/m2

∆ in the amplitude (see Section 3.4.1), the effective width of the
resonance is increased above the resonance position. To prevent large discrepancies with
the πN partial-wave data, the width at the resonance position has to be reduced. This
effect is only visible for this resonance, since the higher the resonance mass, the smaller
is the variation of s/m2

R around the corresponding resonance position.
Besides the well fixed P33(1232) resonance, we can also confirm the need for a P33(1600) as
in [51, 53], [113], and [183]. While the width and decay ratios are similar to the values of
the PDG [67] and of Feuster and Mosel [53], the mass is fixed due to the 2πN production
at 1.665 GeV, which is considerably higher than the PDG value, but lower than the value
of Feuster and Mosel.
Furthermore, in the present calculation, there is a need for additional (πN) strength in
this partial wave at higher energies, which is not generated by the implemented back-
ground. This gives rise to the necessity of the inclusion of a third P33. Although its mass
is fixed above 2 GeV (see Table 8.6), its resonant structure already shows up below 2
GeV, see Fig. 8.4. However, as a result of the high mass, the extracted properties of
this third P33 resonance can only be of qualitative nature, i.e. that the resonance has a
large inelastic decay fraction, and also gives important contribution in KΣ production.
The inclusion of the third P33 also affects the properties of the P33(1600). In particular,
the P33(1600) mass is lowered in all calculations to about 1.66 GeV, as compared to the
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results of Feuster and Mosel, who have found in their global fit a mass of 1.72 GeV.
Similarly as in the P13 wave, we find indications for a missing inelastic contribution of
about 1 mb in the P33 partial wave above 1.7 GeV (cf. Fig. 8.5) in the present model,
i.e. the contribution of a 3πN state as ρ∆. While the 2πN partial-wave cross section
decreases to about 2 mb, the inelastic partial-wave cross section stays almost constant at
3 mb. The missing inelasticity can only be compensated in our model above 1.91, since
there are no 2πN data points any more and thus inelastic strength can be shifted to the
2πN channel.

D33 :
In the D33 partial wave, we only need one resonance below 2 GeV for a satisfying de-
scription of the experimental data. In all calculations, the resulting properties are very
similar. The width is found to be about 600 MeV, 86% of which coming from the 2πN
decay. Due to the πN → 2πN partial-wave cross section data, already in the hadronic
fits the mass of the D33(1700) is well fixed between 1.675 and 1.68 GeV. This mass is
confirmed in the global fit, where the resulting value of 1.678 is also in accordance with
the value of 1.668 GeV of Arndt et al. [6]. Moreover, the inelasticity is in good agreement
with [6] and also with Manley and Saleski [113], while Vrana et al. [183] found a much
narrower (Γ = 120 MeV) and even more inelastic (95%) resonance at 1.73 GeV. Although
the resonance position is just below the KΣ threshold, it gives important contributions
to pion- and photon-induced KΣ production, see Sections 8.1.6 and 8.4.5.
As in the D13 case, the resulting 2πN production cross section does not rise steeply enough
from 1.3 GeV up to the D33(1700) resonance position. For the same reasons as discussed
for the D13(1520), this is probably due to the deficiency of the effective treatment of the
2πN final state in the present model.

8.3 Summary of Pion-Induced Results

A very good description of all pion-induced data on πN , 2πN , ηN , KΛ, KΣ, and ωN with
one parameter set is possible within our unitary model. This shows, that all important
contributions up to 2 GeV are included and also, that the experimental data of all channels
are consistent with each other. The extension of the energy range and model space
has required the inclusion of additional resonances (P13(1900), P31(1750), P33(1920)) as
compared to the previous analysis of Feuster and Mosel [53], where the former two are
particularly important in the production mechanisms of the higher-lying final states KΛ,
KΣ, and ωN . These extensions lead to differences in the descriptions of some final states,
as, e.g., the KΛ production, which is now dominated by a IJP = 1

2
3
2

+
(P13) in contrast

to the IJP = 1
2

1
2

+
(P11) dominance of earlier analyses [53, 113]. Since a good desciption

of all channels is possible although no spin-5
2

resonances are considered in our model,
this indicates, that higher-spin (≥ 5

2
) resonances are only of minor importance in the

production of ηN , KΛ, KΣ, and ωN . This point is investigated further at present [162].

Due to the inclusion of all important final states below 2 GeV, all threshold effects are
included correctly. As compared to the calculation of Feuster and Mosel [51, 53], this leads
especially to an improvement of the description of the KΛ channel, which is influenced by
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both, the KΣ and the ωN thresholds. Thus, in contrast to the speculation of [51, 53], the
inclusion of u-channel contributions from hyperon resonances is far less important for a
good description of the associated strangeness channels πN → KΛ/KΣ than the correct
treatment of all unitarity effects.

The effects of chiral symmetry have been checked by allowing for a chirally symmetric or
a chiral symmetry breaking σππ coupling vertex. The chiral symmetric one has proven
superior not only for the low, but also for the intermediate energy region in πN elastic
scattering.

The description of the pion-induced data is also still possible, when we further reduce the
freedom of our background contributions by using Pascalutsa spin-3

2
vertices instead of the

conventional ones. These couplings remove the off-shell spin-1
2

contributions of the spin-
3
2

resonance processes, thus reducing the background contributions in the spin-1
2

sector.
This reduction automatically leads to an increase of the importance of the t-channel
diagrams, resulting in a much harder cutoff value Λt. Thereby, the contributions of the
t-channel diagrams become more important in the lower partial waves and agreement
with the experimental data is achieved. However, the increase of the total χ2 from the
conventional to the Pascalutsa prescription (2.66 → 3.53) shows, that indeed additional
background terms are necessary for a better description of the experimental data.

As a result of the additional inclusion of the photoproduction data on all channels, the
description of the pion-induced reactions becomes worse. This is not unexpected, since
due to the more recent photoproduction data of high quality, the reaction process is
much more constrained and thus allows for less freedom. However, the pion-induced data
are still well described in a global calculation including all pion- and photon-induced
data. The largest changes are observed in the I, J = 1

2
(S11 and P11) waves, where the

properties of the S11(1535), S11(1650), and P11(1710) can be better controlled once the
photoproduction data — in particular on ηN , KΛ, and ωN — are included. Differences
are also found in the background ρNN coupling, which turns out to be close to the KSRF
value in the hadronic calculations. The differences in the global fits can be traced back to
the necessity of changing the nucleon formfactor cutoff ΛN for the description of the pion-
photoproduction multipoles, see also Section 8.4.2 below. The Born couplings extracted
from the global fits are close to SU(3) values.

There are also some indications for room for improvement of the Giessen model. Assuming
that the 2πN data [278] are correct, these are evidences for important additional 3πN

final state contributions, which are not considered up to now, in the JP = 3
2

+
partial

waves. We also find evidences for the necessity of a more correct treatment of the 2πN
state in the low-energy tails of the D13(1520) and D33(1700) resonance.

The influence of the sign of gωρπ can be best summarized when comparing the results
of the two global calculations C-p-γ+ and C-p-γ−. Switching the sign of gωρπ leads to
basically the same extracted couplings and resonance parameters. The main difference
is a switch of signs of some ωN couplings, i.e. κNNω, gω1 of the P11(1440), and gω2

and gω3 of the D13(1520), while almost all other ωN contributions are similar. This
indicates that the same interference pattern between these specific contributions and
the t-channel contribution is preferred in the pion-induced ωN production, while the
remaining contributions are rather unaffected. Comparing the quality of the fits, there is
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a tendency of preferring the positive gωρπ sign in line with SU(3) flavor symmetry. This
becomes most obvious in the χ2 of the ωN production channels, while all other channels
remain basically unchanged. Especially the pion-induced ωN production can be much
better described with the positive sign, when the photoproduction data are included.

8.4 Results on Photon-Induced Reactions

Similar to Feuster and Mosel [53] our first attempt for the inclusion of the photoproduction
data in the calculation has been to keep all hadronic parameters fixed to their values
obtained in the fit to the pion-induced reactions. In contrast to the findings of [53], no
satisfactory description of the photoproduction reactions has been achieved with these
hadronic parameters. As a consequence of the smaller data base used in [53] at most
three photoproduction reactions (γN → γN , γN → πN , γN → ηN) had to be fitted
simultaneously. Above 1.6 GeV, no data were available on η photoproduction.

The extended model space and data base now constrains all production mechanisms more
strongly, especially for energies above 1.7 GeV, where precise photoproduction data on all
reactions (besides Compton scattering) are used. Due to the lack of precise data in the
high energy region for pion-induced ηN and ωN production, these production mechanisms
have not been correctly decomposed in the purely hadronic calculations, thus leading to
contradictions in the photoproduction reactions when the hadronic parameters are kept
fixed. Moreover, as pointed out in Section 8.2.1, the Born couplings in the associated
strangeness production only play a minor role in pion-induced reactions while, as a result
of the gauging procedure, these contributions are enhanced in the photoproduction thus
allowing for a more reliable determination of the corresponding couplings. Consequently,
also the KΛ/Σ photoproduction turns out to be hardly describable when the hadronic
parameters are kept fixed. Only when also these parameters are allowed to vary a simul-
taneous description of all pion- and photon-induced reactions is possible. The results of
the photoproductoin reactions are discussed in detail in the following for the two global
calculations C-p-γ+ and C-p-γ−.

8.4.1 Compton Scattering

A simultaneous description of Compton scattering together with the inelastic channels
is essential because this process is dominated by the electromagnetic coupling and may
thus impose more stringent requirements on those. As a consequence of the new data
from [203, 207, 208, 211] we have doubled the Compton scattering data base from 266
to 538 data points as compared to [53]. This means that the description of Compton
scattering becomes more difficult, resulting in larger χ2 values than in [53]. However, as
Fig. 8.18 shows, our calculations are able to describe the differential cross section in the
considered energy region up to

√
s = 1.6 GeV. Only in the intermediate energy region

between 1.3 and 1.5 GeV there are indications for contributions missing in the present
model. These missing contributions are due to the lack of 2πN rescattering contributions,
since in the present model only resonant 2πN photoproduction mechanisms are included,
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Figure 8.18: γp → γp differential cross section for different
√

s as indicated in the figure.
Calculation C-pγ+: solid line, C-pγ−: dashed line. Data are from N [210], ◦ [207], •
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Figure 8.19: γp → γp differential beam polarization. Line code as in Fig. 8.18. In
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see Section 7.1.2. This leads to the lack of background contributions in the low energy
two-pion photoproduction, see also the discussion in Section 8.4.7 below.

The same discrepancy in this energy region can also be observed in the 90 degree region of
the beam polarization, see Fig. 8.19, which is for energies below 1.3 and above 1.45 GeV
and also other angles well described. For comparison, we also display the results on the
beam polarization of the dispersion theoretical analysis of L’vov et al. [110]. In the model
of [110], analyticity constraints are taken into account by saturating s-channel dispersion
relations with use of the VPI pion-photoproduction multipole analysis and resonance
photocouplings. In addition, also two-pion photoproduction background contributions
have been taken into account. These authors’ description of the beam asymmetry is rather
close to our description, with the exception of the above mentioned energy region and the
πN threshold region. This asserts the findings of Pearce and Jennings [139] (see Section
3.2), that due to the extracted soft formfactor the off-shell rescattering contributions of the
intermediate two-particle propagator, which are neglected in the K-matrix approximation,
have to be damped by a very soft formfactor in πN elastic scattering. Thus the effects of
the off-shell rescattering part only become visible very close to the πN threshold, in line
with the above comparison of the present model with the dispersion theoretical analysis
of L’vov et al. [110]. The cusp in the beam polarization at the πN threshold is due to
the T EE

1− multipole amplitude (cf. Eq. (6.10)), which has also been found by Kondratyuk
and Scholten [100].

As expected, the two global fits C-p-γ± lead to practically identical results since Compton
scattering is only considered up to 1.6 GeV, which is still far below ωN threshold. The
slight differences between the two calculations also below 1.6 GeV can be explained by
the necessity of changing resonance contributions above the ωN threshold, which also
have an influence on lower energies due to their widths. The dominant contributions to
Compton scattering stem from the nucleon, the P33(1232), and the D13(1520), while the
P11(1440) and S11(1535) only give small contributions.

8.4.2 Pion Photoproduction

Pion photoproduction is most precisely measured of all the channels considered in the
present work. This has also lead to the development of a large amount of models on this
reaction (see references in [53]), most of them concentrating on the low-energy (∆(1232))
region. The Mainz MAID isobar model of Drechsel et al. [174] covers a similar energy
region as the present analysis. In MAID, the Born and vector meson background con-
tributions are K-matrix unitarized with the help of the VPI πN → πN partial waves
[277]. Instead of using a formfactor for the πNN vertex, a PV-PS mixture scheme is
introduced to regularize the nucleon contributions at higher energies. Since the resonance
contributions are generated by unitarized Breit-Wigners, the resonances do not create ad-
ditional background by u-channel diagrams. The advantage of this procedure is that the
inclusion of spin-5

2
resonances is straightforward and consequently, the F15(1680) is also

taken into account. The free parameters (e.g. the vector meson couplings) are adjusted
to the VPI multipoles [221] and a very good description is achieved. As a consequence of
the Breit-Wigner description and the restriction on pion photoproduction, the extracted
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electromagnetic helicity amplitudes of the resonances are very close to the PDG values
[67], while in our analysis, all resonance contributions are also constrained by Compton
scattering, η, KΛ/Σ, and ω photoproduction data.

As a consequence of the precise experimental data, the pion-photoproduction channel
is of great importance in our data base and contains about 40% of all data points,
many of which with very small error bars. Thus this channels strongly influences the
photon and pion couplings and also the masses of the resonances. For example, the
masses of the S11(1535), S31(1620), P31(1750), and D33(1700) are influenced by the pion-
photoproduction multipoles, see Tables 8.6, 8.7 and Figs. 8.20, 8.21, 8.22. Although the
resulting χ2 seems to be rather high (∼ 10), Figs. 8.20 − 8.22 reveal, that the properties
of almost all multipoles up to J = 3

2
are well described in the present model.

The largest contributions to the total χ2 stem from the real parts of the Ep
1+, Ep

2−, M
3
2
1+,

and E
3
2
2− multipoles. In the latter three cases, this is a consequence of the fact, that around

the resonances D13(1520), P33(1232), and D33(1700) the multipoles are known with very
high accuracy, and thus even very small deviations in the calculation lead to a large χ2.

For the D13(1520) multipoles E
p/n
2− and Mp

2−, but also for the D33(1700) multipole E
3
2
2−,

we observe in the imaginary parts the same problem of the increasing behavior below
the resonance position as in the corresponding πN partial waves (see Sections 8.1.2 and
8.1.3), which is probably due to deficiencies in the present model concerning the 2πN
final state description. In the case of the Ep

1+ multipole the deviation is due to the
lack of some background contribution, which might be related to the problem in the
description of the πN P13 partial wave described above in Sections 8.1.2 and 8.1.3 due to
a missing (3πN) inelastic channel. It is interesting to note that the discrepancy between
the calculation and the VPI data points in the Ep

1+ multipole starts around 1.6 GeV,
which is the same energy, where the problems in the P13 πN → πN wave arise and also
where a sudden increase in the total cross section of γp → pπ+π−π0/nπ+π+π− is observed

in experiments [271, 276]. For the neutron JP = 3
2

+
multipoles, there are only data of

the energy-dependent solution available at energies above 1.8 GeV. Since these data are
model dependent, they only enter with enlarged error bars in the present calculation,
and the high-energy tails of the neutron multipoles are not well fixed. This explains the
pronounced resonant structure in the imaginary part of the En

1+ and Mn
1+ multipoles, not

observed in the VPI multipole data [221].

As can be seen in Figs. 8.20 − 8.22, the differences between the two global calculations C-
p-γ+ and C-p-γ− can be mainly found in the JP = 3

2

+
multipoles above the ωN threshold.

This is a consequence of the fact, that these multipoles give important contributions to the
ωN production mechanism (see Sections 8.1.7 above and 8.4.6 below) and are thus very
sensitive to the change of sign of the t-channel background contribution in πN → ωN .

Apart from the Ep
1+ multipole discussed above, we find indications for missing background

only in the Mn
2− and M

3
2
2− multipoles, while in all other multipoles the background con-

tributions seem to be in line with the VPI [221] analysis. Since the background is mainly
generated by the Born terms, the multipoles strongly influence the nucleon cutoff value

ΛN . In Fig. 8.23 we show the sensitivity of the En
0+, Mn

1+, and M
3
2
1− multipoles on the cut-

off value ΛN , which is used in the πNN formfactor. As pointed out in Section 8.1.2, the
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Figure 8.20: γN → πN proton multipoles. Line code as in Fig. 8.18. Data are from the
VPI [221] single-energy (◦) and energy-dependent (×) solution.
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Figure 8.21: γN → πN neutron multipoles. Line code as in Fig. 8.18, data as in Fig.
8.20.
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Figure 8.22: γN → πN I = 3
2

multipoles. Line code as in Fig. 8.18, data as in Fig. 8.20.
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Figure 8.23: Examples for the influence of the nucleon cutoff value ΛN on the pion-

photoproduction multipoles: neutron En
0+ (left), neutron Mn

1+ (middle), I = 3
2

M
3
2
1−

(right). C-p-γ+ with ΛN = 0.96 GeV: solid line, C-p-γ+ with ΛN = 1.16 GeV: dash-
dotted line. For En

0+, also the calculation of [52, 53] is displayed (dotted line). For the

imaginary part of M
3
2
1−, also calculation C-p-γ+ using the Haberzettl gauging procedure

is shown (dash-double-dotted line).
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S11 and P11 πN → πN partial waves are worsely described once the pion-photoproduction
data is included. This effect can be traced back to the necessity of reducing the value of
ΛN = 1.16 GeV of the hadronic calculation to ΛN = 0.96 GeV in the global calculation.
Using the latter value, the background contributions in the multipoles are in line with the
VPI analysis [221], while with the former value the incorrect background description leads
to largely increased χ2 values. The price one has to pay for the improvement in the men-
tioned multipoles is the deterioration in the S11 and P11 πN elastic partial waves. Since
the Born terms are very sensitive to the gauging procedure, the resulting good description
of most of the background features also indicates, that the Davidson-Workman gauging
procedure (3.33) is supported by the pion-photoproduction data. As an example, we show
the effect of switching to the Haberzettl gauging procedure (3.32) in the imaginary part

of the M
3
2
1− multipole in Fig. 8.23. Similar observations are also made in other multipoles.

This is also related to the large χ2 improvement of the present calculation as compared
to [53], where the Haberzettl gauging procedure has been used. The largest differences
as compared to Feuster and Mosel [53] can be observed in the real part of the I = 1

2
E0+

multipoles, see e.g. En
0+ in Fig. 8.23. Note, that it has already been speculated in [53],

that modifying the gauging procedure might improve the description in these multipoles.

In the M
3
2
2− multipole, in addition to the missing background mentioned above, also a too

small resonance contribution is extracted in the present model. However, this contribution
is also strongly constrained by the spin-1

2
off-shell contributions of the D33(1700) to the

E
3
2
0+ and M

3
2
1− multipoles. Since these multipoles are more precisely known than the M

3
2
2−,

the fitting procedure is dominated by the background contributions of the D33(1700) in the

spin-1
2

multipoles, resulting in photon couplings which deteriorate the M
3
2
2− description.

8.4.3 η Photoproduction

Several investigations [14, 53, 157] have shown, that the ηN photoproduction is domi-

nated by a JP = 1
2

−
production mechanism, in particular at threshold. While we find in

the pion-induced reaction still important 1
2

+
and 3

2

+
cross-section contributions, only a

small contribution of the P11(1710) is visible in the photon-induced reaction, and the 1
2

−

contribution is by far dominant up to 2 GeV, see Fig. 8.24. Here, we have also displayed
the so-called reduced cross section, which takes out effects caused by phase space and is
given by σred =

√
σtot k/(4πk′) (cf. Appendix G), and allows for more conclusive investi-

gations close to threshold. As can be clearly seen in Fig. 8.24, the production mechanism
is well under control in the present model down to the very threshold. Thus, the energy
dependence of the ηN total cross section is correctly described, although the inclusion of
the pion photoproduction Ep

0+ multipole data requires a reduction of the S11(1535) mass
from ≈ 1.544 GeV to ≈ 1.526 GeV, see Table 8.7. Note, that our calculations do not
follow the increase of the GRAAL total cross section [240] around 1.7 GeV, which is not
observed in the estimated total cross section from the CLAS collaboration [230] either.

In the first coupled channel model on photon- and pion-induced ηN production up to√
s = 1.75 GeV by Sauermann et al. [157], it has been found, that an important pro-

duction mechanism is due to the vector meson (ρ and ω) exchanges. In line with these
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author’s findings, it also turns out in the present model, that these exchanges give impor-
tant contributions in all partial waves and the neglect would lead to total cross sections
below the experimental data already at 1.55 GeV. Note, that in the present calculation
the forward peaking behavior of the differential cross section at higher energies is less
pronounced as compared to [53] (see Fig. 8.25), which is in line with the preliminary
CLAS [230] and the older experimental data.

The resulting decomposition of the ηN photoproduction describes the differential cross
sections and polarization measurements very well in the complete considered energy re-
gion, see Figs. 8.25 and 8.26. As pointed out in Section 7.2.2 prior to the differential cross
section measurements of the CLAS collaboration [230], there have hardly been any mea-
surements taken above 1.7 GeV. Consequently, the preliminary CLAS data give strong
constraints on the reaction mechanism in the upper energy region, which would other-
wise be mainly determined by the pion-induced ηN data being of poor quality at higher
energies, cf. Section 8.1.4.

It is interesting to note, that we find a considerably smaller D13(1520) ηN widths than,
e.g., Batinić et al. [10]. However, since the D13(1520) basically gives the only contribution
to the low energy behavior of the beam polarization Σ [53], our value of around 20 KeV
(as compared to 140 KeV) is strongly corroborated by the measurements of the GRAAL
collaboration [223], since these data are very well described in the complete measured
region, see Fig. 8.26. Note also, that Tiator et al. [175] have deduced from the GRAAL
beam asymmetry data a D13(1520) ηN branching ratio of 0.8 ± 0.1h, which is about
half of our value. This is related to the fact, that in these authors’ analysis, the PDG
[67] electromagnetic helicity amplitudes have been used, which are larger than the ones
deduced from our analysis, see Table 8.14 below. In [175] it has also been shown, that
the forward-backward asymmetry of the beam polarization Σ between 1.65 and 1.7 GeV
(see Fig. 8.26) can only be explained by contributions with spin J ≥ 5

2
. Since in the

present model no J ≥ 5
2

resonances are included, the asymmetric behavior is generated
by the vector meson exchanges. Since the GRAAL data cannot be completely described
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Figure 8.25: γp → ηp differential cross section. Line code as in Fig. 8.18. Data are from
• [237], ◦ [240], N [230], × other data (see Section 7.2.2).
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Figure 8.26: γp → ηp target- (upper panel) and beam- (lower panel) polarization mea-
surements. Line code as in Fig. 8.18. Data are from ◦ [226], ¤ [223], • [241].
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at 1.69 GeV, this might be an indication that spin-5
2

resonances indeed play a role in
η photoproduction. At higher energies (

√
s > 1.8 GeV), an opposite behavior of the

beam asymmetry for our two calculations at backward angles is observed. Since there are
no data points, only the behavior at forward angles is fixed. The difference in the two
calculations can be explained by the opposite photon helicity amplitudes of the D13(1950)
(see Table 8.14 in Section 8.4.8 below) and the different ηN strength (see Table 8.7 in
Section 8.2.3 above). Thus beam-asymmetry measurements at energies above 1.7 GeV
for ηN photoproduction would be a great tool to study the properties of this “missing”
resonance and also the necessity for the inclusion of a spin-5

2
resonance in more detail.

For the target polarization, we find small values in the complete energy region, see Fig.
8.26. Only in the lowest energy bins, the experimental data seem to indicate a nodal
structure. Tiator et al. [175] have shown, that this behavior can only be explained by
a strong energy dependence of the relative phase between the S11(1535) and D13(1520)
contributions, which is not found in the present calculation. For the region above 1.6 GeV,
our calculations change from positive to negative values, which seems not to be supported
by the Mainz data [226] at backward angles. It turns out, that the target polarization
is dominated in our calculation by the P11(1710) resonance properties and hence, more
experimental data on the target polarization at higher energies would also help to clarify
whether this resonance plays such an important role in ηN photoproduction as found in
the present analysis.

8.4.4 KΛ Photoproduction

The decomposition of the KΛ photoproduction channel turns out to be very similar to
the pion-induced reaction. In contrast to Feuster and Mosel [53], where the S11(1650)
and the P11(1710) dominated this reaction, in the present calculation the former one
turns out to be important only very close to threshold, while the latter one hardly gives
any sizeable contribution at all, see Fig. 8.27. At low energies, the P13(1720) (JP =
3
2

+
) resonance is dominating causing a resonant structure around 1.7 GeV. At higher

energies, the P13(1900) gives important contributions due to rescattering in spite of its

small KΛ width. The strong 1
2

−
contribution very close to threshold, which is caused by

the S11(1650), is strongly influenced by the ωN threshold leading to a sudden increase in
the total cross section. Note, that the finite width of the ω meson of 8 MeV, which is
not taken into account in the present model, smears out this threshold effect. A similar
observation of the feeding of KΛ (and also KΣ, see Section 8.4.5 below) photoproduction
through threshold effects has also been made in the coupled-channel model of Lutz et al.
[109]. As a consequence of the inclusion of the K∗ and K1 meson exchanges, we also find
important contributions to the total cross section by partial waves with J ≥ 5

2
, cf. Fig.

8.27.

A striking difference to the pion-induced KΛ production mechanism is observed in the 1
2

+

wave, which exhibits a structure resonating around 1.9 GeV, where also a second peak is
visible in the SAPHIR total cross section data [257]. However, there is no P11 resonance

included in the present model around this energy. It turns out, that the 1
2

+
behavior

is caused by the interference of the nucleon and K∗ contributions. Switching these two
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Figure 8.27: γp → K+Λ total cross section. Data are from • [257], 4 [244], ◦ [248].
Left: Line code as in Fig. 8.18. Right: Partial-wave decomposition. Notation as in Fig.
8.24. In addition, the contribution of higher partial waves (J ≥ 5

2
) is indicated by the

short-dashed line.

contributions off leads to a 1
2

+
wave, which is practically zero for energies higher than the

P11(1710) peak. This is in contrast to the findings of the single-channel model of Mart and
Bennhold [114], where the peaking behavior in the SAPHIR total cross section [257] has
been explained by the same D13(1950) resonance, which was found by Feuster and Mosel
[51, 53] around 1.9 GeV. This example emphasizes the importance of coupled-channel
analyses for the correct identification of missing resonances. Although the D13(1950) is
included in the present calculation, in the simultaneous analysis of all channels it turns
out to be of negligible importance for KΛ photoproduction. Similar results have already
been found by Janssen et al. [85]. Using a field-theoretic model, these authors have
deduced that the present KΛ-photoproduction data alone is insufficient to identify the
exact properties of a missing resonance in a single-channel analysis on KΛ photoproduc-
tion. Moreover, these properties also depend on the background contributions. Since
in the present model, the background is uniformly generated for the various reaction
channels, and pion- and photon-induced data are analyzed simultaneously, the extracted
background and resonance contributions are more strongly constrained than in [114] and
more reliable conclusions can be drawn.

The recoil polarization (see Fig. 8.28) is equally well described in the two global calcu-
lations C-p-γ+ and C-p-γ−, although the difference in the gωρπ sign leads to changes in
the P -wave resonance couplings. However, since the differential cross section displayed
in Fig. 8.28 is P wave dominated, slight changes in the forward peaking and backward
decrease can be seen in this observable. This different behavior is the reason for the better
χ2 value of C-p-γ− as compared to C-p-γ+, and again shows, that KΛ production reacts
very sensitive on rescattering effects due to ωN .

As a consequence of the inclusion of the photoproduction data, the NKΛ coupling is
only reduced from −18.8 to −12.2 from the best hadronic (C-p-π+) to the best global
(C-p-γ+) fit, see Table 8.3 in Section 8.2.1. Thus, in contrast to other models on KΛ
photoproduction, the resulting agreement of the present calculation with experimental
data is neither achieved with a very low NKΛ coupling far off SU(3) predictions, nor



8.4. Results on Photon-Induced Reactions 159

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

-1.0 -0.5 0.0 0.5
0.0

0.1

0.2

0.3

-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 1.0

1.618 GeV

 

  

1.647 GeV

 

  

1.666 GeV

 

  

1.689 GeV

 

  

1.713 GeV

 

  

1.744 GeV

 

  

1.770 GeV

 

  

1.797 GeV

 

  

1.822 GeV

 

 d
σ/

d Ω
 [ µ

b/
sr

]

 

1.840 GeV

 

 

  

1.849 GeV

 

  

1.873 GeV

 

 

1.898 GeV

 

  

1.923 GeV

 

  

cos ϑ
c.m.

1.970 GeV

 

  

2.018 GeV

 

  

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

-1.0 -0.5 0.0 0.5
-1.0

-0.5

0.0

0.5

-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 1.0

1.639 GeV

 

  

1.661 GeV

 

  

1.673 GeV

 

  

1.691 GeV

 

  

1.716 GeV

 

Λ
-P

ol
ar

iz
at

io
n

 

1.727 GeV

 

  

1.749 GeV

 

  

1.797 GeV

 

  

1.822 GeV

 

 

1.846 GeV

 

  

1.889 GeV

 

  

cos ϑ
c.m.

1.922 GeV

 

  

Figure 8.28: γp → K+Λ differential cross section (upper panel) and Λ-recoil polarization
(lower panel). Line code as in Fig. 8.18. Data are from • [257], 4 [244], × other data
(see Section 7.2.3).
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Fit Total χ2
γΣ χ2(γp → K+Σ0) χ2(γp → K0Σ+)

C-p-γ+ 2.74 2.81 2.38
C-p-γ− 2.27 2.28 2.17

Table 8.12: Resulting χ2 of the two global fits for the two different charge reactions in
γp → KΣ.
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Figure 8.29: γp → KΣ total cross sections. Data are from • [267], ◦ [261], 4 [259], and
¥ [264]. Left: Line code as in Fig. 8.18. Right: Partial-wave decomposition. Line code
as in Fig. 8.24.

with a very soft nucleon formfactor, see Table 8.4 in Section 8.2.1. Note, that the same
cutoff value ΛN = 0.96 GeV is used in all nucleon s- and u-channel diagrams.

8.4.5 KΣ Photoproduction

As it turns out in the present model, it is also possible to simultaneously describe both
measured γp → KΣ charge reactions (see Table 8.12 and Fig. 8.29), while still being
in line with all three pion-induced KΣ charge channels (see Table 8.2 and Section 8.1.6).
Similarly to KΛ photoproduction, the KΣ mechanism also proves to be very sensitive to
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rescattering effects via ωN . The IJP = 1
2

1
2

−
KΣ wave is fed by the ωN channel leading

to the sudden increase in the K+Σ0 and K0Σ+ total cross sections. As pointed out in
Section 8.4.4, such an effect has also been observed in the coupled-channel model of Lutz
et al. [109]. Note, that the finite width of the ω meson of 8 MeV, which is not taken into
account in the present model, smears out this threshold effect.

The total cross section of γp → K+Σ0 is dominantly composed of JP = 1
2

−
and 1

2

+

contributions, where the latter one is generated by the P31(1750) and also K∗ exchange
contributions. The higher partial waves, especially those with J ≥ 5

2
, hardly play any

role. In the γp → K0Σ+ reaction, the situation is changed in such a way, that the
contribution of the P11(1710) becomes more pronounced, and the the JP = 3

2

+
contribu-

tion due to the P33(1920) and in particular the P13(1900) is emphasized. The JP = 3
2

−

and higher partial-wave contributions remain negligible. A similar decomposition of the
KΣ-photoproduction mechanism has been found by Janssen et al. [86]. By applying
a tree-level isobar model, these authors have been able to exclude any relevance of the
D13 wave and to identify important contributions from the P11(1710) and S11(1650) as
in our model. Also P13, S31, and P31 contributions have been identified, however, those
have been attributed to the P13(1720), S31(1900), and P31(1910) resonances, instead of
P13(1900), S31(1620), and P31(1750) in the present model. Note, that we have checked for
the importance of S31(1900) and P31(1910) contributions within the present model, but
have not found any sizeable contributions.

The differential cross section behavior of γp → K+Σ0, shown in Fig. 8.30, is very similar
for the two global calculations C-p-γ± with different coupling signs of gωρπ. Both describe
the angular structure of the cross sections very well and show a tendency to decrease at
forward angles for higher energies, which is caused by the K∗ exchange. In the Σ0 recoil
polarization of γp → K+Σ0, the two calculations C-p-γ+ and C-p-γ− show a behavior
opposite in sign for energies above 1.9 GeV. This difference can be traced back to the
different P11(1440), P11(1710), and D13(1950) contributions in the two calculations. Thus,
more precise experimental data in the higher energy region on the Σ0 polarization would
certainly help to clarify the exact decomposition.

We also observe a very similar behavior of the two calculations for the γp → K0Σ+ (see
Fig. 8.31) differential cross section and Σ+ polarization. Unfortunately, the few SAPHIR
data points [264] are not precise enough to judge the quality of the description.

We also display a comparison of the two angle-differential data points for γn → K+Σ− of
Anderson et al. [258] (see Fig. 8.32), which are not considered in the fitting procedure.
One can see, that although both global calculations are in line with the data points, more
data on this reaction would certainly allow for an even better disentanglement of the
KΣ-photoproduction reaction process.

As a result of the inclusion of the photoproduction data, the NKΣ coupling is reduced
from 15.4 to 2.5 from the best hadronic (C-p-π+) to the best global (C-p-γ+) fit. As
pointed out in Section 8.2.1, the pion-induced reactions are only slightly influenced by the
exact NKΣ coupling value and are thus still be well described in the global calculation.
The final value for the NKΣ coupling is close to SU(3) expectations, see Section 8.2.1.
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Figure 8.30: γp → K+Σ0. Upper panel: differential cross section, lower panel: Σ0-recoil
polarization. Line code as in Fig. 8.18. Data are from • [267], 4 [259], and × other data
(see Section 7.2.4).
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Figure 8.31: γp → K0Σ+ differential cross section and Σ+-recoil polarization. Line code
as in Fig. 8.18. Data are from [264].

-1.0 -0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

 

dσ
/d

Ω
 [

µ b
/s

r]

cos ϑ
c.m.

-1.0 -0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

 

dσ
/d

Ω
 [

µ b
/s

r]

cos ϑ
c.m.

Figure 8.32: γn → K+Σ− differential cross section for left:
√

s = 1.728 GeV and right:√
s = 1.741 GeV. Data are from [258]. Line code as in Fig. 8.18.



164 Chapter 8. Results

1.75 1.80 1.85 1.90 1.95 2.00
0

5

10

 

σ to
t [ µ

b]

√s [GeV]
1.75 1.80 1.85 1.90 1.95 2.00

0

5

10

 

σ to
t [ µ

b]

√s [GeV]

Figure 8.33: γp → ωp total cross section. Data are from • [269], ◦ [273], × [271], 2 [270].
Left: Line code as in Fig. 8.18. Right: Partial-wave decomposition. Notation as in Fig.
8.27.

8.4.6 ω Photoproduction

The literature on ω photoproduction does not offer a clear picture on the importance
of individual resonance mechanisms in this channel, which is due to the fact, that ba-
sically all models are only single-channel analyses. Hence rescattering effects and the
impact of the drawn conclusions on other channels are neglected. While Titov and Lee
[180] have recently found important contributions of the sub-threshold D13(1520) and
F15(1680) resonances, Oh et al. [132] extracted dominant contributions from a P13(1910)
and a D13(1960) resonance. Furthermore, in the model of Zhao [199] the P13(1720) and
F15(1680) give dominant contributions, but also the low lying S11(1535) and D13(1520)
are important. All models agree, however, on the importance of the π0 exchange, which
has already been considered in one of the first models on ω photoproduction by Friman
and Soyeur [54]. The higher partial-wave contributions of the π0 mechanism also domi-
nate the cross section behavior above

√
s ≈ 1.82 GeV in the present model, see Fig. 8.33.

The clear dominating threshold contribution stems from the P11(1710), just as in the
pion-induced case (see Section 8.1.7). The importance of the other resonances, however,

is reduced and only the JP = 3
2

+
contributions of the P13(1720) and P13(1900) remain

non-negligible.

The dominance of the π0 exchange mechanism becomes even more obvious in the differen-
tial cross section, see Fig. 8.34. However, in particular in the middle- and backward-angle
region the resonance contributions destructively interfering with the pion exchange are
mandatory to describe the precise preliminary SAPHIR data [269], which cover the com-
plete angular range. When these resonance contributions are neglected, the total cross
section behavior is strongly altered and the calculation largely overestimates the total
cross section, see Fig. 8.35.

The upper limit of the partial-wave decomposition Jmax turns out to be essential for the
ω photoproduction channel because of the importance of the pseudoscalar π0 exchange.
Performing the decomposition only up to Jmax = 11

2
as in [51, 53], the full upward bending

behavior at forward angles is not reproduced. This is displayed in Fig. 8.35. We have
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Figure 8.34: γp → ωp. Line code as in Fig. 8.18. Upper panel: differential cross section.
Data are from • [269], ◦ [273], × [271], 2 [270], 4 [275]. Lower panel: Beam asymmetry
Σ. Preliminary data are from [268].
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calculation C-p-γ+. Dash-dotted line: C-p-γ+ with resonance contributions switched off.
Right: Solid line: full calculation C-p-γ+. Dash-dotted line: C-p-γ+ with Jmax = 11

2
, see

text.

checked for Jmax providing good convergence in the angular structure and found a satisfy-
ing behavior for Jmax ≈ 27

2
, which is consequently used in the partial-wave decomposition

for the present calculation. The necessity of the consideration of higher partial waves
when pseudoscalar exchange mechanisms are included has also been pointed out recently
by Davidson and Workman [36]. These authors demonstrated striking differences in the
forward peaking behavior for a pion-photoproduction calculation at 1.66 GeV using SAID
multipoles only up to `π = 5 (⇔ Jmax = 11

2
) or additionally taking into account the full

angular structure of the Born terms, in particular the pion-Bremsstrahlung contribution.

Although the inclusion of the precise SAPHIR photoproduction data [269] allows for a
better disentanglement of the importance of different resonances, the various resonance
(helicity) couplings to ωN cannot be fixed with certainty, see Table 8.8. To clarify the
situation, there is an urgent need for data on polarization observables of ωN photopro-
duction, as, e.g., currently extracted at GRAAL. For comparison, we give our results on
the beam asymmetry Σ in Fig. 8.34. Note, that the preliminary GRAAL data [268] have
not yet been included in the fit.

8.4.7 Photoabsorption on the Nucleon

In the present model, we have included all important inelastic πN channels below
√

s = 2
GeV, and hence, we can also compare the resulting total photoabsorption cross section

σT
abs = 1

2
(σ

1
2
abs + σ

3
2
abs) on the proton with experimental data [201, 202]. As can be seen

from Fig. 8.36 our model is in line with experiment all through the ∆(1232) region, but
we cannot describe the total photoabsorption cross section σT

abs above the 2πN threshold.
This is not unexpected: the photoproduction of 2πN cannot be described within our model
as well as the pion-induced 2πN production, since in the photon-induced reaction, e.g.,
also ρN or π∆ contact (Kroll-Rudermann like) interactions are known to be important
[78, 120, 121].
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Figure 8.36: Total photoabsorption cross section on the proton γp → X. Calculation
C-p-γ+: solid line, C-p-γ−: dashed line, cross section ∆σ of [110] (see text): dotted line,
sum of calculation C-p-γ+ and ∆σ: dash-dotted line; γp → 2πN of C-p-γ+: dash-double-
dotted line (see text). Data are from × [202] and ◦ [201].

In the dispersion theoretical analysis of Compton scattering by L’vov et al. [110], exactly
this part of the total photoabsorption cross section has been determined. By subtracting

from the experimental total photoabsorption cross section σT
abs = 1

2
(σ

1
2
abs + σ

3
2
abs) on the

proton [201, 202] the single-pion photoproduction cross section, determined via the VPI
multipoles, and their 2πN cross section simulated via nucleon resonances, they extracted
a remaining cross section ∆σ supposed to be due to the aforementionned background
interactions. Ignoring interference effects (see [110]), one can just add ∆σ to our total
photoabsorption cross section. The resulting sum is remarkably close to the experimental
photoabsorption cross section [201, 202] up to about 1.6 GeV, see Fig. 8.36, above which
important contributions of spin-5

2
resonances can be expected. Thus it seems, that the

resonance contributions to the 2πN photoproduction, displayed in Fig. 8.36 by the dash-
double-dotted line, are rather well described within the present model. This provides an
additional cross check that at least up to 1.6 GeV all important channels are correctly
described in our model. The last point can be extended to higher energies as soon as the
inclusion of spin-5

2
resonances in the present model is completed [162]. Above 1.6 GeV

the data of the ABBHHM collaboration on 3πN photoproduction [271] indicate, that also
this channel contributes ≈ 30− 40 µb to σT

abs, less than 10 µb of which are due to ωN .

Realizing the limitations of the present model, we can nevertheless give estimates on the
contributions of the various final states to the Gerasimov-Drell-Hearn (GDH) sum rule
[60] (see also [41] and references therein)

IGDH =

∞∫

Ethr
γ

(
σ

1
2
abs − σ

3
2
abs

) dElab
γ

Elab
γ

= −2π2ακN

m2
N

, (8.4)

which allows to relate the static property of the anomalous magnetic moment of the
nucleon to the photoabsorption reaction via dispersion relations. In Eq. (8.4), Ethr

γ gives
the threshold photon laboratory energy for pion photoproduction. The contributions of
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the individual reactions on the proton target up to
√

s = 2 GeV are given in Table 8.13.
As is clear from the above discussion, our estimates for πN and 2πN deviate from the

πN 2πN ηN KΛ KΣ ωN
−157.5 −21.2 +9.2 +1.1 +1.6 +0.8
−162.7 −20.7 +8.6 +0.9 +1.8 +0.1
−171a −45a +15a +1.7b +2.4b −2.0c

Table 8.13: Contributions (in µb) of the individual final states to the GDH sum rule up
to
√

s = 2 GeV on the proton target. 1st line: Calculation C-p-γ+, 2nd line: C-p-γ−.
3rd line: Values are from a: [177], b: [166], c: [200]. .

rather well known values for reasons well understood. For all other final states (ηN , KΛ,
KΣ, and ωN) our model is compared to all available experimental observables and thus
allows for reasonable estimates of the contributions to the GDH sum rule. It is interesting
to note (see Table 8.13) that our values for the contributions from ηN , KΛ, KΣ, and in
particular ωN deviate from the values of Refs. [177, 166, 200], all of which have been
extracted in single-channel analyses.

8.4.8 Resonance Electromagnetic Helicity Amplitudes

In Tables 8.14, 8.15, and 8.16 the extracted electromagnetic properties of the resonances
are summarized in comparison with the values of the PDG [67], Feuster and Mosel [53],
and the pion photoproduction analysis of Arndt et al. [6]. In the following, these values
are discussed in detail.

Isospin-1
2

Resonances

S11 :
In contrast to Arndt et al. [6] the properties and in particular the helicity amplitudes of
the S11(1535) can be well fixed in the present calculation, which is a result of the inclusion
of the η-photoproduction data. The extracted lower value for Ap

1
2

as compared to Feuster

and Mosel [53] is caused by the different gauging procedure and the fact, that a lower mass
is extracted in the present calculation. The differences in the neutron value, however, can
be explained by the improved data base underlying the pion-photoproduction neutron
multipoles, see Fig. 8.21.
The helicity coupling of the S11(1650) is also influenced by KΛ photoproduction in our
analysis, but the extracted value agrees well with the PDG [67] value. However, the
most recent VPI photoproduction single-energy analysis presented in [6] indicates, that
the structure of this resonance is enlarged as compared to the analysis [221] used in the
present calculation, which leads to the larger values found by Arndt et al..

P11 :
The P11(1440) values are extremely sensitive to the damping of the nucleon contributions
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L2I,2S Ap
1
2

An
1
2

Ap
3
2

An
3
2

S11(1535) 90/93 −24/− 34 —
90(30) −46(29) —

106 −63 —
NG —

S11(1650) 49/47 −11/− 13 —
53(16) −15(21) —
45 −26 —
74(1) −28(4) —

P11(1440) −87/− 81 121/112 —
−64(4) 40(10) —
−84 47 —
−67(2) 47(5) —

P11(1710) 44/28 −24/41 —
9(22) −2(14) —

19 −19 —
NG —

P13(1720) −53/− 65 −4/3 27/34 3/2
18(30) 1(15) −19(20) −29(61)
23 2 75 −17

NG
P13(1900) −17/− 18 −16/− 21 31/8 −2/− 28

NC

D13(1520) −3/1 −84/− 74 151/153 −159/− 161
−24(9) −59(9) 166(5) −139(11)

3 −47 136 −98
−24(2) −67(4) 135(2) −112(3)

D13(1950) 12/− 1 23/− 15 −10/− 22 −9/22

5 47 41 −55

Table 8.14: Electromagnetic helicity amplitudes (in 10−3 GeV− 1
2 ) of I = 1

2
resonances

considered in the calculation. 1st line: C-p-γ+/C-p-γ−, 2nd line PDG [67], 3rd line
Feuster and Mosel [53], 4th line: Arndt et al. [6]. In brackets, the estimated errors are
given. “NF”: not found. “NG”: not given. “NC”: not considered (energy range ended at
1.9 GeV).

and consequently the gauging procedure. This leads to large differences in the neutron
amplitude as compared to Feuster and Mosel, the PDG, and Arndt et al.. However, the
error bars in the neutron multipole allow for a large range of resonance contributions (see
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L2I,2S A 1
2

A 3
2

L2I,2S A 1
2

A 3
2

S31(1620) −50/− 53 — P33(1232) −128/− 129 −247/− 248
27(11) — −135(6) −255(8)
−4 — −126 −233
−13(3) — −129(1) −243(1)

P31(1750) 53/30 — P33(1600) 0/0 −24/− 24
−23(20) −9(21)

NC — −26 −52

D33(1700) 96/96 154/153 P33(1920) −7/− 9 −1/− 2
104(15) 85(22) 40(14) 23(17)
75 98 NC
89(10) 92(7)

Table 8.15: Electromagnetic helicity amplitudes of I = 3
2

resonances. Notation as in Table
8.14.

Fig. 8.21).
Similarly to Arndt et al., the electromagnetic properties of the second P11 cannot be
completely fixed in the present calculation. While in the proton case, the P11(1710) photon
coupling is roughly identical for both global calculations, the lack of precise neutron target
pion-photoproduction data especially above 1.8 GeV (see Fig. 8.21) does not allow to pin
down the P11(1710) neutron coupling.

P13 :
Since both P13 resonances considered in the present calculation not only give important
contributions to pion photoproduction, but also to KΛ and ω photoproduction, the re-
sulting proton couplings are rather well determined, although the structure in the Ep

1+

pion photoproduction multipole cannot be completely described (see Section 8.4.2). This
is in contrast to Arndt et al. [6], where the values of the P13(1720) are not given. Note,
that our coupling signs for the P13(1720) are opposite to the PDG values, but in line with
the ones of the Arndt, Strakovsky, and Workman [5]: Ap

1
2

= −15(15), Ap
3
2

= 7(10) (in

brackets, the estimated errors are given). The newly included P13(1900) also influences
the P13(1720) properties, thus explaining the differences in the couplings of the latter one
to Feuster and Mosel [53]. As pointed out in Section 8.4.2, the lack of neutron data for
the pion-photoproduction multipoles above 1.8 GeV leaves the P13(1900) neutron photon
couplings essentially undetermined.

D13 :
As shown in [53], the D13(1520) photon couplings are extremely sensitive to Compton
scattering. Therefore and due to the enlarged Compton data base, the differences to the
values of Arndt et al. [6] and Feuster and Mosel [53] can be understood. Furthermore, as
pointed out in Section 8.4.2, the D13(1520) neutron photon couplings are also influenced
by the lack of precise Mn

2− multipole data, thus fixing the D13(1520) neutron photon
couplings partially by its influences on the J = 1

2
multipoles. The D13(1950) photon
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couplings always result in small values, since neither in pion photoproduction nor in
the other photoproduction channels such a resonant structure is found. However, more
polarization measurements on the non-pion photoproduction data would allow for a more
closer determination of the electromagnetic properties of this resonance.

S31 :

Similarly to the IJ = 1
2

1
2

channels, also the E
3
2
0+ multipole is very sensitive to background

contributions. Thus, although in our calculation and in the analysis of Arndt et al. [6]
the resonance peak of the S31 is nicely described, the extracted helicity amplitude differs
by a factor of 4. Feuster and Mosel [53] have also found a smaller helicity value, which,
however, can be explained by the fact, that in the older multipole analysis used in [53],
this resonance’s peak was less pronounced.

P31 :

As a consequence of the large error bars in the M
3
2
1− multipole, the photon coupling of the

P31(1750) differs in the two global calculations. However, the extracted values describe
the tendency in the data correctly and are also in line with the influence of the P31(1750)
on KΣ photoproduction.

P33 :
Although Compton scattering is simultaneously analysed in the present model, our he-
licity coupling nicely agree with the recent analysis of Arndt et al., corroborating the
compatibility of the Compton and pion-photoproduction experimental data. The ratio of
electric and magnetic transition strength for the ∆ (P33(1232)) resonance is of special in-
terest, because it vanishes for a zero quadrupol deformation of this excited nucleon state.
Combining Eqs. (6.6) and (E.41) and using the normalization entering Eq. (6.8), we find:

R∆
E/M =

A∆
1
2

− A∆
3
2

/
√

3

A∆
1
2

+
√

3A∆
3
2

= − g∆
1 − g∆

2
m∆

2mN

g∆
1

3m∆+mN

m∆−mN
− g∆

2
m∆

2mN

. (8.5)

Our value of −2.6% (−2.5%) of calculation C-p-γ+ (C-p-γ−) is also identical with the
PDG [67] value of −2.5± 0.5% and the one of Tiator et al. [176] −2.5± 0.1, even though

the E
3
2
1+ multipole is very sensitive to rescattering [53].

For the two higher lying P33 resonances, we find small electromagnetic contributions

resulting in hardly any visible structure in the M
3
2
1+ and E

3
2
1+ pion multipoles. However,

since these resonances also influence KΣ photoproduction, both global calculations result
in basically identical values.

D33 :

As pointed out in Section 8.4.2, we observe problems in the description of the M
3
2
2− mul-

tipole due to the lack of a background contribution in this multipole. This leads to the
differences of our A 3

2
values as compared to the other references. Note, that also in [53]

similar observations have been made and the extracted A 3
2

strength has ranged from
98− 172.

Electromagnetic off-shell parameters:
The electromagnetic off-shell parameters aγ, see Sections 3.4.1 and 3.4.2, turn out to



172 Chapter 8. Results

L2I,2S aγ1 aγ2 L2I,2S aγ1 aγ2

P13(1720) −1.324 0.266 P33(1232) 0.471 0.932
0.148 0.429 0.538 0.809

−0.352 1.586 0.233 −0.158
P13(1900) −3.599 0.488 P33(1600) −2.006 2.650

2.893 0.149 −3.281 3.000
NC 3.282 −3.979

D13(1520) 0.075 −0.571 P33(1920) 4.000 −0.579
0.002 −0.873 4.000 −2.123
0.235 0.025 NC

D13(1950) 0.035 1.101 D33(1700) −3.999 −1.580
−2.114 −3.944 −3.993 −1.666
−0.671 −1.822 0.962 −0.362

Table 8.16: Electromagnetic off-shell parameters aγ of spin-3
2

resonances. 1st line: C-p-
γ+, 2nd line: C-p-γ−, 3rd line: SM95-pt-3 of [53]. “NC”: not considered (energy range
ended at 1.9 GeV).

be mostly well fixed in the two global calculations, see Table 8.16. Exceptions are the
aγ1 values of the P13 resonances, which can, however, be explained by the fact that the
corresponding couplings gγ1 are very small and thus the off-shell parameters very sensitive
to any changes. In the D13(1950) case, the differences between the two calculations are
related to the fact, that also the helicity amplitudes cannot be well fixed, see Table
8.14. Since the off-shell parameters determine the background contributions in the J = 1

2

waves, it is also quite clear, that these parameters are very sensitive to the gauging
procedure, which has already been found by Feuster and Mosel [53]. This explains, why
even in the case of the P33(1232) resonance, our values differ from those extracted in [53],
where the Haberzettl gauging procedure (3.32) was used instead of the Davidson-Workman
procedure (3.33) (note, that the values of [53] for the hadronic off-shell parameters are
mostly similar to ours, see Table 8.9).

8.5 Summary of Photoproduction Results

Within the present model, also almost all features of the photoproduction of γN , πN , ηN ,
KΛ, KΣ, and ωN can be described. No global fit has been possible, when the formfactor
Ft (3.30) is used for the t-channel exchange diagrams. Even when using Fp a readjustment
of the parameters obtained from purely hadronic reactions is necessary, since especially in
the ηN and ωN channels, the resonance contributions cannot be well fixed using the pion-
induced data alone. In addition, in the associated strangeness channels the Born couplings
have to be readjusted, since in photoproduction, the corresponding contributions are
largely enhanced as a consequence of the gauging procedure. The resulting Born couplings
of the best global parameter set are still close to SU(3) predictions. The background
in pion photoproduction proves to be very sensitive to the nucleon contributions, and
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therefore on the gauging procedure. Although this background is fixed by only a few
parameters, it is well in accordance with most multipoles, thus giving confidence in the
applied Davidson-Workman gauging procedure (3.33). However, we find indications for a
problem of the simultaneous description of the low-energy behavior of the IJ = 1

2
1
2

πN
partial waves and photoproduction multipoles.

Although we have largely extended our data base on pion photoproduction and Compton
scattering, both channels (and ηN photoproduction) are still well described in the energy
region below

√
s = 1.6 GeV. The extracted electromagnetic properties of the P33(1232)

resonance perfectly agree with other analyses. In general, the agreement with the previous
analysis of Feuster and Mosel [53] is quite good. The main differences are found for
resonances in those partial waves, where additional higher-lying states have been added,
and in the electromagnetic off-shell parameters a of the spin-3

2
resonances, which is a

consequence of the different applied gauging procedures.

In the KΛ, K0Σ+, and ωN channels we find a strong need for contributions of a P13(1900)
resonance between 1.9 and 2 GeV, similar to the pion-induced reactions. The inclusion
of this resonane also leads to changes in the properties of the P13(1720) as compared
to previous analyses. In particular, we find that the role of the P13(1720) is largely
enhanced in KΛ photoproduction. However, for a clear disentanglement of the resonant
contributions in the energy region above 1.7 GeV more polarization measurements in
particular on ωN and ηN are needed to completely determine the P13(1900) and also the
D13(1950) resonance properties.

The associated strangeness photoproduction channels prove to be very sensitive to the
ωN threshold and also on interference effects between different contributions. This leads
to the explanation of a resonance-like structure in the KΛ total cross section by an inter-
ference of K∗ and nucleon contributions, instead of a resonance. The ωN production is
mostly dominated by the π0 exchange mechanism, but large interference effects due to the
implemented resonances are necessary to find a satisfactory description of the preliminary
SAPHIR cross section data [269]. The pseudoscalar nature of the π0 exchange mecha-
nism requires the inclusion of partial waves up to Jmax = 27

2
in the PWD. The threshold

behavior of ω photoproduction is mostly explained by a large P11(1710) contribution, in
contrast to all other models on ωN photoproduction. For a clear disentanglement of the
resonant contributions in the energy region above 1.7 GeV more polarization measure-
ments in particular on ωN and ηN are needed, especially with respect on the roles played
by the P13(1900) and D13(1950) resonances.

The good description of all photoproduction channels enables us to evaluate the GDH sum
rule contributions of the various final states. We find small values for the contributions
from ηN , KΛ, KΣ, and ωN , which are remarkably different from those extracted in
single-channel analyses.

Deficiencies of the present model concerning the 2πN photoproduction are visible in
Compton scattering, where a background contribution in the energy region between the
P33(1232) and D13(1520) resonance is missing. We have nevertheless shown, that the
resonance contributions to 2πN photoproduction are well under control in the present
model. Moreover, similar to πN elastic scattering, there are also evidences for the influence
of a 3πN final state in the JP = 3

2

+
multipole Ep

1+.
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Chapter 9

Summary and Outlook

The presented Giessen model, originally introduced by Feuster and Mosel [51, 53] for
center-of-mass energies below 1.9 GeV, provides a unique tool for the analysis of nucleon
resonances up to energies of

√
s = 2 GeV. It comprises a unified description of meson-

and photon-induced reactions on the nucleon, where unitarity is guaranteed by solving
the Bethe-Salpeter scattering equation via the K-matrix approximation. The extension
of the energy range requires the additional incorporation of the KΣ and in particular
the ωN final states. Hence, unitarity effects are correctly taken into account, because
now, all important final states, i.e. πN , 2πN , ηN , KΛ, KΣ, and ωN , are included.
Since the driving potential is built up by the use of effective Lagrangians for Born-, t-
channel, spin-1

2
, and spin-3

2
resonance contributions, also the background contributions

are generated consistently for all partial waves and the number of parameters is greatly
reduced. The inclusion of the vector meson nucleon final state ωN within the model has
required the generalization of the partial-wave formalism. The presented formalism allows
to decompose any meson-(photon-) baryon reaction on an equal footing.

Within this model, the effects of chiral symmetry have been checked by allowing for
a chirally symmetric and a chiral symmetry breaking σππ coupling vertex. The chiral
symmetric one has proven superior not only for the low-, but also for the intermediate-
energy region in πN elastic scattering. The dependence on different descriptions for the
spin-3

2
resonance vertices has been investigated for the pion-induced reactions and similar

results have been found. However, when the spin-1
2

off-shell contributions of the spin-
3
2

resonances are turned off, the t-channel background contributions are enhanced and
the overall description becomes worse, thus indicating that indeed additional background
contributions are required in this case.

The simultaneous consideration of the γN final state guarantees access to a much larger
and more precise data base than the pion-induced data alone. This allows for strong tests
on all resonance contributions. It has turned out that a readjustment of the hadronic
parameters is necessary, in particular in the ηN and ωN channels, once the photon data
are taken into account. Therefore, the inclusion of photoproduction data is inevitable to
extract the resonance masses and widths reliably. Allowing for such a readjustment, the
simultaneous description of all pion- and photon- induced reactions on the above final
states is possible with one parameter set, which, however, turns out to require a specific

175
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formfactor shape in the t-channel exchanges. The determined properties of the well-
settled resonances are in agreement with other analyses and the extracted Born couplings
are close to SU(3) values. A side effect of the consideration of all the above final states
within our model is that the consistency of the experimental data for the various reactions
can be checked, and basically no discrepancies are found. We only experience difficulties
in the simultaneous description of the background in the J = 1

2
waves in the πN → πN

and γN → πN reactions.

In the analysis of the higher-lying final states KΛ, KΣ, and ωN , we find strong evidences
for excitations in the IJP = 1

2
3
2

+
(P13) wave between 1.9 and 2 GeV, in the IJP = 1

2
3
2

−

(D13) around 1.945 GeV, in the IJP = 3
2

1
2

+
(P31) around 1.71 GeV, and in the IJP = 3

2
3
2

+

(P33) at the border of our energy range (2 GeV), which do not correspond to well-settled
nucleon resonance states. In particular the P13(1900) plays an important role in the
production mechanisms of these final states. Vice versa, these higher lying final states
prove to be sensitive on contributions of the aforementioned resonances, thereby allowing
for fixing the properties of these resonances.

It is shown, that especially for a conclusive examination of those resonances, which are not
yet clearly identified, the consideration of rescattering effects is inevitable. For example,
although the P13(1900) is important for KΛ production, a hump in the total photopro-
duction cross section around 1.9 GeV is explained by a background interference effect
in contrast to single-channel analyses. On the other side, the inclusion of the P13(1900)
also leads to changes in the properties of the P13(1720) resonance as compared to pre-
vious analyses. In particular, we find that the role of the P13(1720) is largely enhanced
in KΛ production, now dominating both the pion- and the photon-induced reaction.
Consequently, the discrepancy between the P11 πN inelastic and 2πN partial-wave cross
sections above 1.6 GeV is not explained by KΛ anymore but by a strong P11(1710) ηN
decay. However, more polarization data above 1.7 GeV, especially on ηN and ωN , are
needed to completely determine the properties of the P13(1900), D13(1950), P31(1750),
and P33(1920) resonances.

We find that KΣ production is dominated by JP = 1
2

+
waves, caused by the contributions

of the P11(1710) and P31(1750) resonances. The P11(1710) also plays a large role in ωN
production close to threshold, while for higher energies the P13(1900) is important in the
latter channel. This is at variance with all other (single-channel) analyses on the ωN
final state. It turns out, that the consideration of this state can largely influence the
asscociated strangeness channels KΛ and KΣ.

Since in the present model, all important final states up to
√

s = 2 GeV are now included,
we can give estimates for the contributions from the individual final states to the GDH
sum rule. The contributions from the final states KΛ, KΣ, and ωN are small, but
significantly different from the values extracted in single-channel analyses.

There are indications for room for improvement of the Giessen model. Assuming that the
implemented πN → 2πN data are correct, these are evidences for important additional
3πN final state contributions, which are not considered up to now, in the JP = 3

2

+

partial waves. We also find evidences for the necessity of a more correct treatment of
the 2πN state in the low-energy tails of the D13(1520) and D33(1700) resonance and in
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missing background contributions, generated by 2πN rescattering, in Compton scattering.
Moreover, as a consequence of the lack of spin-5

2
resonances, the analysis of Compton

scattering is restricted to energies below
√

s = 1.6 GeV so far. Since all data on ηN , KΛ,
KΣ, and ωN are well described up to 2 GeV without such resonances, they seem to be of
minor importance in these reactions. This point is investigated further at present [162].

Using the generalization of the partial-wave decomposition a more realistic description
of the 2πN final state in terms of ρN and π∆ is now straightforward. The inclusion of
these final states allows to mimic the 2πN three particle phase space while still dealing
with two-body unitarity. This extension will probably improve the description of the DI3

waves below the first resonances and also generate the needed additional background in
Compton scattering.

While for larger energies threshold effects due to unitarity are of main importance, at
lower energies considerable effects are known to be caused by analyticity. This has been
demonstrated by comparison of the present analysis with models also taking analyticity
into account. Therefore, also work along analytic extensions of the K-matrix ansatz, e.g.,
in the direction proposed by Kondratyuk and Scholten [100], should be pursued.
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Appendix A

Notation and Normalization

A.1 Metric and Momentum States

We work in the metric of Bjorken and Drell [18], i.e. gµν = diag(1,−1,−1,−1). Four-
momenta are denoted by italic letters (p, k, q, etc.), three-momenta by bold letters (p ,
k , q , etc.)1), their absolute values by upright letters (p, k, q, etc.), and their unit vectors
by p̂ , k̂ , q̂ , etc.

In general, incoming, outgoing, and intermediate meson (baryon) momenta are denoted by
k, k′, and kq (p, p′, and pq), respectively. Hence one has, e.g., pµ = (EB =

√
m2

B + p2,p ).

The Mandelstam variables are defined as:

s = (p + k)2 = (p′ + k′)2

u = (p− k′)2 = (p′ − k)2

t = (p− p′)2 = (k′ − k)2

s + t + u = m2
B + m2

M + m2
B′ + m2

M ′ .

If not specified otherwise, we work in the center-of-mass (c.m.) system (p = −k ),
where the total four-momentum is denoted by P µ ≡ (p + k)µ = (p′ + k′)µ = (

√
s,0 ).

The incoming (outgoing) meson momentum is taken to be kµ = (EM , 0, 0, k) (k′µ =
(EM ′ , k′ sin ϑ, 0, k′ cos ϑ)), i.e. the z-axis is chosen along the three-momentum of the
incoming meson. Here, the absolute value of the incoming meson momentum is given by

k =
1

2
√

s

√
(s− (mB + mM)2) (s− (mB −mM)2) (A.1)

and similarly for the outgoing meson.

Single-particle momentum states |p , λ〉 with three-momentum p and helicity λ are nor-
malized as in [18]:

〈p ′, λ′|p , λ〉 = δ3(p ′ − p )δλ′λ

=
1

p2
δ(p′ − p)δ(Ω′ − Ω)δλ′λ , (A.2)

1)Note, that three-vectors are denoted in general by bold letters.
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where we have used

δ(f(x)) =

(∣∣∣∣
∂f

∂x

∣∣∣∣
x0

)−1

δ(x− x0) . (A.3)

The particle helicity λ is the projection of its spin s on its direction of motion. Thus, in the
c.m. system λ = sz for incoming mesons and λ = −sz for incoming baryons (and in the
same way for the outgoing particles). From Eq. A.2 we can deduce the normalization of
a two-particle momentum state, rewritten in terms of a total four-momentum conserving
expression:

〈p ′k ′, λ′|pk , λ〉 = δ3(p ′ − p )δ3(k ′ − k )δλ′λ

= δ3(P ′ − P )δ3(k ′ − k )δλ′λ

= δ3(P ′ − P )
1

k2
δ(k′ − k)δ(Ω′

k − Ωk)δλ′λ

= δ4(P ′ − P )

√
s

kEBEM

δ(Ω′
k − Ωk)δλ′λ

= δ4(P ′ − P )

√
s

kEBEM

〈ϑ′ϕ′, λ′|ϑϕ, λ〉

=

√
s

kEBEM

〈P ′; ϑ′ϕ′, λ′|P ; ϑϕ, λ〉 (A.4)

and thus

|pk , λ〉 =

√ √
s

kEBEM

|P ; ϑϕ, λ〉 . (A.5)

Here, the final-state helicities λ are related to the particle helicities by λ ≡ λk − λp,
λ′ ≡ λk′ − λp′ since p = −k . The fourth equality in (A.4) follows from the total energy√

s in the CMS:

d
√

s

dk
=

d (EB + EM)

dk
=

d
(√

m2
B + k2 +

√
m2

M + k2
)

dk
=

k
√

s

EBEM

. (A.6)

Asymptotic two-particle momentum states are also abbreviated as

〈p ′k ′, λ′| ≡ 〈f | and |pk , λ〉 ≡ |i〉 . (A.7)

A.2 Dirac Matrices, Spinors, and all the Rest

The three-dimensional antisymmetric tensor is given by

εijk =





+1 if {i, j, k} is a cyclic permutation of {1, 2, 3}
−1 if it is an odd permutation

0 otherwise
. (A.8)
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The totally antisymmetric four-dimensional Levi-Civita tensor is defined as

εµνρσ = −εµνρσ =





+1 if {µ, ν, ρ, σ} is an even permutation of {0, 1, 2, 3}
−1 if it is an odd permutation

0 otherwise
(A.9)

and fulfills the following useful identities:

εµνρσεµ′ν′ρ′σ′ = −det(gαα′) α = µ, ν, ρ, σ α′ = µ′, ν ′, ρ′, σ′

εµνρσεµ
ν′ρ′σ′ = −det(gαα′) α = ν, ρ, σ α′ = ν ′, ρ′, σ′

εµνρσεµν
ρ′σ′ = −2(gρρ′gσσ′ − gρσ′gρ′σ)

εµνρσεµνρ
σ′ = −6gσσ′

εµνρσεµνρσ = −24 .

The γ matrices satisfy

{γµ, γν} ≡ γµγν + γνγµ = 2gµν (A.10)

with γ0 hermitian and γi (i = 1, 2, 3) antihermitian, which can also be expressed as

γµ† = γ0γ
µγ0 . (A.11)

Some useful combinations are

γ5 ≡ iγ0γ1γ2γ3 = −iγ0γ1γ2γ3 = γ5 = γ†5 = −γ0γ5γ
0

σµν ≡ i

2
[γµ, γν ] ≡ i

2
(γµγν − γνγµ) .

The contraction of the γ matrix four-vector γµ with a four-vector aµ is abbreviated by
/a ≡ γµa

µ. From the properties of γ5

γ2
5 = 114

{γ5, γ
µ} = 0

γ5 = −i 1
4!
εµνρσγ

µγνγργσ (A.12)

one deduces the following relations to the Levi-Civita tensor being of great use for rewrit-
ing matrix elements (cf. Appendix I):

γµ = i 1
4!
εανρσγ5γ

µγαγνγργσ

= i1
6
εµνρσγ5γνγργσ (A.13)

and leading to

γ5σ
µν = i1

2
εµνρσσρσ

εµνρσγµ = iγ5 (γνγργσ − gνργσ − gρσγν + gνσγρ) . (A.14)

The specific representation of the γ matrices chosen here is the Dirac representation:

γ0 = γ0 =

(
112 0
0 −112

)
, γi = γ =

(
0 σ

−σ 0

)
, γ5 =

(
0 112

112 0

)
,

(A.15)
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where we have introduced the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.16)

They fulfill the relations

σ · aσ · b = a · b+ iσ · (a × b )

[σi, σj] = 2(σiσj − δij) = 2(δij − σjσi) , (A.17)

which can be proven by using their (anti-) commutation relations

[σi, σj] = 2iεijkσk , {σi, σj} = 2δij . (A.18)

A.2.1 Dirac (Spin-1
2) Spinors

The Dirac spinors u(p, s) and the adjungated spinors ū(p, s) ≡ u(p, s)†γ0 fulfill the free
Dirac equation

(/p−mB)u(p, s) = 0

ū(p, s)(/p−mB) = 0 (A.19)

and are normalized such that

ū(p, s′)u(p, s) = δs,s′ . (A.20)

Hence the Dirac spinors are explicitly given by:

u(p, s) =

√
EB + mB

2mB

(
112

σ ·p
EB + mB

)
· χs . (A.21)

The spin states are given in the c.m. system by

χi
+ 1

2
=

(
1
0

)
, χi

− 1
2

=

(
0
1

)
(A.22)

for incoming spin-1
2

particles and by (ϕ = 0)

χf
s′ = d

1
2

+ 1
2
s′(ϑ)χi

+ 1
2

+ d
1
2

− 1
2
s′(ϑ)χi

− 1
2

=


 d

1
2

+ 1
2
s′(ϑ)

d
1
2

− 1
2
s′(ϑ)


 ,

=⇒ χf

+ 1
2

=

(
cos ϑ

2

sin ϑ
2

)
, χf

− 1
2

=

( − sin ϑ
2

cos ϑ
2

)
. (A.23)

for outgoing spin-1
2

particles. The d-functions are given in Appendix B.2. Using the spin-1
2

operator σ /2 enjoying the properties (s. Eqs. (A.16) and (A.18))

(σ

2

)2

=
1

2

(
1

2
+ 1

)
=

3

4
,

[σi

2
,
σj

2

]
= iεijk

σk

2
(A.24)



A.2. Dirac Matrices, Spinors, and all the Rest 183

one finds

1
2
σ · k̂χi

± 1
2

= ±1
2
χi
± 1

2

1
2
σ · k̂0χf

± 1
2

= ±1
2
χf

± 1
2

. (A.25)

Note that in the c.m. frame spin up (down) corresponds to negative (positive) nucleon
helicity (p = −k ).

It is interesting to note that the behavior of the adjungated spinor ū(p, s) upon the action
of the parity operator iγ5 in the c.m. system (p ′ = −k ′) is (cf. Section 5.2):

ū(p′, s′)(iγ5) = u(p′, s′)†(iγ0γ5) = i

√
EB′ + mB′

2mB′
χ†s′

(
112,

σ · p ′

EB′ + mB′

)(
0 112

−112 0

)

= i

√
EB′ + mB′

2mB′
χ†s′

(
σ · k ′

EB′ + mB′
, 112

)

=

√
EB′ + mB′

2mB′
χ†s′ ((EB′ −mB′) 112,σ · k ′)

iσ · k ′

k′2

= ū(p′, s′, EB′ + mB′ → EB′ −mB′)(iσ · k̂0 ) (A.26)
(A.25)
= ±iū(p′, s′, EB′ + mB′ → EB′ −mB′) (A.27)

for s′ = ±1
2
.

The spin-1
2

projection operator on states with mass mB result by summing over the spins:

Λ(p) = 2mB

∑
s

u(p, s)ū(p, s) = /p + mB . (A.28)

An important identity closely related to the anomalous magnetic moment of a spin-1
2

particle [18, 82, 153] is the Gordon decomposition of the current:

ū(p′)γµu(p) = ū(p′)
[
(p + p′)µ

2mB

+
iσµν(p′ − p)ν

2mB

]
u(p) . (A.29)

A.2.2 Spin-1 Polarization Vectors

Spin-1 particle fields fulfill the free Proca equation:

∂µV
µν + m2

V V ν = 0 (A.30)

with

Vµν = ∂µVν − ∂νVµ ,

which immediately leads to

m2
V ∂µV

µ = 0 . (A.31)
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For massive (m2
V 6= 0) spin-1 particles (e.g. ρ, ω), Vµ is divergenceless and Eq. (A.30)

reduces to
(2+ m2

V

)
V ν = 0 , ∂µV

µ = 0 . (A.32)

Hence massive spin-1 particles are described by polarization vectors εµ (cf. Eq. (3.2))
that are four-transversal with respect to the particle momentum2). The explicit cartesian
forms in space of the three possible polarization settings for the z-component (λV = ±1,
λV = 0) are determined by the properties of the three-dimensional polarization vectors:
Two are transversal and one is longitudinal with respect to the three-momentum of the
particle:

ε±1 =
∓1√

2




1
±i
0


 , ε 0 =




0
0
1


 , (A.33)

valid for incoming particles in the c.m. system. This choice is in line with the Condon-
Shortley convention [30]. For outgoing particles the three-vectors have to be rotated by
the d-functions (cf. Appendix B.2):

ε ′λ(ϑ) = d1
+1λ(ϑ)ε+1 + d1

0λ(ϑ)ε 0 + d1
−1λ(ϑ)ε−1

=⇒ ε ′+1(ϑ) =
1

2
(1 + cos ϑ)ε+1 +

1√
2

sin ϑε 0 +
1

2
(1− cos ϑ)ε−1 =

1√
2



− cos ϑ

−i
sin ϑ




ε ′−1(ϑ) =
1

2
(1− cos ϑ)ε+1 − 1√

2
sin ϑε 0 +

1

2
(1 + cos ϑ)ε−1 =

1√
2




cos ϑ
−i

− sin ϑ




ε ′0(ϑ) = − 1√
2

sin ϑε+1 + cos ϑε 0 +
1√
2

sin ϑε−1 =




sin ϑ
0

cos ϑ


 .

The four-dimensional form εµ
λ of the polarization vectors follows by giving to the polar-

ization vectors εµ
λ ≡ (0, ε λ) their momentum k via a Lorentz boost

Lµν(k ) =
1

mV




EV kx ky kz

kx

ky

kz

mV δi,j +
kikj

EV + mV


 .

The resulting polarization vectors (Lµνεν) are four-transversal (cf. (A.31)) and are nor-
malized to ε†µε

µ = −1:

εµ
±1(k) = (0, ε±) , εµ

0 (k) =
1

mV

(k, EV ε 0) (A.34)

for incoming c.m. particles with kµ = (EV , k ). For outgoing c.m. particles with k′µ =
(EV ′ ,k

′) one has to take the adjungated (ε′µλ(k′)†) of

ε′µ±1(k
′) = (0, ε ′±) , ε′µ0(k′) =

1

mV ′
(k′, EV ′ε

′
0) . (A.35)

2)In Coulomb-/Feynman-gauge ∇ ·A = 0, which is used here, the same holds true for the real photon
field Aµ = (0, A ).
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A.2.3 Rarita-Schwinger (Spin-3
2) Spinors

Rarita-Schwinger (spin-3
2
) spinors uµ result from the coupling of a spin-1 polarization

vector with a spin-1
2

spinor:

uµ(p, s) ≡
∑
r,m

(3
2
, s|1, r; 1

2
,m)u(p,m)εµ

r (p)

and explicitly evaluating the Clebsch-Gordan coefficients for the 1⊕ 1
2

= 3
2

coupling:

uµ(p,±3
2
) = u(p,±1

2
)εµ
±1(p)

uµ(p,±1
2
) = 1√

3
u(p,∓1

2
)εµ
±1(p) +

√
2
3
u(p,±1

2
)εµ

0(p) . (A.36)

For incoming spin-3
2

spinors in the c.m. system with pµ = (E, 0, 0,±p) this can also be
written as

uµ(p, s) =

√
E + m

2m

(
112

σ ·p
E + m

)
Sµχs , (A.37)

where the spin states are

χ+ 3
2

=




1
0
0
0


 , χ+ 1

2
=




0
1
0
0


 , χ− 1

2
=




0
0
1
0


 , χ− 3

2
=




0
0
0
1


 (A.38)

and the spin-coupling matrix Sµ

S0 =
p

m


 0

√
2
3

0 0

0 0
√

2
3

0


 ,

Sx =

(
− 1√

2
0 1√

6
0

0 − 1√
6

0 1√
2

)
, Sy = −i

(
1√
2

0 1√
6

0

0 1√
6

0 1√
2

)
, Sz =

±E

p
S0 .

The adjungated spinor is given in the same way as for spin-1
2

particles: ū(p, s)µ ≡
u(p, s)µ†γ0.

The spinors u(p, s)µ fulfill the Rarita-Schwinger equations [149]

(/p−m)uµ(p, s) = 0

pµu
µ(p, s) = 0

γµu
µ(p, s) = 0 (A.39)

and are normalized in the following way:

ūµ(p, s)uµ(p, s′) = −δs,s′ .
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The Eqs. (A.39) reduce the 16 degrees of freedom of the spinor uµ to the desired number
of 8. These equations and the normalization can be easily proven by using Eq. (A.36)
and the spin-1

2
spinors and spin-1 polarization vectors from the previous sections.

The spin-3
2

projection operator on states with mass m results by summing over the spins:

Λµν
3
2

(p) = 2m
∑

s

uµ(p, s)ūν(p, s)

= −(/p + m)

(
gµν − 1

3
γµγν − 2

3m2
pµpν +

1

3m
(pµγν − pνγµ)

)
, (A.40)

which is related to the Rarita-Schwinger propagator Gµν
3
2

(p) by:

Gµν
3
2

(p) =
Λµν

3
2

(p)

p2 −m2
. (A.41)

Since (/p +
√

p2)/p =
√

p2(/p +
√

p2) the projection operator can on-shell (
√

p2 = m) also
be written as:

Λµν
3
2

(p) = −(/p + m)

(
gµν − 1

3
γµγν − 1

3p2
(/pγµpν + pµγν/p)

)
. (A.42)
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Legendre Polynomials and Wigner
Simplified Rotation Matrices

B.1 Legendre Polynomials

The Legendre polynomials are defined in the usual way [47, 88]:

Pl(x) =
1

2ll!

dl

xl
(x2 − 1)l with x = cos ϑ (B.1)

and enjoy the following important properties:
∫ +1

−1

dPl(x)Pl′(x) =
2

2l + 1
δll′

xP ′
l (x) = P ′

l+1(x)− (l + 1)Pl(x) = P ′
l−1(x) + lPl(x) , (B.2)

from which all derivatives P ′
l (x) ≡ dPl(x)/dx can be extracted.

B.2 Wigner Simplified Rotation Matrices (d-func-

tions)

The Wigner functions [61, 83, 88, 152]:

DJ
MM ′(α, β, α) = e−iαMdJ

MM ′(β)e−iαM ′
(B.3)

are the matrix elements of a rotation which transforms the |J,M〉 component of the unit
vector e z into the |J,M ′〉 component of the unit vector (cos α sin β, sin α sin β, cos β). The
non-trivial part of the Wigner functions is contained in the Wigner Simplified Rotation
Matrices (d-functions) describing the middle rotation about the y-axis, which mixes dif-
ferent M -values. They are in general given by [88, 152]:

dJ
λλ′(ϑ) =

∑

k

(−1)k+λ−λ′
√

(J + λ)!(J − λ)!(J + λ′)!(J − λ′)!
(J − λ− k)!(J + λ′ − k)!(k + λ− λ′)!k!

187
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×
(

cos
ϑ

2

)2J−2k+λ′−λ (
sin

ϑ

2

)2k+λ−λ′

.

Some important symmetry properties of the d-functions are:

dJ
λλ′(ϑ) = dJ

−λ′−λ(ϑ)

dJ
λλ′(ϑ) = (−1)λ−λ′dJ

λ′λ(ϑ) (B.4)

=⇒ dJ
λλ′(ϑ) = (−1)λ−λ′dJ

−λ−λ′(ϑ) (B.5)

dJ
λλ′(ϑ) = dJ

λλ′(−ϑ)

dJ
λλ′(ϑ) = (−1)J+λdJ

λ−λ′(π − ϑ)

dJ
λλ′(π) = (−1)J−λ′δλ,−λ′

=⇒ dJ
λλ′(0) = (−1)J+λdJ

λ,−λ′(π) = (−1)J+λ−J−λ′δλλ′ = δλλ′ . (B.6)

Since in meson nucleon scattering we only deal with half-integer total spin J , we give
explicit formulae for J = l + 1

2
, l positive integer (x = cos ϑ) [61, 83, 88]:

dJ
+ 1

2
+ 1

2
(ϑ) =

1

l + 1
cos

ϑ

2

[
P ′

l+1(x)− P ′
l (x)

]

dJ
− 1

2
+ 1

2
(ϑ) =

1

l + 1
sin

ϑ

2

[
P ′

l+1(x) + P ′
l (x)

]

dJ
+ 1

2
+ 3

2
(ϑ) =

1

l + 1
sin

ϑ

2

[√
l

l + 2
P ′

l+1(x) +

√
l + 2

l
P ′

l (x)

]

dJ
− 1

2
+ 3

2
(ϑ) =

1

l + 1
cos

ϑ

2

[
−

√
l

l + 2
P ′

l+1(x) +

√
l + 2

l
P ′

l (x)

]
. (B.7)

Since we also deal with vector meson (photon) nucleon final states, there is a need for
a closed formula for dJ

± 3
2
± 3

2

. With the help of the following general recursion formula

[61, 83, 88]

2
√

(J + λ′)(J + λ′ − 1)dJ
λλ′(ϑ) =

√
(J + λ)(J + λ− 1)(1 + cos ϑ)dJ−1

λ−1,λ′−1(ϑ) +

2
√

(J + λ)(J − λ) sin ϑdJ−1
λ,λ′−1(ϑ) +√

(J − λ)(J − λ− 1)(1− cos ϑ)dJ−1
λ+1,λ′−1(ϑ)

one finds, setting λ = λ′ = −1
2
,

dJ−1
+ 3

2
+ 3

2

(ϑ) =
−1

(1 + cos ϑ)
×

[
2dJ

+ 1
2
+ 1

2
(ϑ) +

√
J + 1

2

J − 3
2

(
2 sin ϑdJ−1

+ 1
2
+ 3

2

(ϑ)− (1− cos ϑ)dJ−1
− 1

2
+ 3

2

(ϑ)
)]

and, setting λ = −λ′ = +1
2
,

dJ−1
+ 3

2
− 3

2

(ϑ) =
1

(1− cos ϑ)
×

[
2dJ

− 1
2
+ 1

2
(ϑ) +

√
J + 1

2

J − 3
2

(
2 sin ϑdJ−1

− 1
2
+ 3

2

(ϑ)− (1 + cos ϑ)dJ−1
+ 1

2
+ 3

2

(ϑ)
)]

.
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Note, that these two formulae do not appear explicitly in the literature. All other neces-
sary Jλλ′ combinations can be deduced from Eqs. (B.4) and (B.5).

The only case where we also need integer J d-functions is for the rotation of the spin-1
polarization vector from incoming to outgoing final state. The needed functions are (l
integer):

dl
00(ϑ) = Pl(x)

dl
10(ϑ) =

−1√
l(l + 1)

sin ϑP ′
l (x)

dl
m1(ϑ) =

1√
l(l + 1)

[
−m

1 + cos ϑ

sin ϑ
sin ϑdl

m0(ϑ)−
√

(l −m)(l + m + 1)dl
m+1,0(ϑ)

]
.

Finally, we note that the d-functions are normalized such that

∫ +1

−1

d(cos ϑ)dJ
λλ′(ϑ)dJ ′

λλ′(ϑ) =
2

2J + 1
δJJ ′ . (B.8)
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Formal Scattering Theory

C.1 Fundamental Matrices

The relation between the scattering matrix S and the transition matrix T is defined as:

S ≡ 1 + 2iT . (C.1)

With the two-particle states given in Appendix A, the matrix M is then introduced as in
[18]

〈f |S|i〉 = δfi − i(2π)4δ4(Pf − Pi)

(
4∏

j=1

Nj

)
〈f |M |i〉 (C.2)

with the normalization factors

NB =

√
2mB

(2π)32EB

for baryons and NM =

√
1

(2π)32EB

for mesons (C.3)

and hence

〈f |T |i〉 = −1

2
(2π)4δ4(Pf − Pi)

(
4∏

j=1

Nj

)
〈f |M |i〉 . (C.4)

C.2 Optical Theorem

From the unitarity of the scattering matrix SS† = S†S = 1 follows the optical theorem:

i(T − T †) = −2ImT = −2TT † . (C.5)

Now we take the matrix element of this equation between asymptotic two-particle momen-
tum states 〈f | and |i〉. To evaluate the right-hand side we insert a complete normalized set

190
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of intermediate two-particle momentum states
∑

n,λq

∫
d3pq

∫
d3kq|p qk q, λq〉〈p qk q, λq|,

where the sum over n denotes the various, energetically allowed final states:

〈f |T+ − T |i〉 = 2i
∑

n,λq

∫
d3pq

∫
d3kq〈f |T |p qk q, λq〉〈p qk q, λq|T+|i〉 . (C.6)

Plugging in (C.4) we arrive at the optical theorem under the assumption of two-particle
unitarity:

〈f |M −M †|i〉 = −i
∑

n,λq

∫
d3pq

∫
d3kq(2π)4δ4(P − pq − kq)

mBq

(2π)62EMqEBq

×

〈f |M |p qk q, λq〉〈p qk q, λq|M †|i〉
= −i

∑

n,λq

∫
d3kqδ(

√
s− p0

q − k0
q)

mBq

(2π)22EMqEBq

×

〈f |M |p qk q, λq〉〈p qk q, λq|M †|i〉
= −i

∑

n,λq

∫
d4qδ(

√
s/2− EBq − q0)δ(

√
s/2− EMq + q0)

2mBq

(4π)2EBqEMq

×

〈f |M |p qk q, λq〉〈p qk q, λq|M †|i〉
(C.7)

times an overall δ-function. Here, we have routed the intermediate momenta symmetri-
cally with respect to P :

kq = P/2 + q and pq = P/2− q . (C.8)

C.3 Matrix Relations and Notations

Since T is four-momentum conserving we find from the normalization of the two-particle
momentum states (A.4), (A.5) using (C.4) and (C.3) (p = k in the c.m. system):

〈f |T |i〉 = δ4(P ′ − P )

√
s√

pp′EBEB′EMEM ′
〈ϑ′ϕ′, λ′|T (

√
s)|ϑϕ, λ〉

!
= −1

2
(2π)4δ4(P ′ − P )

√
mB′mB

(2π)124EB′EM ′EBEM

〈f |M |i〉 (C.9)

and hence we define

T fi
λ′λ ≡ 〈ϑ′ϕ′, λ′|T (

√
s)|ϑϕ, λ〉 = −

√
pp′mB′mB

(4π)2
√

s
〈f |M |i〉 . (C.10)

In the same way the K-matrix is defined:

Kfi
λ′λ ≡ 〈ϑ′ϕ′, λ′|K(

√
s)|ϑϕ, λ〉 = −

√
pp′mB′mB

(4π)2
√

s
〈f |K̃|i〉 , (C.11)
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where K̃ = V in the K-matrix Born approximation (see Chapter 2). Note that T and K
are defined differently as M and V in Chapter 2: Mfi ≡ 〈f |M |i〉, Vfi ≡ 〈f |V |i〉 with the
asymptotic states as defined in (A.7). Since we work in the c.m. frame, we usually write

T fi
λ′λ(ϑ) ≡ 〈ϑ, ϕ = 0, λ′|T (

√
s)|00, λ〉

Kfi
λ′λ(ϑ) ≡ 〈ϑ, ϕ = 0, λ′|K(

√
s)|00, λ〉 .

For total isospin I = 1
2

all of the above matrices (S, M , T , K, K̃, and V ) have to be
understood as 12⊗ 12 matrices built up by all final states, e.g.:

S ≡




Sγ0
1
2

γ0
1
2

Sγ0
1
2

γ0
3
2

Sγ0
1
2

γ1
1
2

Sγ0
1
2

γ1
3
2

Sγ0
1
2

π Sγ0
1
2

ζ Sγ0
1
2

η Sγ0
1
2

Λ Sγ0
1
2

Σ Sγ0
1
2

ω0
Sγ0

1
2

ω 1
2

Sγ0
1
2

ω 3
2

Sγ0
3
2

γ0
1
2

Sγ0
3
2

γ0
3
2

Sγ0
3
2

γ1
1
2

Sγ0
3
2

γ1
3
2

Sγ0
3
2

π Sγ0
3
2

ζ Sγ0
3
2

η Sγ0
3
2

Λ Sγ0
3
2

Σ Sγ0
3
2

ω0
Sγ0

3
2

ω 1
2

Sγ0
3
2

ω 3
2

Sγ1
1
2

γ0
1
2

Sγ1
1
2

γ0
3
2

Sγ1
1
2

γ1
1
2

Sγ1
1
2

γ1
3
2

Sγ1
1
2

π Sγ1
1
2

ζ Sγ1
1
2

η Sγ1
1
2

Λ Sγ1
1
2

Σ Sγ1
1
2

ω0
Sγ1

1
2

ω 1
2

Sγ1
1
2

ω 3
2

Sγ1
3
2

γ0
1
2

Sγ1
3
2

γ0
3
2

Sγ1
3
2

γ1
1
2

Sγ1
3
2

γ1
3
2

Sγ1
3
2

π Sγ1
3
2

ζ Sγ1
3
2

η Sγ1
3
2

Λ Sγ1
3
2

Σ Sγ1
3
2

ω0
Sγ1

3
2

ω 1
2

Sγ1
3
2

ω 3
2

Sπγ0
1
2

Sπγ0
3
2

Sπγ1
1
2

Sπγ1
3
2

Sππ Sπζ Sπη SπΛ SπΣ Sπω0 Sπω 1
2

Sπω 3
2

· · ·




,

(C.12)
where the upper γ index corresponds to the isospin of the photon (see appendix F.1.2).
The lower γ and ω indices define the helicity state, see Section 5.2. For total isospin
I = 3

2
, the matrix is reduced to 5⊗ 5:

S :=




Sγ1
1
2

γ1
1
2

Sγ1
1
2

γ1
3
2

Sγ1
1
2

π Sγ1
1
2

ζ Sγ1
1
2

Σ

Sγ1
3
2

γ1
1
2

Sγ1
3
2

γ1
3
2

Sγ1
3
2

π Sγ1
3
2

ζ Sγ1
3
2

Σ

Sπγ1
1
2

Sπγ1
3
2

Sππ Sπζ SπΣ

Sζγ1
1
2

Sζγ1
3
2

Sζπ Sζζ SζΣ

SΣγ1
1
2

SΣγ1
3
2

SΣπ SΣζ SΣΣ




. (C.13)



Appendix D

Properties of the Bethe-Salpeter
Equation

D.1 Connection to the Optical Theorem

In this appendix, from the BS equation a condition for the imaginary part of the Bethe-
Salpeter propagator is derived, whose relation to the optical theorem (C.7) is established
in Section 2.2.

From the hermiticity of the potential

〈f |Ṽ (p′, p;
√

s)|i〉† = 〈i|Ṽ †(p′, p;
√

s)|f〉 = 〈i|Ṽ (p, p′;
√

s)|f〉 (D.1)

we find that the complex conjugate of the BS equation (2.6) takes the following form:

〈i|M †(p′, p;
√

s)|f〉 = 〈i|Ṽ (p, p′;
√

s)|f〉+∫
d4q

(2π)4
〈i|Ṽ (p, q;

√
s)G†

BS(q;
√

s)M †(p′, q;
√

s)|f〉 . (D.2)

Hence, omitting the dependence of all quantities on the c.m. energy
√

s,

〈f |M(p′, p)−M †(p, p′)|i〉
=

∫
d4q

(2π)4
〈f |M(p′, q)GBS(q)Ṽ (q, p)− Ṽ (p′, q)G†

BS(q)M †(p, q)|i〉

=

∫
d4q

(2π)4
〈f |M(p′, q)GBS(q)

(
M †(p, q)−

∫
d4q̃

(2π)4
Ṽ (q, q̃)G†

BS(q̃)M †(p, q̃)
)
−

Ṽ (p′, q)G†
BS(q)M †(p, q)|i〉

=

∫
d4q

(2π)4
〈f |M(p′, q)GBS(q)M †(p, q)|i〉 −

∫
d4q

(2π)4

∫
d4q̃

(2π)4
〈f |M(p′, q)GBS(q)Ṽ (q, q̃)G†

BS(q̃)M †(p, q̃)|i〉 −
∫

d4q

(2π)4
〈f |Ṽ (p′, q)G†

BS(q)M †(p, q)|i〉
193
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=

∫
d4q

(2π)4
〈f |M(p′, q)GBS(q)M †(p, q)|i〉 −

∫
d4q

(2π)4
〈f |

(∫
d4q̃

(2π)4
M(p′, q̃)GBS(q̃)Ṽ (q̃, q) + Ṽ (p′, q)

)
G†

BS(q)M †(p, q)|i〉

=

∫
d4q

(2π)4
〈f |M(p′, q)GBS(q)M †(p, q)−M(p′, q)G†

BS(q)M †(p, q)|i〉

=

∫
d4q

(2π)4
〈f |M(p′, q)2iIm (GBS(q)) M †(p, q)|i〉 . (D.3)

D.2 Imaginary Part of the Bethe-Salpeter Propaga-

tor

In this section the action of the imaginary part of the BS propagator GBS under the∫
dq0dq part of the four-dimensional integral in the BS equation is investigated. For the

subsequent discussion we write the denominator of GBS as

GBS(q;
√

s) = i
2mBq

∑
λBq

u(pq, λBq)ū(pq, λBq)

(1
2

√
s− q0)2 − q 2 −m2

Bq
+ iε

1

(1
2

√
s + q0)2 − q 2 −m2

Mq
+ iε′

≡ i
Λ(pq)

(p0
q − EBq + iδ)(p0

q + EBq − iδ)

1

(k0
q − EMq + iδ′)(k0

q + EMq − iδ′)
,

where we have defined kq = P/2+ q, pq = P/2− q with the intermediate four-momentum

q, the total four momentum P = (
√

s,0 ), EBq =
√

m2
Bq

+ p 2
q, EMq =

√
m2

Mq
+ k 2

q,

δ = ε/(2EBq), δ′ = ε′/(2EMq), and the projection operator Λ(pq) as defined in Eq. (A.28).
Rewriting the q0-integration by k0

q , GBS has four poles in the complex k0
q plane:

p0
q =

√
s− k0

q = ±(EBq − iδ) =⇒ k0
q =

√
s∓ (EBq − iδ) ≡ B±

k0
q = ±(EMq − iδ′) ≡ M± ,

where the first two (B±) correspond to positive/negative baryon energy poles and the last
two (M±) to positive/negative meson energy poles. The k0

q -integration can be performed
by closing the integration in the complex plane in the lower half plane (or similarly
in the upper half plane), thus picking up contributions from a positive-energy meson
(particle) pole and a negative-energy baryon (antiparticle) pole, see Fig. D.1. The arche
is parametrized via k0

q = Reiϕ, ϕε[π ← 2π] with the Jacobian |dk0
q/dϕ| = R. Letting

R →∞ one finds ∣∣∣∣
∫

CA

dk0
qGBS

∣∣∣∣ ∼
∫

CA

dϕ
R2

R4

R→∞−→ 0 . (D.4)

Hence

+∞∫

−∞

dk0
qGBS =

∮

CA

dk0
qGBS
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Figure D.1: CA contour in the complex k0
q plane.

= −2πi
∑

Res(k0
q → M+, k0

q → B−)

= −2πi2

[
1

2EMq

Λ(pq)

(
√

s− EMq)
2 − E2

Bq
+ iε

+
1

2EBq

Λ(pq)

(
√

s + EBq)
2 − E2

Mq
+ iε′

]

=

+∞∫

−∞

dk0
qπ

[
1

EMq

Λ(pq)δ(k
0
q − EMq)

(
√

s− EMq)
2 − E2

Bq
+ iε

+
1

EBq

Λ(pq)δ(k
0
q −

√
s− EBq)

(
√

s + EBq)
2 − E2

Mq
+ iε′

]
.

(D.5)

To evaluate the q-integration we use
∫

dx
1

x− a± iη
= P

∫
dx

1

x− a
∓ iπ

∫
dxδ(x− a) (D.6)

and mBq > mMq , so that we only pick up an imaginary contribution from GBS in the
q-integration from the first term under the integral in (D.5). Evaluating this integration
leads to

∞∫

0

q2dq
π

EMq

1

(
√

s− EMq)
2 − EBq

2 + iε

= π

∞∫

0

qdEMq

1

(
√

s− EMq)− EBq + iδ

1

(
√

s− EMq) + EBq − iδ

= π


P

∞∫

0

qdEMq

1

(
√

s− EMq)
2 − EBq

2 − iπ

∞∫

0

qdEMq

δ(
√

s− EBq − EMq)

2EBq( q̂)


 ,

where we have used qd q = EMqdEMq . The only pole contribution comes from the first
denominator in the second line for

√
s = EMq + EBq and thus q = q̂, where q̂ is the c.m.

three-momentum of the intermediate state when both particles are on their mass shell.
Now we use Eq. (A.3) to find

δ(
√

s− EBq − EMq) =

(∣∣∣∣
∂(
√

s− EBq − EMq)

∂ q

∣∣∣∣
q=q̂

)−1

δ(q− q̂)
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=

(
q̂

EBq

+
q̂

EMq

)−1

δ(q− q̂)

=
EBqEMq

q̂
√

s
δ(q− q̂) .

Taking everything together we conclude that the imaginary part of GBS acts under the
integral as

∫
d4qiIm(GBS)

=

∫
d4q

[
−iπ2

mBq

∑
λBq

u(pq, λBq)ū(pq, λBq)

q
√

s
δ(q0 +

√
s/2− EMq)δ(q− q̂)

]

=

∫
d4q

[
−iπ2

mBq

∑
λBq

u(pq, λBq)ū(pq, λBq)

EBqEMq

δ(k0
q − EMq)δ(p

0
q − EBq)

]

=

∫
d4q


−i(2π)2mBq

∑

λBq

u(pq, λBq)ū(pq, λBq)δ(k
2
q −m2

Mq
)δ(p2

q −m2
Bq

)Θ(k0
q)Θ(p0

q)


 ,

i.e. sets the intermediate particles on their mass shell.



Appendix E

Lagrangians, Widths, and Couplings

All interaction Lagrangians given below also contain an isospin part, which is discussed
in Appendix F.2.

E.1 Born and t-channel Interactions

The electromagnetic vertex of the asymptotic baryons (N , Λ, Σ) is given by

L = −eūB′(p
′)

(
êγµA

µ +
κ

2mN

σµνF
µν

)
uB(p) (E.1)

with
F µν = ∂µAν − ∂νAµ . (E.2)

The charge operator ê, of course, vanishes for the neutron, Λ, Σ0, and the transition
Σ0 → Λγ. However, care, has to be applied to the extraction of the anomalous magnetic
moments of the hyperons Λ and Σ. The values of the magnetic moments are given in [67]
by multiples of the nuclear magneton µN :

µΛ = −0.613µN , µΣ0→Λγ = 1.61µN , µΣ+ = 2.458µN , µΣ− = −1.160µN

with

µN =
e

2mN

,

where mN is the nucleon mass. For the sign of the magnetic transition moment µΣ0→Λγ,
which is experimentally not accessible, we use the de Swart [169] convention. For a spin-1

2

particle (e.g. the final state baryons) the anomalous magnetic moments κ̃ are related to
the magnetic moments µ by (see also the Gordon decomposition Eq. (A.29))

µ =
eB

2mB

(1 + κ̃) , (E.3)

where mB (eB) is the mass (charge) of the corresponding baryon. For the neutral baryons,
eB is set to |e|. This leads to the anomalous magnetic moments of the nucleon: κp = κ̃p =

197
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1.793 and κn = κ̃n = −1.913. For the extraction of the hyperon anomalous magnetic
moments from the PDG values for the magnetic moments, however, the latter ones have
to be rescaled by mY /mN , where mY is the hyperon mass, leading to

κ̃Λ = −0.729 , κ̃Σ+ = 2.125 , κ̃Σ− = 0.475 . (E.4)

In the Lagrangian (E.1) the coupling to the anomalous magnetic moments is normalized
by a factor of (2mN)−1, so that one finally has for the values that enter the calculation:

κΛ = −0.613 , κΣ0→Λγ = 1.61 , κΣ+ = 1.671 , κΣ− = −0.374 . (E.5)

Note, that only the anomalous magnetic moments of the neutral cases are identical to a
naive extraction neglecting the differences in the mass of the nucleon and the hyperons.
This has not been carefully considered in, e.g, [86], who have extracted an anomalous
magnetic moment for the Σ+ of κΣ+ = 1.458.

The electromagnetic charge coupling of the pseudoscalar final state mesons π and K
follows from minimal coupling (cf. Section 3.3.1) in the free Klein-Gordon Lagrangian
LKG = (∂µϕ)∗∂µϕ−m2

ϕϕ∗ϕ and is given by (cf. [18, 118]):

L = −iêeϕ∗
(
∂ϕ

µ − ∂(ϕ∗)
µ

)
ϕAµ . (E.6)

Since we have chosen the pseudovector coupling scheme for the interaction between the
nucleon and the charged asymptotic mesons ϕ = π±, K+ (cf. Section 3.3.2 and Eq.
(E.12) below), minimal coupling (cf. Section 3.3.1) also generates a four-point (Kroll-
Rudermann) term:

L = −e
gϕ

mB + mB′
ūB′(p

′)γ5γµuB(p)Aµ . (E.7)

The vector meson baryon couplings are chosen in the same way as the electromagnetic
baryon couplings:

L = −gV ūB′(p
′)

(
γµV

µ +
κV

2mN

σµνV
µν

)
uB(p) (E.8)

with
V µν = ∂µV ν − ∂νV µ . (E.9)

For the coupling of the axialvector meson K1 to NΛ/Σ an additional parity operator iγ5

is needed:

L = −igK1ūB′(p
′)

(
γµK

µ
1 +

κK1

2mN

σµνK
µν
1

)
γ5uB(p) (E.10)

with
Kµν

1 = ∂µKν
1 − ∂νKµ

1 . (E.11)

The interaction between the final state baryons and the (pseudo-)scalar mesons is given
by:

L = −ūB′(p
′)

[
gϕ

mB + mB′
γ5γµ(∂µϕ) + gηiγ5η + gSS

]
uB(p) , (E.12)
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where S denotes a scalar meson (σ, a0, K∗
0) and ϕ the pseudoscalar mesons π and K.

The couplings between the intermediate mesons and the final state pseudoscalar mesons
are given by:

L = − gS

2mπ

(∂µϕ
′)(∂µϕ)S − gV ϕ′(∂µϕ)V µ . (E.13)

Note, that for comparison, also a nonderivative Sϕϕ coupling L = −g′SmSϕ′ϕS is used
in one calculation. Here, g′S is related to gS via g′S = −gS(m2

S −m2
ϕ −m2

ϕ′)/(4mSmπ).

The interaction between two 1− vector particles (V , V ′) and a 0− pseudoscalar particle
(ϕ), as, e.g., in ω → γπ, π/η → γγ, ω → ρπ, is given by:

L = − g

4mϕ

εµνρσV
µνV ′ρσ

ϕ . (E.14)

The radiative decay of the K1 axialvector meson (1+) into Kγ is described by:

LK1Kγ = e
gK1Kγ

2mK

KFµνK
µν
1 . (E.15)

With the Lagrangians (E.13), (E.14), and (E.15) the meson decay widths can be calcu-
lated:

For the hadronic vector meson decays one finds:

ΓV→ϕϕ′ = ffs
g2

24π

k3
ϕ

m2
V

, (E.16)

where the final state factor ffs is ffs = 4 for ρ → ππ (since due to the isospin operator
structure, the Lagrangian results in, e.g., L ∼ (π+∂µπ−− π−∂µπ+)ρ0

µ = 2π+∂µπ−ρ0
µ) and

ffs = 3 for K∗(892) → Kπ due to isospin. For the scalar meson decays the result is

ΓS→ϕϕ′ = ffs
g2

S

8π
kϕ

(
m2

S −m2
ϕ −m2

ϕ′

4mSmπ

)2

(E.17)

with ffs = 1 for a0 → ηπ and ffs = 3 for K∗
0(1270) → Kπ.

The radiative decay width (V → ϕγ) is given for all (pseudo-) vector mesons by:

ΓV→ϕγ =
e2g2

96πm2
ϕ

(
m2

V −m2
ϕ

mV

)3

(E.18)

and for the two-photon decays of π0 and η

Γϕ→γγ =
e4g2

64π
mϕ , (E.19)

where a factor of 1
2

is included to account for the phase space of two identical particles.
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Using the values for the decay widths from [67] and [3] (Γ(K0
1(1270) → K0γ) = 73 keV),

the following couplings are extracted:

gρππ = 6.020 , gωρπ = 2.060 , gK∗Kπ = −6.500 ,
gK∗

0Kπ = −0.900 , ga0ηπ = −2.100 ,
gρπγ = 0.105 , gρηγ = −0.805 ,
gωπγ = 0.313 , gωηγ = −0.291 ,
gK∗+K+γ = −0.414 , gK∗0K0γ = 0.631 ,
gK+

1 K+γ = 0.217 , gK0
1K0γ = 0.217 ,

gπγγ = 0.037 , gηγγ = 0.142 .

(E.20)

Note, that the relative sign and magnitude of gρππ and gK∗Kπ is in accordance with the
SU(3) values [119]1). For the use of the gρπγ coupling in the various isospin cases, see
Appendix F.2.1. The ratio between the radiative decay of the charged and the neutral
K1(1270) meson has not yet been measured. Lee et al. [108] have thus tried to determine
the ratio by fitting the experimental data for γp → K+Σ0 and γp → K0Σ+, but due to
the limited amount of data for the latter reaction, they have not succeeded in a reliable
extraction; however, the value for the charged decay has been found to be at least two
times larger. For simplicity, we use gK+

1 K+γ = gK0
1K0γ

2). For the relative sign between the
charged and the neutral K∗ coupling, we follow the quark model prediction of Singer and
Miller [164].

The ωρπ coupling constant is determined from the ω → ρπ → π+π−π0 decay width of
≈ 7.4 MeV by

Γω→3π =

mω−mπ∫

2mπ

Γω→ρπ(µ)
2

π

µmρΓρ→ππ(µ)

(µ2 −m2
ρ)

2 + m2
ρΓ

2
ρ→ππ

dµ (E.21)

with

Γω→ρπ(µ) =
3g2

4π

kρ(µ)3

m2
π

,

Γρ→ππ(µ) = Γ0
ρ→ππ

mρ

µ

(
µ2 − 4m2

π

m2
ρ − 4m2

π

) 3
2

θ(µ2 − 4m2
π) ,

where the ρ-spectral function is taken into account. The resulting value gωρπ = 2.06 is in
accordance with the effective Lagrangian study of vector meson properties by Klingl et
al. [96], who have extracted a value of 1.8 by considering an additional direct decay for
ω → 3π, and with predictions of many other models [95].

Finally, a remark on the ρ and ω radiative decays into ηγ is in order. Unfortunately,
the decay widths are known only with large uncertainties; the values above represent the

1)Instead of (E.13) in the code L = −2gK∗K(∂µπ)K∗µ is used for the K∗ vector meson leading to the
implemented coupling of g̃K∗Kπ = 1

2gK∗Kπ = −3.25.
2)Note, that the value gK+

1 K+γ = 0.217 is close to 0.33, which has been estimated through VMD
considerations by Cheoun et al. [26].
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estimated mean given in [67]. Taking into account the given errors, the ranges for the
couplings are:

|gρηγ| ∈ [0.636, 0.930] , |gωηγ| ∈ [0.268, 0.313] . (E.22)

Due to the uncertainties, these couplings are allowed to vary within the given ranges during
the fitting procedure. However, in all calculations, larger values for both couplings are
preferred and consequently, these couplings are set to gρηγ = −0.930 and gωηγ = −0.313.
Note, that all other meson decay constants are also kept fixed to the values given in
(E.20).

E.2 Baryon Resonance Interactions

E.2.1 Spin-1
2 Resonances

(Pseudo-)Scalar Meson Decay

For negative-parity spin-1
2

resonances, PS coupling is used:

LPS
1
2
Bϕ

= −gRBϕūR

(
1

−iγ5

)
uBϕ . (E.23)

For positive-parity spin-1
2

resonances, PV coupling is used:

LPV
1
2
Bϕ

= − gRBϕ

mR ±mB

ūR

(
γ5

i

)
γµuB∂µϕ . (E.24)

In both cases, the upper (lower) sign and operator hold for pseudoscalar (scalar) mesons
ϕ.

For negative-parity resonances (PS coupling), this leads to the decay width:

ΓPS
± = fI

g2
RBϕ

4π
kϕ

EB ∓mB√
s

(E.25)

and for positive-parity resonances (PV coupling) to:

ΓPV
± = fI

g2
RBϕ

4π
kϕ

EB ∓mB√
s

(√
s±mB

mR ±mB

)2

√
s=mR
= fI

g2
RBϕ

4π
kϕ

EB ∓mB√
s

= ΓPS
± , (E.26)

where the absolute value of the meson three-momentum kϕ is given in Eq. (A.1). The
upper (lower) sign always corresponds to a parity-flip (parity-non-flip) transition, e.g.
P11(1440) → πN (S11(1535) → πN). The isospin factor fI is equal to 1 for isospin-3

2

resonances, equal to 3 for the decay of isospin-1
2

resonances into an I = 1⊕ 1
2

final state,
and equal to 1 for the decay of isospin-1

2
resonances into I = 0 ⊕ 1

2
. See also Appendix

F.2.



202 Appendix E. Lagrangians, Widths, and Couplings

Vector Meson Decay

For the ωN decay we apply the Lagrangian:

L 1
2
Nω = −ūR

(
1

−iγ5

)(
g1γµ − g2

2mN

σµν∂
ν
ω

)
uNωµ . (E.27)

The upper (lower) operator corresponds to a positive- (negative-) parity resonance.

From these couplings the helicity decay amplitudes describing the transition for a specific
resonance helicity state into a specific ωN helicity state can be deduced:

AωN
1
2

= ∓
√

EN ∓mN√
mN

(
g1 + g2

mN ±mR

2mN

)
, (E.28)

AωN
0 = ∓

√
EN ∓mN

mω

√
2mN

(
g1(mN ±mR) + g2

m2
ω

2mN

)
. (E.29)

The lower indices correspond to the ωN helicities and are determined by the ω and nucleon
helicities: 1

2
: λω − λN = 1− 1

2
= 1

2
and 0: 0 + 1

2
= 1

2
. The resonance ωN decay widths are

then given by

ΓωN =
2

2J + 1

λ=+J∑

λ=0

ΓωN
λ , ΓωN

λ =
kωmN

2πmR

∣∣AωN
λ

∣∣2 . (E.30)

Electromagnetic Decay

The radiative decay of the spin-1
2

resonances is described by:

L 1
2
Nγ = −e

g1

4mN

ūR

(
1

−iγ5

)
σµνuNF µν . (E.31)

The upper (lower) operator 1 (−iγ5) corresponds to positive- (negative-) parity resonances.

Since the ωN vertices are analogous to the electromagnetic vertices one can use the ωN
helicity amplitudes (E.29) to calculate the electromagnetic helicity amplitudes, which are

normalized by an additional factor (2Eγ)
− 1

2 [186]:

AγN
1
2

=
ξR√
2Eγ

〈uR, λR = 1
2
|Γµ|u, λ = 1

2
〉Aµ

= ∓eg
ξR√
2Eγ

√
EN ∓mN√

mN

mN ±mR

2mN

= −eg
ξR

2mN

√
m2

R −m2
N√

2mN

. (E.32)

Here, ξR denotes the phase at the RNπ vertex. Furthermore, the relation between vertex
and Lagrangian ūRΓµuAµ = iLint, and Eq. (A.1) with mγ = 0 have been used.
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E.2.2 Spin-3
2 Resonances

For all the conventional spin-3
2

couplings given below, the corresponding Pascalutsa cou-
plings can be extracted by the replacement:

Γµu
µ
R → Γµγ5γνŨ

νµ
R , (E.33)

where the dual of the resonance field tensor is given by: Ũµν
R = 1

2
εµναβURαβ =

1
2
εµναβ(∂αuRβ − ∂βuRα). As discussed in detail in Section 3.4.1, the use of the Pasca-

lutsa couplings (E.33) leads to the same Feynman amplitude as when the conventional
spin-3

2
couplings are used, with the only differences that the Rarita-Schwinger propagator

Gµν
3
2

(q) of Eq. (A.41) is replaced by its pure spin-3
2

part Λµν
3
2

(q)/(q2 − m2
R) with Λµν

3
2

(q)

of Eq. (A.42) and an additional overall factor of q2/m2
R. At the same time, the off-shell

projectors Θµν(a) (cf. Eq. (E.36)) are dropped.

(Pseudo-)Scalar Meson Decay

The interaction with (pseudo-)scalar mesons for positive-parity spin-3
2

resonances is

L 3
2
Bϕ =

gRBϕ

mπ

ūµ
RΘµν(aRBϕ)

(
1

−iγ5

)
uB∂νϕ (E.34)

and for negative-parity resonances

L 3
2
Bϕ = −gRBϕ

mπ

ūµ
RΘµν(aRBϕ)

(
iγ5

1

)
uB∂νϕ . (E.35)

As in the spin-1
2

case, the upper (lower) operator holds for pseudoscalar (scalar) mesons
ϕ. Θµν is the off-shell projector:

Θµν(a) = gµν − aγµγν , (E.36)

where a is related to the commonly used off-shell parameter z by a = (z + 1
2
).

These couplings lead to the decay width:

Γ
3
2± = fI

g2
RBϕ

12πm2
π

k3
ϕ

EB ±mB√
s

. (E.37)

The upper (lower) sign corresponds to the decay of a resonance into a meson with opposite
(identical) parity, e.g. P33(1232) → πN (D13(1520) → πN). The isospin factor fI is the
same as in Eqs. (E.25) and (E.26).

Vector Meson Decay

For the ωN decay we use

L 3
2
Nω = −ūµ

R

(
iγ5

1

)(
g1

2mN

γα + i
g2

4m2
N

∂α
N + i

g3

4m2
N

∂α
ω

) (
∂ω

αgµν − ∂ω
µgαν

)
uNων .(E.38)
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The upper (lower) operator corresponds to a positive- (negative-) parity resonance. Note,
that for clarity, the off-shell projectors Θµν(a) (cf. Eq. (E.36)), which are contracted with
each coupling operator, are not displayed.

From the above couplings the helicity decay amplitudes of the resonances to ωN can be
deduced:

AωN
3
2

= −
√

EN ∓mN√
2mN

1

2mN

(
g3

m2
ω

2mN

− g1(mN ±mR) + g2
m2

R −m2
N −m2

ω

4mN

)
,

AωN
1
2

= ±
√

EN ∓mN√
6mN

1

2mN

(
g3

m2
ω

2mN

± g1
mN(mN ±mR)−m2

ω

mR

+ g2
m2

R −m2
N −m2

ω

4mN

)
,

AωN
0 = ±mω

√
EN ∓mN√

3mN

1

2mN

(
g1 ∓ g2

m2
R + m2

N −m2
ω

4mRmN

∓ g3
m2

R −m2
N + m2

ω

4mRmN

)
. (E.39)

The helicity notation is the same as in the spin-1
2

case; in addition, there is the helicity
state 3

2
: 1 + 1

2
= 3

2
. The resonance ωN decay widths is given by Eq. (E.30).

Electromagnetic Decay

The radiative decay of the spin-3
2

resonances is described by:

L 3
2
Nγ = ūµ

Re

(
iγ5

1

) (
g1

2mN

γν + i
g2

4m2
N

∂ν
N

)
uNFµν . (E.40)

The upper (lower) factor corresponds to positive- (negative-) parity resonances. Note,
that for clarity, the off-shell projectors Θµν(a) (cf. Eq. (E.36)), which are contracted with
each coupling operator, are not displayed.

In the same way as for the spin-1
2

resonances (see Eq. (E.32)) the electromagnetic helicity

amplitudes can be calculated by taking the additional factor (2Eγ)
− 1

2 into account:

AγN
1
2

= +
eξR

4mN

√
m2

R −m2
N√

3mN

(
±g1

mN

mR

− g2
mN ∓mR

4mN

)

AγN
3
2

= ± eξR

4mN

√
m2

R −m2
N√

mN

(
g1 + g2

mN ∓mR

4mN

)
, (E.41)

where ξR denotes the phase at the RNπ vertex. Note the differences to the formulae given
in [52, 53], which are due to the different sign choice for the g1 coupling in Eq. (E.40) for
negative-parity resonances.



Appendix F

Isospin

The idea of introducing isospin as a symmetry for hadronic reactions originated from the
experimental observation, that the nuclear force between any two nucleons is independent
of charge. Formally this can be expressed by describing the two charge states of the
nucleon as an isospin doublet (|I, Iz〉 = |1

2
,±1

2
〉):

|p〉 ≡ χp = |1
2
, +1

2
〉 =

(
1
0

)
, |n〉 ≡ χn = |1

2
,−1

2
〉 =

(
0
1

)
. (F.1)

The corresponding isospin-1
2

operators τ /2 are given by the Pauli matrices of Eq. (A.16).
They have the properties:

(τ
2

)2
= 1

2

(
1
2

+ 1
)

= 3
4

τ3
2
χp = +1

2
χp , τ3

2
χn = −1

2
χn .

The inclusion of pions in this formalism is due to Watson [187]1). He extended the nucleon
charge symmetry to a general symmetry principal governing hadronic reactions. This
symmetry in charge space is equivalent to rotational invariance in usual three-dimensional
space and thus the isospin operators are representations of the rotation group (rotation
in charge space) fulfilling the commutation algebra

[Ii, Ij] = iεijkIk . (F.2)

Using Eq. (A.18) this is obviously fulfilled for the isospin-1
2

operator τ /2. Watson thus
introduced the pion field in such a way that the three pion states form an isospin triplet
(I = 1) and transform under a charge rotation as the components of a three-dimensional
vector, just as a usual three-dimensional vector in space (cf. Eq. (A.33)). Hence the pion
field is given in a cartesian basis as:

π ≡ ϕ =




ϕ1

ϕ2

ϕ3


 . (F.3)

1)The transformation properties of pions in “charge space“ were first observed by Kemmer [94]. The
consequences of the charge indepependence hypothesis for meson scattering have first been developed by
Heitler [77], see Eqs. (F.11) and (F.12).
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The physically realized charged states are related to the above ones by

|π±〉 = |ϕ±〉 =
∓1√

2
|ϕ1 ± iϕ2〉 =

∓1√
2




1
±i
0


 , |π0〉 = |ϕ0〉 = |ϕ3〉 =




0
0
1


 , (F.4)

corresponding to incoming (initial state) pions |π 〉 = π †|0〉; see also Eqs. (F.9) and
(F.10) below. Outgoing (final state) pions follow from the above ones (F.4) by taking
the hermitian conjugate: 〈π±| = |π±〉†, 〈π0| = |π0〉†. Note the behavior of the pion field
under charge conjugation: C|π±〉 = −|π∓〉, C|π0〉 = |π0〉.
The isospin operators for isospin-1 particles fulfilling Eq. (F.2) are given by

[ti]jk = −iεijk and explicitly (F.5)

t1 = i




0 0 0
0 0 −1
0 1 0


 , t2 = i




0 0 1
0 0 0

−1 0 0


 , t3 = i




0 −1 0
1 0 0
0 0 0




having the properties

t 2 = 1(1 + 1) = 2

t3|π+〉 = +|π+〉 , t3|π−〉 = −|π−〉 , t3|π0〉 = 0|π0〉 .

The choice of the pion field (F.4) guarantees that the amplitudes for πN → πN have
the correct behavior under charge conjugation, see Eq. (F.10). It is in line with the
Condon-Shortley convention [30], which is also used for the extraction of Clebsch-Gordan
coefficients (see [67]). Note that in the literature, this pion field definition is only rarely
applied ([42], [56], [61], [129], [184]). Mostly (e.g. [18], [28], [47], [82], [168]) a different
definition of the π+ field |π+〉 → |π+〉 = 1√

2
(+1, +i, 0) is used, which leads to a different

amplitude behavior under charge conjugation, see Eq. (F.13).

In our model there are more isospin 1 ⊕ 1
2

final states included than just πN . The 2π
meson ζ has the same isospin as the pion. In the reactions involving strangeness the same
formalism can also be applied, but the isospin properties of the baryon and the meson are
interchanged: The kaon appears as the isospin doublet (K+, K0) and the Sigma as the
isospin triplet (Σ±, Σ0). The treatment of photons in the isospin context is discussed in
Section F.1.2.

F.1 Isospin Decomposed Amplitudes

F.1.1 Hadronic reactions

Since the rotation in charge space corresponds to a symmetry of reactions purely governed
by the hadronic interaction, the total isospin is a conserved quantity. Therefore, the
partial-wave decomposition of Section 4.2 has to be extended to isospin space.
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Scattering of (I = 1⊕ 1
2
) Asymptotic States into (I = 1⊕ 1

2
)

Final states involving an isospin-1
2

and an isospin-1 particle can couple to either total
isospin 1⊕ 1

2
= 1

2
or 1⊕ 1

2
= 3

2
. Therefore, the amplitudes have to be decomposed into an

isospin-1
2

part T
1/2
fi and an isospin-3

2
part T

3/2
fi . The projection operators to these total

isospins are extracted from the operator of the total isospin:

I =
τ

2
+ t . (F.6)

From Eq. (F.6) one extracts by computing I 2

t · τ = I(I + 1)− 2− 3
4

,

leading to the projection operators

P̂ 1
2

=
1

3
(1− t · τ )

P̂ 3
2

=
1

3
(2 + t · τ ) = 1− P̂ 1

2
.

Using

〈ϕk|t · τ |ϕj〉 (F.5)
= −iεijkτi

(F.2)
= 1

2
[τj, τk]

(A.17)
= δkj − τkτj ,

where |ϕj〉 and 〈ϕk| refer to the incoming and outgoing asymptotic isospin-1 particles in
the cartesian basis, the above projection operators can be rewritten as

[
P̂ 1

2

]
kj

≡ 〈ϕk|P̂ 1
2
|ϕj〉 =

1

3
τkτj

[
P̂ 3

2

]
kj

≡ 〈ϕk|P̂ 3
2
|ϕj〉 = δkj − 1

3
τkτj . (F.7)

Now the possible charge amplitudes can be decomposed into isospin amplitudes

〈ϕk; I = 1
2
| Tfi |ϕj; I = 1

2
〉 = 〈ϕk; I = 1

2
| P̂ 1

2
T

1
2

fi + P̂ 3
2
T

3
2

fi |ϕj; I = 1
2
〉

= 〈I = 1
2
| 1

3
τkτjT

1
2

fi + (δkj − 1
3
τkτj)T

3
2

fi |I = 1
2
〉 , (F.8)

where |I = 1
2
〉 and 〈I = 1

2
| have to be replaced by the isospinors χ± = |1

2
,±1

2
〉 and

χ†± = 〈1
2
,±1

2
| of Eq. (F.1). The τk, τj have to be replaced according to (cf. Eq. (F.4))

τ · |ϕ±〉 = ∓
√

2τ± , τ · |ϕ 0〉 = τ 0 , (F.9)

where we have defined

τ± = 1
2
(τ1 ± iτ2)

with the properties

τ±χ∓ = χ± , τ±χ± = 0 .



208 Appendix F. Isospin

Thus Eq. (F.8) leads explicitly to

〈1, +1; 1
2
, +1

2
| Tfi |1, +1; 1

2
, +1

2
〉 = T

3
2

fi

〈1,−1; 1
2
,−1

2
| Tfi |1,−1; 1

2
,−1

2
〉 = T

3
2

fi

〈1,−1; 1
2
, +1

2
| Tfi |1,−1; 1

2
, +1

2
〉 =

1

3
(T

3
2

fi + 2T
1
2

fi)

〈1, +1; 1
2
,−1

2
| Tfi |1, +1; 1

2
,−1

2
〉 =

1

3
(T

3
2

fi + 2T
1
2

fi)

〈1, 0; 1
2
,−1

2
| Tfi |1,−1; 1

2
, +1

2
〉 =

√
2

3
(T

3
2

fi − T
1
2

fi) (F.10)

〈1, 0; 1
2
, +1

2
| Tfi |1, +1; 1

2
,−1

2
〉 =

√
2

3
(T

3
2

fi − T
1
2

fi)

〈1, 0; 1
2
, +1

2
| Tfi |1, 0; 1

2
, +1

2
〉 =

1

3
(2T

3
2

fi + T
1
2

fi)

〈1, 0; 1
2
,−1

2
| Tfi |1, 0; 1

2
,−1

2
〉 =

1

3
(2T

3
2

fi + T
1
2

fi) .

This isospin decomposition applied to πN elastic scattering is also in line with the relations
first developed by Heitler [77]:

M(π+n → π0p) = M(π0p → π+n) = M(π−p → π0n) = M(π0n → π−p)

M(π+p → π+p) = M(π−n → π−n)

M(π+n → π+n) = M(π−p → π−p)

M(π0n → π0n) = M(π0p → π0p) (F.11)

and

M(π0p → π0p) =
1

2

(M(π+p → π+p) +M(π−p → π−p)
)

M(π−p → π0n) =
1√
2

(M(π+p → π+p)−M(π−p → π−p)
)

. (F.12)

The choice of |π+〉 → |π+〉 = 1√
2
(+1, +i, 0) would have lead to the amplitude behavior

〈1, 0; 1
2
,−1

2
| Tfi |1,−1; 1

2
, +1

2
〉 = −〈1, 0; 1

2
, +1

2
| Tfi |1, +1; 1

2
,−1

2
〉 , (F.13)

which is not compatible with the usual Clebsch-Gordan coefficients.

Scattering of (I = 1⊕ 1
2
) Asymptotic States into (I = 0⊕ 1

2
= 1

2
) or Vice Versa

In this case one of the final states is a pure isospin 0⊕ 1
2

= 1
2

state (e.g., πN → ηN), and
thus the total isospin can only be I = 1

2
. The I = 1

2
projection operator now only acts on

the |I = 1; I = 1
2
〉 state and is chosen in accordance with the Condon-Shortley convention

and hence correctly normalized2):
[
P̂ 1

2

]
j
=
−1√

3
τj .

2)Note that this does not hold true for the usual choice in this case: [P̂ 1
2
]j = τj . The incorrect

normalization leads to additional factors that have to be implemented in the rescattering equation, cf.
Eqs. (D.17) and (D.28-31) in Ref. [156].
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Note the relation to P̂ 1
2

of Eq. (F.7). This leads to

〈I = 0; I = 1
2
| Tfi |I = 1; I = 1

2
〉 = 〈I = 1

2
| − 1√

3
τjT

1
2

fi |I = 1
2
〉 (F.14)

and explicitly

〈0, 0; 1
2
,−1

2
| Tfi |1,−1; 1

2
, +1

2
〉 = −

√
2√
3
T

1
2

fi

〈0, 0; 1
2
, +1

2
| Tfi |1, +1; 1

2
,−1

2
〉 =

√
2√
3
T

1
2

fi

〈0, 0; 1
2
, +1

2
| Tfi |1, 0; 1

2
, +1

2
〉 =

−1√
3
T

1
2

fi

〈0, 0; 1
2
,−1

2
| Tfi |1, 0; 1

2
,−1

2
〉 =

1√
3
T

1
2

fi . (F.15)

F.1.2 Reactions Involving Photons

In this section, methods are presented that allow to extend the isospin formalism of the
purely hadronic reactions to those including photons, thus allowing for a unified isospin
description of all reaction channels entering the potential of the model.

Photoproduction of (I = 1⊕ 1
2
) Final States

Assuming for the moment that only the meson current influences the charge symmetry
properties of pion photoproduction, i.e. the photon behaves as an isoscalar particle, one
obtains cross section relations as in, e.g., πN → ηN :

σ(γp → π+n) = σ(γn → π−p)

σ(γp → π0p) = σ(γn → π0n) .

These are obviously not satisfied by experimental observations and therefore, the photon
must be of a more complicated isospin nature. It is due to the fact that electromagnetic
couplings are dependent on the different charge states of a particle and thus break the
isospin symmetry. From a field theoretical point of view, this problem can formally be
solved by the introduction of the electromagnetic interaction by “minimal coupling” in
the Lagrangians of the theory containing nucleons and pions:

∂µ → ∂µ − iQ̂Aµ . (F.16)

Here, Aµ is the photon vector potential and Q̂ is the charge operator, which acts in

the particle isospin space. For the nucleon field, Q̂ = e(1 + τ3)/2 and for the pion
field Q̂ = et3. Therefore, as first pointed out by Watson [187], the photon is composed
of an isoscalar |I, Iz〉 = |0, 0〉 and the third component of an isovector |I, Iz〉 = |1, 0〉
particle. The isospin formalism of the previous sections can now be extended easily
to reactions involving photons; the only difference to the purely hadronic reactions is
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that experimentally only the Iz = 0 component is observed. Watson hence deduced a
decomposition of the observable charge reactions into isovector (AV and BV ) and isoscalar
(S0) contributions of the photon (cf. Eq. (F.20) below):

M(γp → π0p) = AV + S0

M(γn → π0n) = AV − S0

M(γp → π+n) = BV −
√

2S0

M(γn → π−p) = BV +
√

2S0 (F.17)

with the isovector contributions

AV ≡ 1√
3

(
2T2 − 1

2
T1

)
, BV ≡ 1√

3

(√
2T2 +

1√
2
T1

)
. (F.18)

The amplitudes T1 and T2 will be identified below. Note that the isovector part behaves
under charge conjugation just as a pion, hence M(γV p → π+n) = M(γV n → π−p). This
is, again, not fulfilled for the often used choice of π+ = 1√

2
(1, +i, 0)!

This isospin ambivalence of the photon can be introduced into the isospin decomposition
for the photoproduction amplitude of I = 1 ⊕ 1

2
hadronic final states (πN , ζN , KΣ) by

combining Eqs. (F.8) and (F.14):

〈ϕk; I = 1
2
| Tfγ |γ; I = 1

2
〉 = 〈I = 1

2
| 1

3
τkτ3T

1
2

fγ + (δk3 − 1
3
τkτ3)T

3
2

fγ − 1√
3
τkT

0
fγ |I = 1

2
〉 ,

(F.19)

where 〈ϕk| refers to the outgoing asymptotic isospin-1 particle. The meaning of the upper
indices is similar to the helicity notation:

• 0: isoscalar photon coupling with the nucleon (total isospin I = 1
2
),

• 1
2
: isovector photon coupling with the nucleon to total I = 1

2
,

• 3
2
: isovector photon coupling with the nucleon to total I = 3

2
.

This leads explicitly to the following amplitudes:

〈1, 0; 1
2
, +1

2
| Tfγ |γ; 1

2
, +1

2
〉 =

1

3
(2T

3
2

fγ + T
1
2

fγ)−
1√
3
T 0

fγ

〈1, 0; 1
2
,−1

2
| Tfγ |γ; 1

2
,−1

2
〉 =

1

3
(2T

3
2

fγ + T
1
2

fγ) +
1√
3
T 0

fγ

〈1, +1; 1
2
,−1

2
| Tfγ |γ; 1

2
, +1

2
〉 =

√
2

3
(T

3
2

fγ − T
1
2

fγ) +

√
2√
3
T 0

fγ

〈1,−1; 1
2
, +1

2
| Tfγ |γ; 1

2
,−1

2
〉 =

√
2

3
(T

3
2

fγ − T
1
2

fγ)−
√

2√
3
T 0

fγ . (F.20)

Note the identity with Eq. (F.17) by identifying T
3
2

fγ =
√

3T2, T
1
2

fγ = −
√

3
2

T1, and T 0
fγ =

−√3S0.
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In one of the first partial-wave analyses of pion-photoproduction data [117] so-called
proton (T p

πγ) and neutron (T n
πγ) isospin amplitudes were introduced. They are commonly

used amplitude combinations with total isospin I = 1
2

and related to the above ones in
the following way:

T p
πγ ≡ 1

3
(−
√

2〈π+n|T |γp〉+ 〈π0p|T |γp〉) = +1
3
T

1
2

πγ − 1√
3
T 0

πγ

T n
πγ ≡ 1

3
(+
√

2〈π−p|T |γn〉 − 〈π0n|T |γn〉) = −1
3
T

1
2

πγ − 1√
3
T 0

πγ .

The different isospin notations usually used would lead to T 0
πγ instead of − 1√

3
T 0

πγ and the

commonly applied redefinition −〈π+n|T |γp〉 → +〈π+n|T |γp〉.

Photoproduction of (I = 0⊕ 1
2

= 1
2
) Final States

For photoproduction of I = 0 ⊕ 1
2

= 1
2

hadronic final states (ηN , KΛ, ωN) only a total
isospin of I = 1

2
is allowed and Eq. (F.14) has to be modified in the following way:

〈I = 0; I = 1
2
| Tfγ |γ; I = 1

2
〉 = 〈I = 1

2
| T 0

fγ − 1√
3
τ3T

1
2

fγ |I = 1
2
〉 .

The resulting proton (T p
fγ) and neutron (T n

fγ) isospin amplitudes are:

T p
fγ ≡ 〈0, 0; 1

2
, +1

2
| Tfγ |γ; 1

2
, +1

2
〉 = − 1√

3
T

1
2

fγ + T 0
fγ

T n
fγ ≡ 〈0, 0; 1

2
,−1

2
| Tfγ |γ; 1

2
,−1

2
〉 = + 1√

3
T

1
2

fγ + T 0
fγ .

Compton Scattering

For Compton scattering, the incoming and outgoing photon are decomposed into their
isoscalar and isovector contributions. Thus the isospin decomposition now reads

〈γ; I = 1
2
| Tγγ |γ; I = 1

2
〉 = 〈I = 1

2
| T 00

γγ − 1√
3
τ3(T

01
γγ + T 10

γγ ) + 1
3
T

11, 1
2

γγ + 2
3
T

11, 3
2

γγ |I = 1
2
〉 (F.21)

because of τ 2
3 = 112. The upper indices denote the isospin of the outgoing and incoming

photons. For the case that both photons are isovector (11), also the total isospin of the
γN system is given.

Experimentally, only two amplitudes (γp → γp and γn → γn) are accessible. For these
cases (F.21) results in

〈γ; p| Tγγ |γ; p〉 = T 00
γγ − 1√

3
(T 01

γγ + T 10
γγ ) + 1

3
T

11, 1
2

γγ + 2
3
T

11, 3
2

γγ

〈γ; n| Tγγ |γ; n〉 = T 00
γγ + 1√

3
(T 01

γγ + T 10
γγ ) + 1

3
T

11, 1
2

γγ + 2
3
T

11, 3
2

γγ . (F.22)
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I1 I2 I3 operator

0 1
2

1
2

χ†3χ2

0 1 1 ϕ †
3ϕ 2

1 1
2

1
2

χ†3τ ·ϕ 1χ2

1 1 1 iϕ †
3 · (ϕ 1 ×ϕ 2)

1 1
2

3
2

T †
3 ·ϕ 1χ2

Table F.1: Isospin operators in the interaction Lagrangians for 1 + 2 → 3. For the
notation, see text. The missing normalization factor of 1

2
for 1⊕ 1

2
→ 1

2
is absorbed in the

coupling constant. Note that in the last case, the coefficient resulting from the transition
operator is just the Clebsch-Gordan coefficient (3

2
, I3z|1, I1z;

1
2
, I2z).

F.2 Isospin Operators in the Interaction Lagrangians

For the specification of the isospin operators appearing in the interaction Lagrangian, also
the isospin description of particles appearing in four different charge states (∆ resonances)
has to be defined. Those particles form an isospin quartet (I = 3

2
) and the corresponding

isospin vector T is given by the coupling of an isospin 1 to an isospin 1
2

particle:

T (M)† =
∑
r,m

(3
2
,M |1, r; 1

2
,m)ϕ †

rχ
†
m ,

where (3
2
,M |1, r; 1

2
, m) are the usual Clebsch-Gordan coefficients (see, e.g., [67]).

The isospin operators in the hadronic interaction Lagrangians for 1 + 2 → 3 are given in
Table F.1. The convention used for transitions of (I = 1)⊕ (I = 1) → (I = 1) concerning
the ordering of isovectors is that the intermediate particle is identified with ϕ 1, e.g. for
the meson vertex of the ρ0 t-channel diagram contributing to π+p → π+p:

iϕ †
3 · (ϕ 1 ×ϕ 2) ≡ iπ +† · (ρ 0 × π +) = 1 .

Thus one deduces the isospin factors for the reaction 1 + 2 → 3 + 4 as given in Table F.2.
They have to be multiplied to the corresponding Feynman diagram (Iq is the isospin of the
intermediate particle propagating in the s-, u-, or t-channel). Combining these coefficients
with Eqs. (F.10) and (F.15) one gets the isospin factors that have to be multiplied with
the Feynman diagrams to find out their contributions to the I = 1

2
and I = 3

2
amplitudes.

F.2.1 Isospin Decomposed Photon Couplings

The isospin decomposition of photon amplitudes as presented in Section F.1.2 means,
that if one assigns right from the start different couplings to the two photon isospin states
(gi0 for the isoscalar and gi1 for the isovector photon) in line with the isospin operators
given in Table F.1, the isospin decomposition is completely identical to the procedure
described above for the hadronic reactions. The resulting relations are given in Table F.3.



F.2. Isospin Operators in the Interaction Lagrangians 213

〈I1, I1z; I2, I2z | I3, I3z; I4, I4z〉 Iq diagram type factor

〈1, +1; 1
2
, +1

2
| 1, +1; 1

2
, +1

2
〉 0 s 0

0 u 1
0 t 1
1 s 0
1 u 1
1 t 1
1
2

s 0
1
2

u 2
1
2

t 2
3
2

s 1
3
2

u 1
3

〈1, 0; 1
2
,−1

2
| 1,−1; 1

2
, +1

2
〉 0 s 0

0 u 0
0 t 0
1 s 0

1 u
√

2

1 t
√

2
1
2

s −√2
1
2

u
√

2
1
2

t
√

2
3
2

s
√

2
3

3
2

u −
√

2
3

〈0, 0; 1
2
,−1

2
| 1,−1; 1

2
, +1

2
〉 0 s 0

0 u 0
0 t 0
1 s 0

1 u
√

2

1 t
√

2
1
2

s
√

2
1
2

u
√

2
1
2

t
√

2
3
2

s 0
3
2

u 0

Table F.2: Isospin factors of Feynman diagrams. Note that the u- and t-channel coeffi-
cients are identical.
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|I1, I1z〉 〈I2, I2z| example gγ+1→2

|1,±1〉 〈1,±1| γπ± → π± gi0 ∓ gi1

|1, 0〉 〈1, 0| γρ0 → π0 gi0

|1, 0〉 〈0, 0| γρ0 → η gi1

|0, 0〉 〈1, 0| γω → π0 gi1

|0, 0〉 〈0, 0| γω → η gi0

|1
2
, +1

2
〉 〈1

2
, +1

2
| γp → p gi0 + gi1

|1
2
,−1

2
〉 〈1

2
,−1

2
| γK0 → K0 gi0 − gi1

Table F.3: Isospin decomposition of the photon couplings for γ + 1 → 2. gi0 corresponds
to the coupling to an isoscalar, gi1 to the coupling to an isovector photon. Note that the
combination for |γ; 1,±1〉 → |1,±1〉 is just counterintuitive, which is due to the definition
of the isospin operator in Table F.1.

Since the isospin-3
2

(∆) resonances can only decay via isovector photons and the isospin
coefficients resulting from the isospin transition operators are correctly normalized, the
photon coupling is directly given as the isovector coupling gi1. A similar argument holds
true for the electromagnetic transition of an isoscalar into an isoscalar particle: This is
only possible via an isoscalar photon and hence the photon coupling is directly given as
the isoscalar coupling gi0.

Two remarks are in order at this point:

• In the photoproduction of pions there is also a t-channel contribution via ρ exchange.
From the decay widths of ρ → πγ [67] one deduces the following couplings: g(ρ± →
π±γ) = 0.103 and g(ρ0 → π0γ) = 0.122. Since the charged couplings are identical, a
glance at Table F.3 shows, that only an isoscalar photon transition is allowed. But
this would also mean that g± = g0, which seems not to be fulfilled. However, taking
into account the uncertainties in these couplings [67], it follows that g± and g0 are
indeed compatible with the assumption of pure isoscalar coupling. The minimal χ2

value for gi0 results in gi0 = 0.105.

• In Compton scattering, there are also contributions from intermediate pseudoscalar
mesons, π0 → γγ and η → γγ. In the first case, one has to note that the decay is
only possible into an isoscalar and an isovector photon, since the pion is an isovector
particle. Thus, the resulting isospin decomposed coupling is gi0,i1 = 1

2
g(π0 → γγ)

(cf. Eq. (F.21)). In the second case, there could be two decay modes: either into
two isoscalar or two isovector photons. However, since the rescattering effects in
Compton scattering are calculated only perturbatively (see Compton scattering in
the following section and (F.21)), there is no difference in extracting the physical
proton and neutron amplitudes between the two coupling modes.3)

3)Even if one would not calculate the Compton amplitude perturbatively, the difference between the
two coupling modes would be negligible since the η → γγ coupling is very small. In addition, the full
rescattering differs only slightly from the perturbative one due to the smallness of the fine structure
constant α.
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F.2.2 Isospin Decomposed Photons and Gauge Invariance

Having decomposed the photon into two isospin particles, the question arises, whether
the resulting isospin amplitudes are gauge invariant individually. This point is important
since the isospin-1

2
and isospin-3

2
amplitudes enter in independent scattering equations

due to isospin decomposition. The consequence is, that they are weighed with different
rescattering parts. A situation similar to the problem of gauge invariance after the intro-
duction of hadronic formfactors for the Born diagrams (cf. Section 3.7) could arise, and
therefore, the independent gauge invariance of the different isospin amplitudes has to be
checked. This will be discussed in the following.

Meson Photoproduction

As shown in Section 3.3.1 all electromagnetic transition couplings for the baryon reso-
nances and intermediate mesons are constructed in such a way that they separately fulfill
the gauge invariance requirement kµΓµ = 0, which obviously still holds true for isospin
decomposed photons. On the other side, the Born contributions, i.e. the charge cou-
plings of the asymptotic particles, only fulfill gauge invariance when all contributions are
summed up and charge is conserved in the reaction. Since the charge couplings are dif-
ferently decomposed into isovector and isoscalar contributions for the various asymptotic
particles, cf. Table F.3, we have to check whether gauge invariance independently holds
for the I = 1

2
and I = 3

2
amplitudes.

As an example, we discuss the photoproduction of pions in details. As demonstrated in
Section F.2.1, the photon isospin charge couplings to the pion result in gπ

i0 = 0, gπ
i1 = −1

and to the nucleon in gN
i0 = gN

i1 = 1
2
. Recall, that the index i0 denotes the isoscalar and i1

the isovector coupling.

Since gπ
i0 = 0, there are only contributions from s- and u-channel diagrams to the isoscalar

photon amplitude T 0
πγ. The sum of the these two contributions to the isospin-1

2
amplitude

for Aµ → kµ results in (cf. Section 3.3.1)

M̃0
s + M̃0

u = (gN
i0 (−

√
3)− gN

i0 (−
√

3))
gNNπ

2mN

ū(p′)γ5/k
′u(p) = 0 .

The isospin factor −√3 arises from the πNN coupling and can be deduced from Table
F.2 and Eq. (F.15).

For the isovector photons, there are now two isospin amplitudes to be considered sepa-

rately: T
3
2

πγ and T
1
2

πγ. The necessary overall isospin factors for the contributions of the four
diagrams to the two isospin amplitudes can be inferred from Table F.2 and Eq. (F.10):
For the isospin-3

2
amplitude one finds f I

s = 0, f I
u = 2, and f I

t = f I
4 = 1; for the isospin-1

2

amplitude f I
s = 3, f I

u = −1, and f I
t = f I

4 = −2. The total contribution of the four
diagrams to the I = 3

2
amplitude thus is for Aµ → kµ:

M̃
3
2
s + M̃

3
2
u + M̃

3
2
t + M̃

3
2
4 = (−2gN

i1 − gπ
i1)

gNNπ

2mN

ū(p′)γ5/k
′u(p)

= (−2 · 1
2
− (−1))

gNNπ

2mN

ū(p′)γ5/k
′u(p)

= 0
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and to the I = 1
2

amplitude:

M̃
1
2
s + M̃

1
2
u + M̃

1
2
t + M̃

1
2
4 = (gN

i1 (3− (−1))− gπ
i1(−2))

gNNπ

2mN

ū(p′)γ5/k
′u(p)

= (1
2
· 4− (−1)(−2))

gNNπ

2mN

ū(p′)γ5/k
′u(p)

= 0 .

Hence, all three isospin amplitudes T 0
πγ, T

1
2

πγ, and T
3
2

πγ are independently gauge invariant.

For the photoproduction of isoscalar mesons (η, ω), only the I = 1
2

amplitudes T 0
πγ

and T
1
2

πγ contribute. For isoscalar photons, there can only be s- and u-channel diagram
contributions just as in the isovector meson case4) and the same result is obtained as
above with the only change that the isospin factor −√3 has to be replaced by 1. For
isovector photons, there can now also only be s- and u-channel diagram contributions,

and the isospin factors result in f I
s = f I

u = −√3. Hence, we have for the T
1
2

ηγ amplitude
for Aµ → kµ:

M̃
1
2
s + M̃

1
2
u = (gN

i1 − gN
i1 )(−

√
3)

gNNη

2mN

ū(p′)γ5/k
′u(p) = 0 .

Therefore, in meson photoproduction gauge invariance is fulfilled independently for the

three isospin amplitudes T 0
πγ, T

1
2

πγ, and T
3
2

πγ.

Compton Scattering

Proceeding in the same way as for meson photoproduction, one finds the following ex-
pression when checking for gauge invariance of the Born contributions (nucleon s- and
u-channel) on the incoming photon side (cf. Eq. (3.10) in Chapter 3 for γN → ρN):

M̃s + M̃u = e2(f I
s − f I

u)gN
i ū(p′)

(
gN

i

′ − κ′i
2mN

/k′
)

/ε′u(p) .

Here, we have already dropped the tensor coupling to the incoming photon since it fulfills
gauge invariance directly. The isospin coupling gN

i of the incoming nucleon and gN
i
′
, κ′i

of the outgoing nucleon refer to the considered isospin amplitude (T 00
γγ , T 01

γγ , T 10
γγ , T

11, 1
2

γγ , or

T
11, 3

2
γγ ; see Appendix F.1.2). The isospin factors f I

s and f I
u can be deduced in exactly the

same way as in meson photoproduction above:

For isoscalar incoming photons as in T 00
γγ and T 10

γγ , the isospin factors f I
s and f I

u are always

identical (either f I
s = f I

u = 1 or f I
s = f I

u = −√3, see above), and for isovector incoming
photons and isoscalar outgoing photons (T 01

γγ ) as well: f I
s = f I

u = −√3. Therefore, in
these isospin amplitudes gauge invariance is fulfilled.

4)For KΛ photoproduction, there are only s- and t-channel Born contributions and in the subsequent
discussion u and t have to be exchanged.
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However, the situation is different for the isovector-isovector amplitudes T 11
γγ . For the

amplitude with total isospin 1
2

(
T

11, 1
2

γγ

)
, the isospin factors result in f I

s = 3, f I
u = −1, and

for T
11, 3

2
γγ with total isospin 3

2
in f I

s = 0, f I
u = 2. Evidently, gauge invariance is violated in

both cases.

In principle, gauge invariance could be restored, by artificially adding a four-point Comp-
ton diagram with a structure as

∼ (f I
s − f I

u)ū(p′)

{
gN

i1
2

p·k
[
γµp

′
ν + γνpµ − /k

2

(
gµν +

pµp
′
ν

p′ ·k′ +
p′µpν

p·k′
)]

− gN
i1

κi1σµν

4mN

}
u(p)εµε′ν .

(F.23)

However, this is not satisfying from a field-theoretical point of view. There is a different,
more elegant solution by taking into account the smallness of the electromagnetic coupling
and demanding that only the proton and neutron amplitudes (F.22) are physical quantities
which should satisfy gauge invariance. This also explains, why rescattering effects in
Compton scattering are usually calculated in a basis using physical (π0p, π+n, π−p, π0n),
not isospin states [13].

The above problem can be circumvented by including the electromagnetic interaction
only perturbatively5) thus assuming that the implemented electromagnetic couplings are
already the renormalized ones (in particular below the πN threshold). Looking at the BS
equation (cf. Eq. (4.19))

T IJ±
λ′,λ = KIJ±

λ′,λ + i
∑

a

∑

λa>0

T IJ±
λ′,λa

KIJ±
λa,λ , (F.24)

the perturbative inclusion is equivalent to neglecting all intermediate electromagnetic
states a in the rescattering part. Due to the smallness of the fine structure constant α,
this approximation is reasonable. The consequence is that the calculation of the hadronic
scattering decouples from the electromagnetic one and can be extracted independently.
Hence, the full K-matrix equation (cf. Eq. (2.12))

T IJ±
fi =

[ KIJ±

1− iKIJ±

]

fi

.

is only solved for the hadronic states. In the second step, the meson-photoproduction
amplitudes can be extracted via

T IJ±
fγ = KIJ±

fγ + i
∑

a

T IJ±
fa KIJ±

aγ , (F.25)

where the helicity indices are omitted. The sum over a runs only over hadronic states.
Finally, the Compton amplitudes result from

T IJ±
γγ = KIJ±

γγ + i
∑

a

T IJ±
γa KIJ±

aγ (F.26)

5)The difference between the full rescattering calculation (where gauge invariance is violated in Comp-
ton scattering) and the perturbative calculation have been checked and found to be less than 1 per
mille.
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with a running again only over hadronic states. Since the Compton isospin amplitudes of
the potential only enter in the direct contribution KIJ±

γγ and for the purpose of comparison
with experiment, only the proton and neutron Compton amplitudes of Eq. (F.22) are of
interest, for gauge invariance only these two amplitudes have to be checked. Since T 00

γγ ,
T 01

γγ , and T 10
γγ have already been proven to be gauge invariant, it remains to be shown that

the combination

T
11, 1

2
γγ + 2T

11, 3
2

γγ (F.27)

also fulfills the gauge constraint. Adding up the isospin factors, we find:

f
1
2
s − f

1
2
u + 2(f

3
2
s − f

3
2
u ) = 3− (−1) + 2(0− 2) = 0 . (F.28)

Thus, gauge invariance is also fulfilled for Compton scattering on the nucleon as long as
the photon is introduced perturbatively in the K-matrix formalism.



Appendix G

Observables and Partial Waves

In an experiment, only (polarization) dependent count rates can be extracted, which have
to be related to the partial waves presented in Chapter 6. We restrict ourselves to those
observables used in the calculation.

G.1 Cross Sections

The advantage of our partial-wave formalism becomes also obvious in the deduction of
(total) cross sections from the partial-wave amplitudes (cf., e.g., the formulae in Appendix
G of [52]). From the general two-body differential cross section formula [153] a uniform
expression for all reactions can be derived:

dσ

dΩ
=

4mBm′
B

4(4π)2s

k′

k

1

si

∑

λ,λ′
|Mλ′λ(ϑ)|2

=
(4π)2

k2

1

si

∑

λ,λ′
|Tλ′λ(ϑ)|2 ,

where Eq. (C.10) has been used and the sum extends over all values of λ and λ′. si is the
usual spin averaging factor for the initial state (equal to the number of spin states). The
amplitude Tλ′λ(ϑ) can be extracted from Eq. (4.7), e.g. for λ, λ′ > 0:

Tλ′λ(ϑ) =
1

2π

∑
J

(J + 1
2
)dJ

λλ′(ϑ)T J
λ′λ

=
1

4π

∑
J

(J + 1
2
)dJ

λλ′(ϑ)
(T J+

λ′λ + T J−
λ′λ

)
. (G.1)

The amplitudes T JP
λ′λ are constructed in isospin space as described in Appendix F.1.

Due to the orthogonality of the d-functions, the formula for the total cross section becomes
even simpler:

σ =
4π

k2

1

si

∑
J,P

∑

λ,λ′
(J + 1

2
)
∣∣T JP

λ′λ

∣∣2 .

219
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Note that because of the definition of the helicity partial-wave amplitudes (Eq. (4.13))
the second sum extends only over positive λ and λ′.

Since there is no interference between the contributions from different partial waves, the
total cross section can also be divided into partial-wave cross sections, allowing a direct
access to the importance of the individual partial waves:

σIJP =
4π

k2

∑

λ,λ′
(J + 1

2
)
∣∣T IJP

λ′λ

∣∣2 .

Closely related to this is another meaningful quantity, the inelastic partial-wave cross
section (cf. Eq. (C.5)):

σIJP
in =

4π

k2

∑

λ,λ′
(J + 1

2
)
(
ImT IJP

λ′λ −
∣∣T IJP

λ′λ

∣∣2
)

.

It allows, in particularly for πN → πN , to extract information about the importance of
other pion-induced channels in each partial wave, i.e. how much of the partial-wave flux
goes away from πN .

In the case of photoproduction of η mesons there is also the so-called reduced cross section
defined, which is more directly related to the amplitude since the phase space is divided
out:

σred =

√
σ

4π

k

k′
=

√
1

kk′
1

si

∑
J,P

∑

λ,λ′
(J + 1

2
) |T JP

λ′λ |2 .

G.2 Polarization Observables

Depending on the intrinsic spins of the incoming and outgoing particles there are addi-
tional spin-dependent count rates that can be measured. The baryon single polarization
observables (asymmetries) are defined in the following way:

Ω =
dσ↑ − dσ↓
dσ↑ + dσ↓

. (G.2)

The arrows ↑ and ↓ stand for the corresponding adjustment of the target (T ) or recoil
(P) baryon spin, usually in the y-direction given by k × k ′.

The photon beam polarization is usually measured in terms of the photon asymmetry (Σ)

Σ =
dσ⊥ − dσ‖
dσ⊥ + dσ‖

, (G.3)

where the linear polarization vectors in plane (‖) and out of plane (⊥) of the photon are
related to the circular polarization vectors of Appendix A.2.2 by

ε ‖ ≡ e x =
−1√

2
(ε+1 − ε−1)

ε⊥ ≡ e y =
i√
2
(ε+1 + ε−1) . (G.4)
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In the following, we use the cross section intensity

I(ϑ) ≡ 1

2

∑

λ,λ′
|Tλ′λ(ϑ)|2 , (G.5)

where the sum extends over all possible values for λ and λ′.

G.2.1 Pion-Induced (Pseudo-) Scalar Meson Production

The recoil asymmetry results in

I(ϑ)P = 2ImT 1
2

1
2
T ∗
− 1

2
1
2

(G.6)

with the amplitude Tλ′λ(ϑ) as given in Eq. (G.1) and the cross section intensity I(ϑ) as
in (G.5).

Furthermore, a so-called spin-rotation angle is defined. This angle was introduced by
[93, 289] to remove an ambiguity of partial-wave decompositions of 0−N scattering solely
based on differential cross sections and measurements of the polarization (G.6). Both are
invariant under the transformation

(f ± ig sin ϑ) → e±iε(ϑ)(f ± ig sin ϑ) ,

where the functions f and g defined in (5.9) were introduced and ε is an arbitrary real
function of ϑ. The phase ambiguity mixes high and low partial waves, and a unique
partial-wave decomposition is impossible without additional assumptions, such as the
truncation of the partial-wave expansion or a specific ansatz for the higher partial waves.
By measuring the spin-rotation angle

β ≡ arg

(
f − ig sin ϑ

f + ig sin ϑ

)
= tan−1

( −2 sin ϑRef ∗g
|f |2 − sin2 ϑ|g|2

)
(G.7)

this ambiguity is removed and a direct approach to a partial-wave decomposition is pos-
sible.

G.2.2 Photoproduction of (Pseudo-) Scalar Mesons

The single polarization observables are given by (see also [184] for a detailed discussion)

I(ϑ)Σ = 2Re
(
T 1

2
3
2
T ∗

1
2
− 1

2
+ T 1

2
1
2
T ∗

1
2
− 3

2

)
photon asymmetry

I(ϑ)P = 2Im
(
T 1

2
3
2
T ∗

1
2
− 3

2
− T 1

2
1
2
T ∗

1
2
− 1

2

)
recoil asymmetry

I(ϑ)T = 2Im
(
T 1

2
3
2
T ∗

1
2

1
2
− T 1

2
− 3

2
T ∗

1
2
− 1

2

)
target asymmetry

with the amplitudes Tλ′λ(ϑ) as given in Eq. (G.1) and the cross section intensity I(ϑ) as
in (G.5).



222 Appendix G. Observables and Partial Waves

G.2.3 Compton Scattering

The single polarization observables are given by

I(ϑ)Σ = 2Re
((
T 3

2
3
2

+ T 1
2

1
2

)∗
T 1

2
− 3

2
+

(
T 3

2
− 3

2
− T 1

2
− 1

2

)∗
T 3

2
1
2

)

I(ϑ)T = 2Im
((
T 3

2
3
2

+ T 1
2

1
2

)∗
T 3

2
1
2
−

(
T 3

2
− 3

2
− T 1

2
− 1

2

)∗
T 1

2
− 3

2

)
= I(ϑ)P

for the photon and target/recoil asymmetry, respectively. The amplitudes Tλ′λ(ϑ) are as
given in Eq. (G.1) and the cross section intensity I(ϑ) as in (G.5).

G.2.4 Photoproduction of Vector Mesons

The single polarization observables are given by (see also [178] for further details)

I(ϑ)Σ = 2Re
(
+T ∗

3
2

3
2
T 3

2
− 1

2
+ T ∗

1
2

1
2
T 1

2
− 3

2
+ T ∗

3
2
− 3

2
T 3

2
1
2

+ T ∗
1
2
− 1

2
T 1

2
3
2

+ T ∗
0 3

2
T0− 1

2
+ T ∗

0− 3
2
T0 1

2

)

I(ϑ)T = 2Im
(
+T ∗

3
2

3
2
T 3

2
1
2
− T ∗

1
2

1
2
T 1

2
3
2
− T ∗

3
2
− 3

2
T 3

2
− 1

2
+ T ∗

1
2
− 1

2
T 1

2
− 3

2
+ T ∗

0 3
2
T0 1

2
− T ∗

0− 3
2
T0− 1

2

)

I(ϑ)P = 2Im
(
−T ∗

3
2

3
2
T 1

2
3
2

+ T ∗
1
2

1
2
T 3

2
1
2
− T ∗

3
2
− 3

2
T 1

2
− 3

2
+ T ∗

1
2
− 1

2
T 3

2
− 1

2
− T ∗

0 3
2
T0− 3

2
+ T ∗

0 1
2
T0− 1

2

)

for the photon and target/recoil asymmetry, respectively. The amplitudes Tλ′λ(ϑ) are as
given in Eq. (G.1) and the cross section intensity I(ϑ) as in (G.5). The notation for the
V N helicity states follows Section 5.2. The vector meson and some double polarization
observables can be found in Appendix B of Ref. [178].

Schilling et al. [159] have also introduced density matrix elements ρi
λV λ′V

, which can be

directly related to the decay angular distribution of the vector meson. These density
matrix elements are directly given by the helicity amplitudes:

ρ0
λV λ′V

=
1

2I
∑

λγ ,λN′ ,λN

TλV λN′ ,λγλN
T ∗

λ′V λN′ ,λγλN

ρ1
λV λ′V

=
1

2I
∑

λγ ,λN′ ,λN

TλV λN′ ,−λγλN
T ∗

λ′V λN′ ,λγλN

ρ2
λV λ′V

=
i

2I
∑

λγ ,λN′ ,λN

λγTλV λN′ ,−λγλN
T ∗

λ′V λN′ ,λγλN

ρ3
λV λ′V

=
1

2I
∑

λγ ,λN′ ,λN

λγTλV λN′ ,λγλN
T ∗

λ′V λN′ ,λγλN
. (G.8)



Appendix H

Parameters of Further Calculations

In Tables H.1 − H.8 the parameters of those calculations, which are not displayed and
whose parameters are not given in Chapter 8, are summarized.

g value g value g value g value

gNNπ 12.80 gNNσ · gσππ 31.58 gNNρ 5.74 κNNρ 1.37
13.01 13.66 2.21 1.30
12.84 15.22 2.03 1.42
13.00 3.33 5.45 1.58
12.79 36.82 2.77 1.08

gNNη 1.90 gNNa0 32.34 gNNω 3.91 κNNω −0.86
0.29 8.60 3.94 −0.90
0.90 3.90 5.65 −1.74
0.17 −19.47 4.50 −0.70
0.96 −2.56 3.91 −1.43

gNΛK −16.87 gNΛK∗
0

−58.40 gNΛK∗ −34.70 κNΛK∗ −0.39
−11.53 −11.58 −5.86 −0.39
−14.91 7.54 −5.75 −0.55
−15.13 54.96 −24.66 −0.34
−16.18 18.36 −6.79 −0.62

gNΣK 14.60 gNΣK∗
0

62.22 gNΣK∗ 2.56 κNΣK∗ 0.18
2.50 11.06 0.71 −0.11

13.54 11.20 1.11 −0.14
15.24 54.62 2.66 0.57
14.33 −3.72 −4.26 −0.32

Table H.1: Nucleon and t-channel couplings. First line: C-p-π−, 2nd line: C-t-π+, 3rd
line: C-t-π−, 4th line: C-p-π/χ+, 5th line: P-p-π−.
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ΛN [GeV] Λh
1
2

[GeV] Λh
3
2

[GeV] Λh
t [GeV]

1.16 4.26 1.05 0.70
1.11 3.80 1.00 0.70
1.10 4.30 1.01 0.73
1.15 2.81 1.05 0.70
1.17 3.87 1.03 1.89

Table H.2: Cutoff values for the formfactors. The upper index h shows, that the value is
applied to a hadronic vertex, while the lower one denotes the particle going off-shell, i.e.
N : nucleon, 1

2
: spin-1

2
resonance, 3

2
: spin-3

2
resonance, t: t-channel meson. Line ordering

as in Table H.1.

L2I,2S mass Γtot RπN R2πN RηN RKΛ RKΣ RωN

S11(1535) 1537 166 39.0 10.1(+) 50.9(+) 0.25a −0.21a —
1538 117 35.2 8.4(−) 56.5(+) 0.90a −0.84a —
1541 110 39.4 8.3(−) 52.3(+) 0.61a −0.36a —
1534 118 34.6 7.6(+) 57.8(−) 0.00c 0.00c —
1533 103 35.1 1.0(−) 63.9(+) −0.94a 3.97a —

S11(1650) 1676 169 74.1 22.2(+) 0.3(+) 3.4(−) −0.33a —
1682 176 68.8 23.9(+) 1.4(−) 5.9(−) 0.92a —
1692 240 74.8 20.0(+) 0.0(+) 5.2(−) −0.76a —
1678 177 70.1 22.9(+) 0.8(+) 6.1(−) 0.69a —
1694 188 75.2 19.5(−) 0.7(−) 4.6(−) −1.08a —

P11(1440) 1498 500 60.5 39.5(+) 1.88a 1.44a 6.00a —
1500 546 59.0 41.0(+) 4.76a 0.89a 3.24a —
1500 550 59.1 40.9(+) 5.02a 1.44a 1.37a —
1482 443 62.1 37.9(+) −1.88a 0.00c 0.00c —
1520 656 62.1 37.9(+) 3.96a −3.33a −0.97a —

P11(1710) 1695 281 5.6 52.7(+) 41.6(+) 0.0(+) 0.1(−) 0.0
1787 541 4.4 47.7(+) 25.6(−) 0.0(+) 17.1(+) 5.2
1716 197 0.0 51.4(−) 45.7(+) 2.8(−) 0.0(+) 0.0
1786 689 5.4 38.8(−) 23.2(−) 1.1(−) 10.4(+) 21.0
1756 547 0.0 47.3(+) 27.6(−) 1.9(−) 20.8(+) 2.5

Table H.3: Properties of I = 1
2
, J = 1

2
resonances considered in the calculation. The

mass and the total width Γtot are given in MeV, the partial decay width ratios R in
percent of the total width. All πN couplings are chosen positiv. “NF”: not found in the
corresponding calculation. “NFA”: not found below 2 GeV in any calculation. a: The
coupling is given. b: The decay ratio is given in 0.1h. c: Not varied in the fit. Line
ordering as in Table H.1.
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L2I,2S mass Γtot RπN R2πN RηN RKΛ RKΣ RωN

P13(1720) 1725 205 16.7 51.9(+) 9.3(+) 10.7(−) 11.3(−) 0.1
1703 117 17.7 70.4(+) 1.4(−) 8.1(−) 2.4(−) 5.2
1699 68 16.3 79.6(+) 0.4(−) 3.4(−) 0.3(+) 0.0
1722 251 17.1 69.8(+) 1.9(−) 6.1(−) 4.7(−) 0.2
1737 79 19.6 67.8(+) 4.2(+) 7.9(−) 0.0(−) 0.4

P13(1900) 1894 562 16.8 28.9(+) 22.8(−) 2.7(−) 0.2(+) 28.7
1936 707 18.1 35.3(−) 14.5(+) 6.3(−) 1.2(−) 24.6
1939 705 12.3 49.3(−) 20.1(+) 1.7(−) 1.2(−) 15.3
1951 603 19.4 42.0(−) 10.5(−) 4.5(−) 0.2(−) 23.4
1824 823 14.9 50.5(+) 7.4(−) 9.5(−) 0.0(+) 17.8

D13(1520) 1510 92 58.6 41.4(−) 1.2b(+) 0.44a 0.54a —
1511 102 57.2 42.8(−) 3.2b(+) 1.91a 1.45a —
1510 93 56.7 43.3(−) 6.5b(+) 0.90a −3.60a —
1510 92 57.8 42.1(−) 2.5b(−) 0.00c 0.00c —
1509 95 59.7 40.3(−) 2.0b(+) −0.67a −3.95a —

D13(1700) NF
NF
NF
NF
1748 50 1.6 49.0(−) 2.0(+) 0.7(−) 9.3(+) 37.3

D13(2080) 1944 848 16.1 50.9(+) 14.6(+) 0.8(+) 0.2(−) 17.4
1946 603 12.7 63.1(−) 2.8(−) 1.3(+) 4.2(+) 16.0
1982 668 9.7 64.2(+) 5.1(−) 0.0(+) 6.7(+) 14.3
1946 1.075 16.0 47.3(+) 1.4(+) 1.1(+) 1.5(+) 32.5
1942 765 15.5 54.4(+) 2.4(+) 0.1(−) 2.5(+) 25.1

Table H.4: Properties of I = 1
2
, J = 3

2
resonances considered in the calculation. Notation

and line ordering as in Table H.1.
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L2I,2S mass Γtot RπN R2πN RKΣ

S31(1620) 1617 187 37.5 62.5(−) 0.80a

1614 211 33.7 66.3(−) 0.25a

1613 202 34.6 65.4(−) 0.61a

1607 158 33.5 66.5(−) 0.06a

1627 162 43.9 56.1(+) 0.50a

S31(1900) NF
NF
NF
NF
1908 173 34.7 65.3(−) 0.0(+)

P31(1750) 1742 614 2.0 97.6(+) 0.4(+)
1753 622 2.6 97.3(+) 0.1(+)
1737 622 1.6 98.1(+) 0.3(+)
1834 615 9.1 89.9(+) 1.0(−)
1982 651 21.3 77.7(+) 1.1(−)

P33(1232) 1231 101 100.0 0.002(+)b —
1230 104 100.0 0.012(+)b —
1230 103 100.0 0.008(−)b —
1230 102 100.0 0.001(+)b —
1230 92 100.0 0.003(−)b —

P33(1600) 1655 296 13.6 86.4(+) 0.19a

1662 303 13.6 86.4(+) 0.41a

1657 288 13.5 86.5(+) 0.32a

1653 270 14.2 85.8(+) 0.71a

1670 410 13.6 86.4(+) 0.14a

P33(1920) 2056 465 14.9 81.1(−) 4.0(−)
2055 531 16.4 76.9(−) 6.7(−)
2056 589 15.8 78.3(−) 5.9(−)
2036 379 13.5 80.0(+) 6.5(+)
2056 346 6.7 88.8(−) 4.5(−)

D33(1700) 1680 594 13.6 86.4(+) 2.56a

1678 638 13.7 86.3(+) 2.38a

1681 643 13.6 86.4(+) 2.11a

1680 598 13.6 86.4(+) 0.92a

1677 665 14.5 85.5(+) 3.94a

Table H.5: Properties of I = 3
2

resonances considered in the calculation. Notation and
line ordering as in Table H.1.
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L2I,2S mass Γtot RωN R0
ωN R

1
2
ωN R

3
2
ωN

S11(1535) 1537 166 — −5.40a1 −0.52a2 —
1538 117 — −0.46a1 1.98a2 —
1541 110 — −2.52a1 −4.55a2 —
1534 118 — 0.00c 0.00c —
1533 103 — 0.79a1 −1.58a2 —

S11(1650) 1676 169 — 1.22a1 0.00c —
1682 176 — −0.17a1 0.00c —
1692 240 — 1.15a1 0.00c —
1678 177 — −0.22a1 0.00c —
1694 188 — −1.52a1 −4.35a2 —

P11(1440) 1498 500 — −4.92a1 7.99a2 —
1500 546 — 4.16a1 0.19a2 —
1500 550 — −6.00a1 −0.19a2 —
1482 443 — 0.00c 0.00c —
1520 656 — 4.55a1 −5.70a2 —

P11(1710) 1695 281 — −4.99a1 −1.71a2 —
1755 327 11.7 0.0(−) 11.7(−) —
1787 541 5.2 2.8(+) 2.4(+) —
1716 197 — −5.60a1 −0.31a2 —
1786 689 21.0 11.0(+) 10.0(−) —
1756 547 2.4 2.1(−) 0.4(+) —

Table H.6: ωN decay ratios of I = 1
2
, J = 1

2
resonances. The total widths are given in

MeV, all ratios in percent. a1 (a2, a3): The coupling g1 (g2, g3) is given. b: The ratio is
given in 0.1h. c: Not varied in the fit. Line ordering as in Table H.1.
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L2I,2S mass Γtot RωN R0
ωN R

1
2
ωN R

3
2
ωN

P13(1720) 1725 205 0.05 0.00(+) 0.00(+) 0.05(+)
1703 117 — 10.60a1 −2.44a2 −1.75a3

1699 68 — 3.88a1 −6.23a2 −6.60a3

1722 251 0.2 0.01(+) 0.02(+) 0.25(+)
1737 79 0.4 0.00(−) 0.05(−) 0.32(−)

P13(1900) 1894 562 28.6 1.1(+) 6.2(+) 21.3(+)
1936 707 24.6 2.0(+) 8.7(+) 13.9(+)
1939 705 15.3 0.0(−) 1.1(−) 14.2(−)
1951 603 23.4 2.4(+) 0.0(−) 20.9(+)
1824 823 17.8 0.1(−) 2.4(−) 15.3(−)

D13(1520) 1510 92 — 0.74a1 7.20a2 −4.09a3

1511 102 — 7.76a1 −11.49a2 −5.12a3

1510 93 — 9.20a1 −5.02a2 −4.49a3

1510 92 — 0.00c 0.00c 0.00c

1509 95 — 8.97a1 8.41a2 1.81a3

D13(1700) NF
NF
NF
NF

1748 50 37.6 12.3(−) 6.6(−) 19.2(−)
D13(2080) 1944 848 17.4 1.6(+) 1.9(−) 13.9(+)

1946 603 16.0 5.5(−) 10.4(−) 0.1(+)
1982 668 14.3 0.9(+) 2.5(+) 10.9(−)
1946 1.075 32.5 12.3(+) 0.3(+) 19.9(+)
1942 765 25.1 6.3(−) 0.0(−) 16.8(−)

Table H.7: ωN decay ratios of I = 1
2
, J = 3

2
resonances. Notation as in Table H.6, line

ordering as in Table H.1.



229

L2I,2S aπN aζN aηN aKΛ aKΣ aωN 1 aωN 2 aωN 3

P13(1720) −1.342 0.451 1.178 0.089 1.511 1.386 −4.000 −3.999
2.335 0.280 −3.674 0.752 −0.016 −2.372 −3.397 −3.998
3.047 0.460 3.999 3.997 −3.999 −4.000 −4.000 3.996

−0.669 0.424 −5.997 2.031 −2.703 0.974 −5.994 0.000c

P13(1900) 1.425 0.918 −0.306 −3.164 3.499 −0.389 −0.012 3.963
−3.094 0.897 0.837 −0.086 −1.307 1.601 2.885 2.983

1.336 0.283 0.294 3.997 2.892 −3.599 3.998 −3.992
−1.332 0.667 −0.698 4.316 −0.305 4.672 5.994 0.000c

D13(1520) 0.917 −0.482 1.335 2.448 1.380 −2.809 −1.731 3.693
0.828 0.449 1.857 0.464 −3.982 −4.000 3.995 −3.822
0.887 0.105 1.182 −0.452 0.773 3.711 3.902 −3.874
0.892 0.106 1.659 0.000c 0.000c 0.000c 0.000c 0.000c

D13(2080) 0.415 −1.000 −0.799 −1.426 −3.993 0.768 3.735 1.174
2.672 −0.956 −2.159 0.830 −2.281 2.155 3.841 −0.058
1.417 0.824 0.170 −3.970 0.512 1.711 3.997 0.026
1.026 0.840 0.493 1.589 1.012 1.659 2.704 0.000c

P33(1232) 0.254 3.520 — — 0.000c — — —
0.217 4.000 — — 0.000c — — —
0.199 3.916 — — 0.000c — — —
0.129 5.146 — — 0.000c — — —

P33(1600) 1.275 0.293 — — −0.794 — — —
1.755 0.335 — — −0.673 — — —
1.696 0.350 — — −0.171 — — —
1.148 0.172 — — −1.749 — — —

P33(1920) −3.108 1.234 — — −1.502 — — —
−2.592 1.151 — — −0.511 — — —
−2.679 1.147 — — −0.758 — — —
−4.341 1.440 — — 0.293 — — —

D33(1700) −0.222 0.419 — — 0.413 — — —
−0.263 0.417 — — 0.279 — — —
−0.248 0.397 — — 0.321 — — —
−0.226 0.452 — — 0.843 — — —

Table H.8: Off-shell parameters a of the spin-3
2

resonances. c: Not varied in the fit. First
line: C-p-π−, 2nd line: C-t-π+, 3rd line: C-t-π−, 4th line: C-p-π/χ+.



Appendix I

Numerical Methods and Extraction
of Partial Waves

In this final appendix, the general strategy for the calculation of the results and the
numerical procedures, which help to optimize the numerical manipulation of all Feyn-
man diagrams for the various reactions, are presented. The necessary integrations for
the extraction of the partial waves and matrix inversions for the determination of the
scattering matrix T (see Eqs. (4.8) and (4.20)) are realized by standard Simpson and
LU-decomposition methods [130].

I.1 Extraction of Feynman Diagram Contributions

and Calculation of Observables

The Feynman amplitude −iM(1)
fi = −i〈f |V |i〉 = ū(p′) . . . u(p) for each diagram, resulting

from the usual Feynman rules with the help of the Lagrangians summarized in Appendix
E, is rewritten by means of the algebraic manipulator REDUCE1) in the following way:

• Using four-momentum conservation, the intermediate and final momenta are reex-
pressed by the baryon momenta p and p′ and the incoming meson (photon) momen-
tum k (in the case of spin-0 baryon scattering, instead of k the average of the meson
momenta k̄ = (k + k′)/2 is used, cf. Section 5.1.1) and the Mandelstam variables s
and u.

• All Levi-Civita tensors εµνρσ appearing in 1−1−0−-vertices (as in, e.g., π → γγ,
ω → ρπ) are recasted in terms of γ matrices using Eqs. (A.12), (A.13), and (A.14).

• All γ5 matrices are moved to the left next to ū(p′) by applying the anticommutation
relation (A.12). Depending on the spin and parity properties of the initial and final
state, one is either left with ū(p′)γ2

5 = ū(p′)114 or ū(p′)γ5.

1)In principle, for reasons of unification and future advancements, exporting all REDUCE routines to
MATHEMATICA would be desirable.
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• With the help of the anticommutation property of the γ matrices (A.10), all four-
momenta contractions /p′ are moved to the left next to ū(p′) and the contractions /p to
the right next to u(p). The Dirac Equation (A.19) then transforms the contractions
ū(p′)/p′ and /pu(p) into mB′ū(p′)114 and mB114ū(p), respectively.

The resulting expression then is of the form (5.4), (5.15), or (5.21), depending on the
participating final states. Thus the contribution of the diagram to the spin-dependent
amplitude can be extracted as described in Chapter 5.

As an example, the above procedure is applied to the contribution of the u-channel Born
diagram to πN elastic scattering. From the Feynman rules one finds:

− iM(1)
u = i

g2
πNN

4m2
N

ū(p′, s′)γ5/k
/q + mN

q2 −m2
N

γ5/k
′u(p, s) .

Applying the above transformation rules (q = p− k′), this is rewritten as

− iM(1)
u = i

g2
πNN

4m2
N

ū(p′, s′)
−/̄k(q2 + 3m2

N)− 2mN(q2 −m2
N)

q2 −m2
N

u(p, s)

with q2 = u and hence A and B of Eq. (5.4) are identified by (V = M(1))

Au = +2mNg2
πNN

Bu = +g2
πNN

q2 + 3m2
N

q2 −m2
N

.

The procedure works completely analogously for all other diagrams and all other reaction
channels.

Looking at Eqs. (C.11) and (2.1) one deduces that the actual K-matrix elements entering
the calculation are related to the amplitudes extracted from the Feynman rules by

Kλ′λ = −
√

pp′m′
BmB

(4π)2
√

s
〈f |V |i〉 =

√
pp′m′

BmB

(4π)2
√

s
(−M(1)

λ′λ) . (I.1)

These K-matrix elements are then decomposed into amplitudes of total isospin I = 1
2

and I = 3
2

as described in Appendix F. In the next step, the spin-dependent isospin

amplitudes KI
λ′λ are further decomposed into helicity partial waves KIJ±

λ′λ of good total
spin J and parity P as described in Chapter 4 (cf. Eqs. (4.8) and (4.13)). All the hadronic
KIJ±

λ′λ amplitudes enter Eq. (4.20) for the extraction of the hadronic T IJ±
λ′λ amplitudes.

The photoproduction and Compton scattering T IJ±
λ′λ amplitudes are then extracted as

described in Appendix F.2.2 (cf. Eqs. (F.25) and (F.26)). Finally, from the T IJ±
λ′λ the

experimental observables given in Appendix G can be calculated.

The relations for the contributions of the Feynman diagrams to the spin-dependent am-
plitudes M(1)

λ′λ = Vλ′λ given in Eqs. (5.10), (5.13), (5.19), (5.20), and (5.24) in Chapter
5 have been checked with the help of the algebraic manipulator MATHEMATICA [116];
in addition, the formulae in Eq. (5.24) have been tested numerically against the calcu-
lation method developed in [158]. We have refrained from implementing the constraints
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reaction factor

πN → πN +1
πN → ζN −i
ζN → πN +i
ζN → ζπN +1
V N → πN (−i) · (+1)
V N → ζN (−i) · (−i)
πN → V N (+1) · (+i)
ζN → V N (+i) · (+i)
V N → V N +1

Table I.1: Additional factors for the conversion of the Feynman amplitudes M(1) into
purely real K-matrix elements.

following from gauge invariance (see Eqs. (5.27), (5.33), and (5.34) in Section 5.4) in
the rewriting procedure of the Feynman diagrams. However, gauge invariance has been
checked numerically by proving Eqs. (5.27), (5.33), and (5.34) for the sum of all Feynman
diagram contributions.

Similarly as for the spin-dependent amplitudes, the relations for the resonance decay
widths (E.25) , (E.26), (E.37), and helicity decay amplitudes (E.29), (E.39) in Appendix E
have been verified. These methods can be easily combined to evaluate relations analogous
to the ones given in (5.24) for reactions involving the π∆ final state.

For further simpification of the numerical manipulation, we have chosen specific relations
between the interaction Lagrangians for positive- and negative-parity resonances. The
field theoretical primer for the choice of all Lagrangians is that the interaction should
satisfy the same symmetries as the underlying fundamental theory. However, since all
baryon resonance interactions are introduced explicitly by hand, there is still some free-
dom concerning the relative sign between the interaction Lagrangian of positive- and
negative-parity resonances. The idea for the choice in Section 3.4 is, that in the resulting
full expression for the Feynman diagrams the negative-parity resonance contribution can
easily be deduced from the positive-parity expression by simply reversing the sign of the
resonance mass: M(1)

(P=−)(mR) = M(1)
(P=+)(mR → −mR). Thus, the Feynman diagram

manipulation presented above in Section I.1 needs to be applied only to the diagram of
the positive-parity resonance.

I.2 Performance Optimization

Looking at the Lagrangian of the linear σ model for πN scattering (cf. Section 3.3.2)
ūN(σ + iπ ·τ γ5)uN , one deduces, that the coupling of the nucleon to a pseuodscalar and
to a scalar meson differ by a factor of iγ5. Extracting now for example a πN → N → πN
and a πN → N → σN K-matrix element contribution as described in Section I.1 above
(note, that the latter one is not included in the present model, see Section 3.3.2), the
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result is purely real for πN → πN , while due to the coupling difference of iγ5 it is purely
imaginary for πN → σN . This directly translates into completely real contributions from
all diagrams to πN → πN , and into completely imaginary contributions from all diagrams
to πN → ζN .

However, since real number crunching is less (computational) time consuming than com-
plex number crunching, it is favorable to deal with a purely real, symmetric K matrix
instead of a hermitian, but complex one. Thus the K-matrix elements extracted by the
above procedure are additionally multiplied by the factors given in Table I.1; the result-
ing K matrix is purely real. It can be easily shown that upon applying these factors, all
rescattering contributions still enter in T (cf. Eq. (4.20)) with the correct sign.

A critical point in the numerical calculation is the maximum number of partial waves
Jmax. The number of angular integration steps, which have to be calculated (see above),
increases linearly with the maximum number of partial waves. Since computation time
is of great importance in the fitting procedure, it is essential to find a minimal value for
Jmax, which still gives results with sufficient accuracy. In [51, 52, 53] the partial-wave
decomposition has been performed up to Jmax = 11

2
. However, for the purposes of the

present model, an increase of this number is of vital importance. In the ωN photoproduc-
tion, the π0 exchange proves to be a very important mechanism at forward angles. Taking
into account only partial waves up to Jmax = 11

2
, one neglects large contributions of the

higher partial waves; this is also discussed in Section 8.4.6. Consequently, an increase of
Jmax is mandatory. We have tested the calculation for an optimal value and have found
reasonable convergence at a value of Jmax = 27

2
.
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Schütz, K. Holinde, J. Speth, B.C. Pearce, and J.W. Durso, Phys. Rev. C51, 1374
(1995).

[44] S.A. Dytman, T.P. Vrana, and T.-S.H. Lee, πN -Newsletter 14, 17 (1998).

[45] P.J. Ellis and H.-B. Tang, Phys. Rev. C57, 3356 (1998).

[46] Y. Elmessiri and M.G. Fuda, Phys. Rev. C60, 044001 (1999); ibid, C57, 2149
(1998).

[47] T. Ericson and W. Weise, Pions and Nuclei, Calderon Press, Oxford, 1988.

[48] H.W. Fearing and S. Scherer, Phys. Rev. C62, 034003 (2000), Nucl. Phys. A684,
499 (2001).

[49] T. Feuster, Diploma thesis, Universität Gießen 1993; T. Feuster, H.C. Dönges, M.
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Deutsche Zusammenfassung

Eines der großen Ziele der modernen theoretischen Physik ist es, sämtliche in der Natur
beobachteten Phänomene mithilfe quantenfeldtheoretischer Methoden zu beschreiben.
Ein Meilenstein in Richtung dieses Ziels war die Vereinheitlichung der elektromagnetischen
und der schwachen Kraft in der elektroschwachen Theorie in den 1960ern und 70ern durch
Salam und Weinberg. In diesen Rahmen fügte sich auch bald darauf die Quantenchromo-
dynamik (QCD), die allgemein akzeptierte Theorie zur Beschreibung der starken Kraft
und somit auch des Aufbaus der Nukleonen. Lediglich die Gravitation hat sich bislang
einer vereinheitlichten quantenfeldtheoretischen Beschreibung entzogen.

Der Erfolg der feldtheoretischen Beschreibungen der subatomaren Welt ist auf die beein-
druckende Vorhersagekraft der elektroschwachen Theorie zurückzuführen, und im Beson-
deren der Quantenelektrodynamik (QED). Die Kleinheit der elektromagnetischen Fein-
strukturkonstante αem erlaubt eine Entwicklung der Theorie nach Ordnungen in αem

(Störungstheorie). Durch die Anwendung dieser mächtigen Methode hat die elektromag-
netische Feldtheorie sämtliche experimentellen Tests mit Bravour bestanden.

Bei ausreichend hohen Energien ist auch die Kopplungskonstante der QCD αS so klein,
dass die QCD störungstheoretischen Methoden zugänglich ist. Bei diesen Energien ver-
halten sich die Quarks wie unter einer freien Theorie, was zur Anwendbarkeit der Kon-
stituentenquarkmodelle führt. Für niedrige Energien jedoch wird αS so groß, dass die
Quarks in den bekannten Hadronen gebunden werden, was aber auch bedeutet, dass
störungstheoretische Methoden zusammenbrechen. Wilson gelang es 1974 zu zeigen, wie
die QCD auf einem vierdimensionalen euklidischen Gitter so diskretisiert werden kann,
dass sie gleichzeitig numerisch handhabbar für große Kopplungen αS bleibt. Dies war die
Geburtsstunde der Gitter-QCD. Solange keine analytischen Lösungen der QCD vorliegen,
stellt die Gitter-QCD die vielversprechendste Methode dar, Eigenschaften hadronischer
Grund- und auch angeregter Zustände (Resonanzen) theoretisch vorherzusagen. Aller-
dings sind dafür enorme numerische Anstrengungen notwendig, so dass gerade erst damit
begonnen wird, die Massen und Zerfallsbreiten von Resonanzen zu beschreiben. Diese
Probleme führten zur Entwicklung einer Vielzahl von Quarkmodellen, die versuchen, die
Komplexität des stark selbstwechselwirkenden Multi-Quark-Gluon-Systems auf ein effek-
tives Zwei- oder Drei-Quark-System zu reduzieren.

Auch auf experimenteller Seite ist das Niederenergieverhalten der QCD nicht direkt
zugänglich. Der einzig mögliche, kontollierbare Zugang zur inneren Struktur der Baryonen
ist die Anregung des Nukleons mithilfe mesonischer oder elektromagnetischer Sonden.
Bedingt durch die extrem kurzen Lebensdauern der angeregten Baryonzustände können
lediglich deren Zerfallsprodukte nachgewiesen werden. Dementsprechend haben sich die
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experimentellen Anstrengungen, Informationen über Baryonresonanzen zu gewinnen, auf
die Produktion von Mesonen am Nukleon konzentriert.

Da die Gitter-QCD noch weit davon entfernt ist, Nieder- und Mittelenergiestreuprozesse
berechnen zu können, müssen effektive Methoden zur Untersuchung der dynamischen
Struktur solcher Prozesse herangezogen werden. Dabei wird die innere Struktur der Ba-
ryonen insofern berücksichtigt, dass explizite Resonanzzustände eingeführt werden, deren
Eigenschaften durch Vergleich mit den experimentellen Observablen bestimmt werden.
Ziel ist, die extrahierten Eigenschaften letztendlich mit den Vorhersagen der Gitter-QCD
bzw. der Quark-Modelle zu vergleichen.

Der Großteil der Informationen über die bislang experimentell identifzierten Nukleon-
resonanzzustände stammt aus Partialwellenanalysen der Reaktionen γN → πN und
πN → πN (und zum Teil auch πN → 2πN). Dies ist auch der Grund dafür, dass diese
Resonanzen nach dem relativen πN -Bahndrehimpuls L, dem total Isospin I und dem to-
talen Drehimpuls J klassifiziert werden. Für einige der identifizierten Resonanzen — wie
beispielsweise die L(2I)(2J) = P33(1232)- (∆-) Resonanz, die die elastische πN -Streuung im
unteren Energiebereich dominiert — finden die verschiedenen Analysen übereinstimmende
Massen und Breiten, während es für andere wie die S11(1535)-Resonanz große Unter-
schiede gibt. Im speziellen Fall der S11(1535) liegen die Unterschiede in der Nähe zur
ηN -Produktionsschwelle begründet, was bereits zeigt, dass in vielen Fällen die simultane
Berücksichtigung möglichst vieler Endzustände mithilfe so genannter Coupled-Channel-
Analysen notwendig ist. Auf der anderen Seite sagen die Quark-Modelle ein wesentlich
umfangreicheres Resonanzspektrum voraus als bislang in der Pionenproduktion gefunden
wurde. Dies führte zu Spekulationen, dass viele der Resonanzen nur in anderen Pro-
duktionskanälen identifiziert werden könnten, was zur Grundlage einer Vielzahl von Ana-
lysen wurde, die sich auf die Suche dieser fehlenden Resonanzen konzentrierten. Leider
haben fast alle dieser Analysen den Nachteil, dass sie sich lediglich auf einen Produktions-
kanal beschränken und dadurch vernachlässigen, wie sich die extrahierten Resonanzeigen-
schaften über Rückstreuung auf andere Reaktionskanäle auswirken. Aus diesem Grund
besteht auf dem Gebiet der Nukleonresonanzanalyse ein großes Interesse an Modellen, die
gleichzeitig alle wichtigen Reaktionskanäle berücksichtigen und analysieren. Andererseits
bedeutet dies allerdings auch die Bestimmung einer Vielzahl a priori unbekannter Reso-
nanzmassen und -kopplungen. Die Prämisse solch eines Modells sollte daher nicht nur
die simultane Analyse sämtlicher Kanäle in einem möglichst großen Energiebereich sein,
sondern auch konsistent den gleichen Lagrangian für die pion- und die photoninduzierten
Reaktionen zu benutzen. Dabei werden alle nichtresonanten Beiträge dynamisch durch
Born-, u- und t-Kanalbeiträge gleichzeitig für sämtliche Partialwellen erzeugt und die
Anzahl der freien Parameter enorm reduziert. Da die QCD als die der starken Wech-
selwirkung zu Grunde liegende Theorie allgemein akzeptiert ist, sollte eine effektive La-
grangetheorie idealerweise aus der QCD abgeleitet sein und dadurch so gut wie möglich
die Eigenschaften der QCD widerspiegeln. Demnach sollte die effektive Theorie die sel-
ben Symmetrien erfüllen, während die enthaltenen Freiheitsgrade durch Mesonen und
Baryonen anstelle von Quarks und Gluonen beschrieben werden. Für die πN -Streuung
erfordert dies die Konformität mit der chiralen Symmetrie, die eine wichtige Rolle im
Niederenergiebereich der Pion-Nukleon-Physik spielt.

Ein Weg in Richtung der simultanen Analyse aller wichtigen Reaktionskanäle unter gleich-
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zeitiger Berücksichtigung der genannten Bedingungen ist durch das Modell von Feuster
und Mosel [51, 52, 53] geebnet worden. In dieser Nukleonresonanzanalyse im Schwer-
punktsenergiebereich bis zu 1,9 GeV ist die Produktion der Endzustände γN , πN , 2πN ,
ηN und KΛ im Rahmen einer unitären, effektiven Lagrangetheorie berücksichtigt wor-
den, wobei die Komplexität des 2πN -Systems durch Einführung eines effektiven ζN -
Endzustands approximiert worden ist. Eine wichtige Schlußfolgerung ist gewesen, dass
die zusätzliche Berücksichtigung der experimentellen Photoproduktionsdaten von ele-
mentarer Bedeutung für die verlässliche Extraktion der Resonanzeigenschaften ist. Aller-
dings sind durch die Vernachlässigung des wichtigen Vektormesonenendzustands ωN Un-
zulänglichkeiten bei der gleichzeitigen Beschreibung der beinhalteten Kanäle bei höheren
Energien zu Tage getreten.

Demzufolge wird in der hier vorgestellten Arbeit das Modell von Feuster und Mosel
erweitert, um auch den ωN -Endzustand einzubeziehen und somit die verlässliche Ex-
traktion der Eigenschaften von energetisch höher liegenden Resonanzen zu ermöglichen.
Dieser Endzustand ist bislang noch nicht konsistent und in seiner vollen Komplexität
in einem Coupled-Channel-Modell berücksichtigt worden. Die zuvor entwickelten Mo-
delle betrachteten diesen Endzustand meist isoliert, wodurch der Produktionsmecha-
nismus nur wenigen Einschränkungen unterlag. Dies ändert sich vollständig in einer
Coupled-Channel-Rechnung, da sich jede Änderung der ωN -Beschreibung durch Uni-
tarität und Rückstreuung sofort auf alle anderen Kanäle und insbesondere die πN -
Produktion auswirkt.

Vektormesonenproduktion am Nukleon ist aber auch an sich bereits von großem In-
teresse. Da Vektormesonen elektromagnetisch in Leptonenpaare zerfallen, stellen sie
eine ideale Sonde dar, um die Eigenschaften von heißer und dichter Materie, die bei
Schwerionenstößen entsteht, zu untersuchen. Da Leptonen lediglich über die elek-
troschwache Kraft wechselwirken, erlaubt ihr Nachweis einen direkten Zugang zur Unter-
suchung des Einflusses des umgebenden Mediums auf die Eigenschaften der Vektormeso-
nen. In der Tat wird die Überhöhung der in ultrarelativistischen Schwerionenkollisio-
nen beobachteten Dileptonenerzeugungsrate bei kleinen invarianten Dileptonenmassen
derzeit als Veränderung der Masse und Breite des ρ-Vektormesons in Kernmaterie in-
terpretiert. Zur zuverlässigen und schlüssigen Untersuchung solcher QCD-Phänomene
ist das Verständnis des zu Grunde liegenden fundamentalen Prozesses der Vektormeso-
nenproduktion im Vakuum essentiell. Auf experimenteller Seite werden hierzu in naher
Zukunft Untersuchungen durch die Analyse der Dileptonenproduktion mit dem Spektro-
meter HADES an der GSI in Darmstadt durchgeführt.

Wie erwähnt erfordert die theoretische Analyse von energetisch höher liegenden Reso-
nanzen und der Vektormesonenproduktion die Minimierung von Freiheiten mit Hilfe
der Berücksichtigung von Unitaritätseffekten und aller wichtigen Endzustände. In
der vorliegenden Arbeit wird das erweiterte Coupled-Channel effektive Lagrangemodell
präsentiert, vollständig diskutiert und die Ergebnisse vorgestellt. Es stellt sich heraus,
dass sich neben dem ωN -Endzustand auch der KΣ-Endzustand auf die Beschreibung der
übrigen Reaktionskanäle merklich auswirken kann. Insbesondere die KΛ-Produktion er-
weist sich als darauf sensitiv. Durch die nun erreichte simultane Berücksichtigung der
Endzustände γN , πN , 2πN , ηN , KΛ, KΣ und ωN spielt dieses Modell eine herausra-
gende Rolle für die Analyse von Nukleonresonanzen im Energiebereich bis 2 GeV.
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Das Wechselwirkungspotential, welches die Reaktionen zwischen allen erwähnten
Endzuständen beschreibt, wird in der Arbeit diskutiert, insbesondere im Hinblick auf die
berücksichtigten Symmetrien und im Vergleich mit anderen Modellen. In dem vorgestell-
ten Modell wird die Unitarität durch die sogenannte K-Matrix-Bornnäherung gewahrt,
welche es erlaubt, die vierdimensionale Integralgleichung (Bethe-Salpeter-Gleichung), die
die Streuprozesse beschreibt, in eine algebraische Gleichung umzuformen, die durch ein-
fache Matrixinvertierung gelöst wird. Dafür ist allerdings noch eine zusätzliche Partialwel-
lenzerlegung sämtlicher Reaktionsamplituden in die Quantenzahlen Isospin I, totaler
Drehimpuls J und Parität P notwendig. Aufgrund seiner Quantenzahlen wird für die Par-
tialwellenzerlegung des ωN -Endzustands nach J und P eine Erweiterung des in der Litera-
tur üblichen Formalismus notwendig. Die hier vorgestellte Methode erlaubt es, sämtliche
berücksichtigten Reaktionen einheitlich zu handhaben und lässt sich insbesondere auf be-
liebige Meson- und Photon-Baryon-Reaktionen anwenden. Es wird auch gezeigt, wie sich
die dadurch extrahierten Helizitätspartialwellen leicht in der in der Literatur üblichen
Partialwellenform darstellen lassen. Die letztlich noch notwendige Berechnung der spin-
abhängigen Amplituden wird in einer vereinheitlichten Beschreibung für sämtliche Reak-
tionskanäle präsentiert.

Ein Problem bei der simultanen Beschreibung einer Vielzahl von Reaktionskanälen stellt
die Behandlung der experimentellen Datenbasis dar. Für die verschiedenen pion- und
photoninduzierten Reaktionen variieren die experimentellen Daten sowohl in Quantität als
auch in Qualität. Während beispielsweise sehr detaillierte Daten zur Pionenproduktion
im gesamten betrachteten Energiebereich zur Verfügung stehen, ist die Datenlage zur
ω-Produktion sehr eingeschränkt. Daher ist es notwendig, einen Ausgleich in der experi-
mentellen Datenbasis zu schaffen und die experimentellen Fehler sinnvoll zu modifzieren.

Die Extraktion der Resonanz- und Hintergrundeigenschaften durch Vergleich des Modells
mit der so modifizierten Datenbasis erlaubt eine Vielzahl von Untersuchungen. Der erste
Schritt in der Analyse ist die alleinige Berücksichtigung der pioninduzierten Reaktionen
(hadronischer Fit), da der dadurch reduzierte Parameterraum sich numerisch leichter
behandeln lässt. Darauf aufbauend lassen sich dann Rechnungen durchführen, in denen
die gesamte pion- und photoninduzierte Datenbasis berücksichtigt wird (globaler Fit). Die
gleichzeitige Einbeziehung des γN -Endzustands gestattet die Verwendung einer wesentlich
größeren und genaueren Datenbasis und somit strengerer Tests, was die Resonanzbeiträge
betrifft.

Für die pioninduzierten Reaktionen lassen sich die Auswirkungen verschiedener Spin-3
2
-

Resonanzkopplungen, die zu unterschiedlichen Hintergrundbeiträgen (Offshellbeiträgen)
in den Spin-1

2
-Partialwellen führen, untersuchen. Die Ergebnisse für die beiden hier im-

plementierten Kopplungen sind sehr ähnlich, doch es stellt sich heraus, dass durch die
zusätzlichen Offshellbeiträge in den Spin-1

2
-Partialwellen eine bessere Beschreibung der

experimentellen Daten möglich ist. Die Notwendigkeit von zusätzlichem Hintergrund im
Spin-1

2
-Sektor wird auch dadurch deutlich, dass die Beiträge der t-Kanaldiagramme bei

ausgeschalteten Offshellbeiträgen wichtiger werden. Die Untersuchung des Einflusses der
chiralen Symmetrie durch Benutzung verschiedener σππ-Kopplungen innerhalb des Mo-
dells zeigt, dass in der Tat eine Wechselwirkung, die im Einklang mit der chiralen Symme-
trie steht, nicht nur im Nieder-, sondern auch im Mittelenergiebereich die experimentellen
πN -Daten besser beschreibt.
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In den globalen Fits stellt sich heraus, dass eine Readjustierung der Parameter, die im
hadronischen Fit bestimmt wurden, zur Beschreibung der experimentellen Photoproduk-
tionsdaten notwendig ist. Dies gilt insbesondere für den ηN -und den ωN -Endzustand,
aber auch für die assoziierten Strangenessproduktionskanäle KΛ und KΣ. Während dies
in den ersten beiden Fällen vor allem an den unzureichenden pioninduzierten Daten liegt,
ist in den letzteren beiden Fällen die aufgrund der elektromagnetischen Eichinvarianz
verstärkte Bedeutung der Borndiagramme für die Probleme in der Beschreibung der Pho-
toproduktionsdaten verantwortlich. Dies zeigt, dass die Berücksichtigung der Photopro-
duktionsdaten zur verlässlichen Extraktion von Nukleonresonanzeigenschaften unbedingt
notwendig ist. Werden jedoch auch die hadronischen Parameter neu bestimmt, so ist eine
gleichzeitige Beschreibung aller pion- und photoninduzierten Reaktionen oben genann-
ter Endzustände mit einem Parametersatz möglich. Im Vergleich zweier verschiedener
Formfaktoren für die t-Kanalprozesse zeigt sich allerdings, dass die globale Beschreibung
die Benutzung eines bestimmten Formfaktors erfordert. Die im globalen Fit gefundenen
Eigenschaften der gut bekannten Resonanzen stimmen mit anderen Analysen überein,
und die extrahierten Bornkopplungen sind nicht weit von den aus SU(3)-Betrachtungen
erwarteten Werten entfernt. Nebenbei ist es mit dem vorgestellten Modell auch möglich,
die Konsistenz der experimentellen Daten untereinander zu überprüfen, wobei aber keine
Diskrepanzen feststellbar sind. Einzig in der simultanen Beschreibung des Hintergrunds
der Spin-1

2
-Partialwellen in πN → πN und γN → πN ergeben sich Schwierigkeiten in-

nerhalb des Modells.

In der Analyse der energetisch höher liegenden Endzustände KΛ, KΣ und ωN finden sich
deutliche Hinweise auf Resonanzen in den Partialwellen IJP = 1

2
3
2

+
(P13) zwischen 1,9 und

2 GeV, IJP = 1
2

3
2

−
(D13) um 1,95 GeV, IJP = 3

2
1
2

+
(P31) um 1,71 GeV und IJP = 3

2
3
2

+

(P33) am oberen Ende des betrachteten Energiebereichs (2 GeV). Insbesondere die iden-
tifizierte P13(1900)-Resonanz spielt eine wichtige Rolle in den Produktionsmechanismen
dieser Endzustände. Umgekehrt erweisen sich diese höher liegenden Endzustände als sehr
sensitiv auf die Beiträge dieser Resonanzen und erlauben es somit, deren Eigenschaften
genauer festzulegen.

Gerade zur zuverlässigen Bestimmung der Eigenschaften solcher Resonanzen, die bis-
lang noch nicht eindeutig identifiziert worden sind, ist die Berücksichtigung von
Rückstreuungseffekten unvermeidlich. Beispielsweise stellt sich heraus, dass, obwohl die
P13(1900) wichtig für den KΛ-Produktionsmechanismus ist, die beobachtete Überhöhung
des totalen Photoproduktionswirkungsquerschnitts um 1,9 GeV nicht auf diese Resonanz,
sondern auf einen Interferenzeffekt verschiedener Hintergrundbeiträge zurückzuführen ist.
Andererseits beeinflusst die P13(1900) auch die Eigenschaften der P13(1720) im Ver-
gleich zu vorherigen Analysen. Insbesondere wird die Bedeutung der P13(1720) für die
KΛ-Produktion verstärkt, so dass sie sowohl die pion- als auch die photoninduzierte
Reaktion dominiert. Dies führt weiterhin dazu, dass die Diskrepanz zwischen der P11-
πN -Inelastizität und dem 2πN -Partialwellenwirkungsquerschnitt oberhalb von 1,6 GeV
nun nicht mehr durch die KΛ-Produktion, sondern durch eine große P11(1710)-ηN -
Zerfallsbreite erklärt wird. Nichtsdestotrotz werden weitere Polarisationsdaten oberhalb
von 1,7 GeV besonders für ηN und ωN benötigt, um die Rolle oben genannter Resonanzen
endgültig klären zu können.

Der KΣ-Produktionsmechanismus wird durch JP = 1
2

+
-Wellen dominiert, die durch die
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Beiträge der P11(1710)- und der P31(1750)-Resonanzen erzeugt werden. Die P11(1710)
bestimmt auch die ωN -Produktion in der Nähe der Schwelle, während in diesem Kanal
für höhere Energien die P13(1900) überwiegt. Dieses Ergebnis steht im Gegensatz zu
sämtlichen anderen (Einkanal-) Analysen zur ωN -Produktion. Ebenso stellt sich heraus,
dass der ωN -Kanal großen Einfluss auf die assozierte Strangenessproduktion (KΛ und
KΣ) hat.

Da im vorgestellten Modell alle wichtigen Endzustände bis zu Energien von 2 GeV imple-
mentiert sind, ist es ebenfalls möglich, Abschätzungen für die Beiträge der verschiedenen
Endzustände zur GDH-Summenregel zu machen. Die gefundenen Beiträge von KΛ, KΣ
und ωN sind klein, unterscheiden sich aber deutlich von Werten, die in Einkanalanalysen
extrahiert worden sind.

Es existieren allerdings auch Anzeichen dafür, dass es notwendig ist, das in dieser Arbeit
vorgestellte Modell noch zu erweitern. Unter der Annahme, dass die hier verwende-
ten 2πN -Daten richtig sind, finden sich in den JP = 3

2

+
-Wellen Hinweise für wichtige

zusätzliche 3πN -Endzustandsbeiträge, die bislang nicht berücksichtigt sind. Es zeigt
sich auch, dass eine physikalisch korrekte Behandlung des 2πN -Systems notwendig ist,
um das Niederenergieverhalten der JP = 3

2

−
-Partialwellen unterhalb der D13(1520)-

und D33(1700)-Resonanzen vollständig erklären zu können. Ein weiterer Hinweis zur
Notwendigkeit der Erweiterung des Modells in diese Richtung ist in fehlenden Hinter-
grundbeiträgen in der Comptonstreuung zu finden, die durch 2πN -Rückstreuung erzeugt
werden könnten. Da aus vielen Analysen bekannt ist, dass Spin-5

2
-Resonanzen wichtige

Beiträge zur Comptonstreuung oberhalb von 1,6 GeV liefern, solche jedoch im vorgestell-
ten Modell bislang nicht enthalten sind, ist die Analyse dieses Kanals auf den Energie-
bereich unterhalb von 1,6 GeV beschränkt. Da jedoch ohne solche Resonanzen sämtliche
Daten zur ηN -, KΛ-, KΣ- und ωN -Produktion hier dennoch gut beschrieben werden
können, scheinen sie keine große Rolle in diesen Reaktionen zu spielen. Dies wird zur Zeit
in weiterführenden Rechnungen untersucht [162].

Die für die Berücksichtigung des ωN -Endzustands notwendig gewordene Vereinheitlichung
der Partialwellenzerlegung erlaubt es nun, auf unkomplizierte Weise eine realistischere
Beschreibung des 2πN -Endzustands durch Aufspaltung in ρN und π∆ zu implementieren.
Mithilfe dieser Endzustände ist es möglich, den 2πN -Dreiteilchenphasenraum zu imitieren
und sich gleichzeitig auf Zweiteilchenunitarität zu beschränken. Die zusätzliche Mitnahme
der Spektralfunktionen des ρ-Mesons und des ∆-Baryons würde es schließlich erlauben,
den 2πN -Endzustand vollständig innerhalb des vorgestellten Modells zu beschreiben.
Diese Erweiterung wird voraussichtlich die Beschreibung der DI3-Partialwellen unterhalb
der ersten Resonanzen verbessern und den benötigten zusätzlichen Hintergrund in der
Comptonstreuung erzeugen.

Während für höhere Energien die korrekte Berücksichtigung sämtlicher durch Unitarität
verursachter Schwelleneffekte von hauptsächlicher Bedeutung ist, werden für niedrigere
Energien ebenso bedeutsame Effekte durch die Analytizität erwartet. Da durch die im-
plementierte K-Matrix-Bornnäherung die analytischen Eigenschaften der Bethe-Salpeter-
Gleichung verloren gehen, wäre es auch erstrebenswert, das vorgestellte Model über diese
Näherung hinaus zu erweitern, und somit, ähnlich wie Kondratyuk und Scholten [100],
auch Auswirkungen der Analytizität auf die Streuprozesse untersuchen zu können.
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