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Chapter 1

Introduction

Nonequilibrium many-body theory or quantum-field theory has become a major topic
of research for transport processes in nuclear physics, in cosmological particle physics as
well as condensed matter physics. The multidisciplinary aspect arises due to a common
interest in the various relaxation phenomena of quantum dissipative systems. Impor-
tant questions in high-energy nuclear or particle physics at the highest energy densities
are: i) how do nonequilibrium systems in extreme environments evolve, ii) how do they
eventually thermalize, iii) how do phase transitions occur in real-time with possibly
nonequilibrium remnants, and iv) how do such systems evolve for unprecedented short
and nonadiabatic timescales?

The very early history of the universe provides scenarios, where nonequilibrium
effects might have played an important role, e.g. in the (post-)inflationary epoque
or in the evolution of baryogenesis. In modern nuclear physics the understanding of
the dynamics of heavy-ion collisions at various bombarding energies has always been
a major motivation for research on nonequilibrium quantum many-body physics and
relativistic quantum-field theories. The initial state of such collisions resembles an
extreme nonequilibrium situation, whereas the final state might even exhibit a certain
degree of thermalization. Indeed, at the presently highest energy heavy-ion collider
experiments at the Relativistic Heavy-Ion Collider (RHIC), where one expects to create
experimentally a transient deconfined state of matter denoted as quark-gluon plasma
(QGP) there are experimental indications — like the build-up of collective flow — for
an early thermalization accompanied with the generation of a very large pressure.
Furthermore, the phenomenon of disoriented chiral condensates (DCC) during the
chiral phase transition (from deconfined to ordinary hadronic matter) has lead to a
considerable progress for our understanding of nonequilibrium phase transitions at
short timescales over the last decade. All these examples demonstrate that one needs
an ab initio description of the dynamics of out-of-equilibrium quantum-field theory.

An appropriate basis for the study of nonequilibrium quantum many-body physics
is provided by the closed-time-path (CTP) functional integral (‘Schwinger-Keldysh’
[1, 2, 3, 4, 5]) formalism. The essential merit of this real-time Green function tech-
nique lies in its applicability to all kind of quantum nonequilibrium phenomena. Indeed,
it has been used in various fields of nonrelativistic quantum nonequilibrium physics,
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such as condensed matter, plasma and nuclear physics, and in the context of rela-
tivistic quantum-field theories as well. Within this framework one can derive and find
valid approximations — depending, of course, on the problem under consideration —
by preserving overall consistency relations. In this context the most prominent role
is played by the resulting causal Dyson-Schwinger equations of motion for the one-
particle Green functions, i.e. the Kadanoff-Baym (KB) equations [6, 7, 8, 9, 10]. These
equations might be considered as an ensemble average over the initial density matrix
characterizing the preparation of the initial state of the system, which may be far out
of equilibrium. The direct relation to the ‘influence functional formalism’ allows to
address the stochastic aspects of the KB equations [11]. The presence of (quantum)
noise and dissipation — related by a fluctuation-dissipation theorem — guarantees that
the modes or particles of an open system become thermally populated on average in
the long-time limit if coupled to an environmental heat bath.

A further important aspect of this formalism lies in the fact, that it serves as a
basis for the derivation of generalized transport equations. Those kinetic equations —
as obtained by means of appropriate Kadanoff-Baym equations within suitable approx-
imations — play the central role in more or less all practical simulations of nonrelativis-
tic and relativistic many-body nonequilibrium systems. Hence, a major impetus has
been to derive semiclassical Boltzmann-like transport equations within the standard
quasiparticle approximation [12, 13, 14]. Additionally, off-shell extensions by means
of a gradient expansion in the space-time inhomogeneities — as already introduced by
Kadanoff and Baym [6] — have been formulated for several systems: for a relativistic
electron-photon plasma [15], for transport of electrons in a metal with external elec-
trical field [16] and in semiconductors [10, 17], for transport of nucleons in heavy-ion
reactions at intermediate energies [18], for transport of particles in ¢*-theory [9, 19]
as well as for transport of partons in high-energy heavy-ion reactions [20, 21, 22, 23].
Within all these derivations the various forms assumed for the self-energy have to fulfill
consistency relations in order to preserve symmetries of the fundamental Lagrangian
(24, 25, 6].

In the nuclear physics context the quantum dynamics of the spectral function is a
lively discussed issue in the microscopic modeling of hadronic resonances with a broad
mass distribution. This is of particular relevance for simulations of heavy-ion reactions
where e.g. the A-resonance or the p-meson already show a large decay width in vacuum.
Especially the p vector meson is a promising hadronic particle for showing possible in-
medium modifications in hot and compressed nuclear matter (see e.g. [26, 27]), since
the leptonic decay products are of only weakly interacting electromagnetic nature.
Indeed, the CERES experiment [28] at the Super-Proton-Synchrotron (SPS) at CERN
has found a significant enhancement of lepton pairs for invariant masses below the pole
of the p-meson, giving evidence for such modifications. Hence, a consistent formulation
for the transport of extremely short-lived particles beyond the standard quasiparticle
approximation is needed. On the one side, there exist purely formal developments
starting from a first order gradient expansion of the underlying KB equations [29, 30,
31, 32], while on the other side already first practical realizations for various questions
have emerged [33, 34, 35, 36, 37]. The general idea is to obtain a description for the
propagation of the off-shell mass. However, a fully ab initio investigation without any



further approximations, does not exist so far.

It has been found early in the investigations of heavy-ion collisions at low energies
that collisions play a central role for the equilibration processes. Full time-dependent
Hartree or Hartree-Fock descriptions [38] were insufficient to describe the reactions with
increasing collision energy. In these cases additional Boltzmann-like collision terms
had to be incorporated in order to provide a more adequate description of the collision
processes. The same situation has been encountered for nonequilibrium quantum-
field theories where typically the nonperturbative description of (second-order) phase
transitions has been in the foreground by means of mean-field (Hartree) descriptions
(39, 40, 41, 42, 43, 44]. Applications include the evolution of disoriented chiral con-
densates or the decay of the (oscillating) inflaton in the early reheating era. ‘Effective’
mean-field dissipation (and decoherence) — solving the so-called ‘backreaction’ problem
— was incorporated by particle production through order parameters explicitly vary-
ing in time. However, it had been soon realized that such a dissipation mechanism,
i.e. transferring collective energy from the time-dependent order parameter to particle
degrees of freedom, can not lead to true dissipation and thermalization.

The incorporation of true collisions then has been formulated also for the various
quantum-field theories [9, 45, 46, 47, 48]. In this respect a quite elegant way is pro-
vided by the two-particle-irreducible (2PI) effective action [9, 49, 50]. Including the
background field and the correlation function on the same footing, collisions can be
naturally included by taking into account contributions beyond the leading mean-field
order of the generating functional. Due to the construction in terms of full Green
functions this method ensures the validity of all essential conservation laws. The re-
sulting equations of motion always do resemble the KB equations; in their general form
(beyond the mean-field or Hartree(-Fock) approximation) they do break time invari-
ance and thus lead to irreversibility. This macroscopic irreversibility arises from the
truncations of the full theory to obtain the self-energy operators in a specific limit. As
an example we mention the truncation of the (exact) Martin-Schwinger hierarchy in
the derivation of the collisional operator in Ref. [18] or the truncation of the (exact)
BBGKY hierarchy in terms of n-point functions [51, 52, 53, 54, 55, 56, 57, 58].

Although the Kadanoff-Baym equation has been of wide interest (numerical) studies
of its full solution are rather scarce. In the nuclear and particle physics context pioneer-
ing work has been performed by Danielewicz [59] investigating the initial distribution
of two occupied Fermi spheres in momentum space for spatially homogeneous systems
in order to model the initial condition of a heavy-ion collision in the nonrelativistic
domain. In comparison to a standard on-shell semiclassical Boltzmann equation the
full quantum Kadanoff-Baym solution showed quantitative differences, i.e. a larger col-
lective relaxation time for complete equilibration of the momentum distribution. This
‘slowing down’ of the quantum dynamics was attributed to quantum interference and
off-shell effects. Similar quantum modifications in the equilibration and momentum
relaxation have been found in [12] and for a relativistic situation in Ref. [60]. Partic-
ular emphasis was put in Refs. [60, 61] on non-local aspects (in time) of the collision
process and thus the potential significance of memory effects on the nuclear dynamics.
In the following, full and more detailed solutions of nonrelativistic KB equations have
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been performed by Kohler [62, 63] with special emphasis on the build-up of initial
many-body correlations on short time scales. Moreover, the role of memory effects has
been clearly shown experimentally by femtosecond laser spectroscopy in semiconduc-
tors [64] in the relaxation of excitons. Solutions of quantum transport equations for
semiconductors [10, 65] — to explore relaxation phenomena on short time and distance
scales — have become also a very active field of research [66].

During the last years the description of nonequilibrium real-time dynamics within
the 2PI effective action formalism has regained strong interest. First numerical studies
in this context for the time evolution of relativistic quantum-fields have been carried
out for ¢*-theory in 1+1 dimensions within the three-loop approximation of the ef-
fective action [67, 68]. The method has been applied also to the homogeneous O(N)
model performing a systematic expansion in 1/N [69] or within the bare vertex ap-
proximation [70]. All these calculations exhibit thermalization since true scattering
processes are included, i.e. beyond leading order. Thus the treatment within the 2PI
effective action remedies the shortcomings of 1PI effective action approaches, that fail
to show thermalization and do not reach the appropriate long-time limit [40, 71]. The
investigations have been extended to the symmetry broken phase where the bare ver-
tex approximation resums a larger series than contained in the 2PI-1/N expansion at
next-to-leading order [72, 73, 74]. However, a detailed and quantitative interpretation
of the time scales found was not given.

While the aforementioned studies restrict to homogeneous systems in space, there
is a further branch dealing with general inhomogeneous settings. Especially the dy-
namical behaviour of relativistic scalar self-interacting field theories in 1+1 space-time
dimensions is investigated within the Hartree and classical approximation in the sym-
metric or broken phase [75, 76, 77]. Since true collisions are absent at the Hartree
level no thermalization is observed [75]. Only when additional ensemble averaging is
invoked there are hints for quantum equilibration at intermediate times and classical
equilibration at large times [76, 77].

As already stressed the present thesis will focus in particular on the full quantum
dynamics of the spectral (i.e. ‘off-shell’) information contained in the nonequilibrium
single-particle spectral function. In this respect we will study ab initio nonequilibrium
time evolution in case of the scalar ¢*-theory in 241 space-time dimensions by means
of the full Kadanoff-Baym equation. By employing a three-loop approximation for the
2P1 effective action mean-field effects and scattering processes — as a necessary ingre-
dient for equilibration — are included self-consistently. We will consider in detail the
statistical and spectral aspects — as both contained in the Kadanoff-Baym formulation
— of the thermalization process for far-from-equilibrium initial conditions. Here we
want to show, how complete thermalization of all single-particle quantum fluctuations
will be achieved. Furthermore, we will put special emphasis on the comparison of the
full quantum solution to approximate schemes given first of all by the Boltzmann ap-
proximation in terms of quasiparticles. Such a comparison with the on-shell Boltzmann
limit is — for the first time — performed for relativistic systems. Although the analogy
of KB-type equations to a Boltzmann-like process is quite obvious, this relation is far
from being trivial. The full quantum formulation contains much more information than



a semiclassical (generally) on-shell Boltzmann equation. The dynamics of the spectral
(i.e. ‘off-shell’) information is fully incorporated in the quantum dynamics while it is
missing in the Bolzmann limit. A satisfying answer to the question of quantum equi-
libration can thus only be obtained by a detailed numerical solution of the quantum
description itself. This is the basic aim of our present study. Additionally, we will
investigate the off-shell extensions incorporated in generalized kinetic equations as ob-
tained from a gradient expansion of the full Kadanoff-Baym equation. Although such
generalized transport equations have already been used in the past, a check against
the full solution is still lacking.

Before we will describe the structure of this work, we want to shortly motivate why
we investigate the scalar ¢*-theory for the case of 2+1 space-time dimensions. On the
one hand the study of the self-interacting bosonic theory in this dimensionality has a
right on its own. On the other hand is contains two essential advantages:

1) It superceeds the rather artificial structure of the ¢*-theory in 141 dimensions,
that has been investigated before. In the latter case on-shell scattering processes are
purely (col-)linear and thus do not lead to an equilibration in accordance with an ap-
propriate change of the momentum distribution. Thermalization in this dimensionality
is only mediated by off-shell scattering processes. This is of course a rather unusual
situation, since it is known from the investigation of heavy-ion collisions by means of
quantum kinetic theories, that binary on-shell scattering plays an important role. In
the 2+1 dimensional case both, on-shell and off-shell collisions influence the equilibra-
tion behaviour. Thus the theory in 241 dimensions is a well-suited laboratory in order
to investigate the differences between the full Kadanoff-Baym theory and approximate
schemes as given by the on-shell Boltzmann limit and by generalized off-shell transport
equations.

2) The divergence structure of the ¢*-theory in 2+1 dimensions is such that one has
full control over the renormalization procedure. As we will see in our investigations,
only two self-energies — containing solely vacuum parts of Green functions — diverge in
the ultraviolet regime. Thus the renormalization can be performed equivalently to the
standard zero temperature vacuum case. This is different in 3+1 dimensions, where
complete classes of self-energies are divergent, which incorporate non-vacuum parts
of the Green functions as well. Thus actually more involved renormalization schemes
should be used analogous to those constructed for self-consistent approximations at
finite temperature [78, 79], which actually applies to the equilibrium case, only.

Our work is organized as follows: In Chapter 2 we will present the relevant equa-
tions for the nonequilibrium dynamics in case of the ¢*-theory. We will briefly derive
the Kadanoff-Baym equations within the three-loop approximation of the 2PI effective
action. Chapter 3 is devoted to numerical studies on equilibration phenomena within
the full Kadanoff-Baym theory by employing different initial configurations. The struc-
ture of the quantum evolution is analyzed in detail by considering the statistical as well
as the spectral aspects as contained in the full Kadanoff-Baym solution. The different
time scales of the thermalization process are identified as given by an initial build-up of
correlations, a kinetic equilibration at intermediate times and the approach to chem-
ical equilibrium. Furthermore, it is shown that the solutions of the Kadanoff-Baym
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equations for ¢ — oo yield the proper off-shell thermal state, i.e. the Green functions
fulfill the Kubo-Martin-Schwinger (KMS) relation in the long-time limit. The actual
numerical algorithm used is described in Appendix A as well as the renormalization
by counterterms in Appendix B in order to achieve ultraviolet convergent results. In
Chapter 4 we present an efficient method for the calculation of self-consistent spectral
functions at finite temperature in terms of real-time Green functions. Besides the is-
sues of analyticity and coupling dependence of the spectral functions we will briefly
present results for massless Bose fields in thermal equilibrium. The next parts of the
work are dealing with approximate dynamical schemes and their relation to the full
Kadanoff-Baym theory. Chapter 5 concentrates in particular on the well-known Boltz-
mann limit in terms of on-shell quasiparticles. The solutions of this approximation as
well as a simple relaxation estimate will be confronted with the numerical results from
the Kadanoff-Baym equations. The extension of the semiclassical kinetic theory to the
off-shell case is presented in Chapter 6, where the generalized transport equations are
derived within a first order gradient expansion from the full Kadanoff-Baym formula-
tion in two different limits. The numerical studies — with very detailed comparison to
the Kadanoff-Baym solution — of these generalized transport equations are contained
in Chapter 7. Again we discuss the time evolution for both, the Green functions and
the spectral functions as well as the relaxation of the chemical potential. Furthermore,
we will shortly explore the validity of the underlying assumptions of the generalized
transport schemes. In Chapter 8 we will implement the off-shell dynamics — inherent
in the generalized kinetic theories — in a coupled-channel transport approach by means
of evolution equations for testparticles. The resulting scheme will be exemplified for
numerous model studies and for realistic heavy-ion collisions at intermediate and high
energies. We close this work in Chapter 9 with a summary of our results and an outlook
on future extensions.



Chapter 2

Nonequilibrium Dynamics for
$*-Quantum-Field Theory

The scalar ¢*-theory is an example for a fully relativistic field theory of interacting
scalar particles that allows to test theoretical approximations [54, 55, 56, 67, 68]. Its
Lagrangian density is given by (z = (¢, %))

1

L) = 50,0(2) #6(x) — 3m*$(x) — 6 a), (2.1

where m denotes the ‘bare’ mass and A is the coupling constant determining the inter-
action strength of the scalar fields.

2.1 The Kadanoff-Baym Equations

As mentioned in the Introduction, a natural starting point for nonequilibrium quantum
theory is provided by the closed-time-path (CTP) method. Here all quantities are given
on a special real-time contour with the time argument running from —oo to 400 on
the chronological branch (+) and returning from +oc to —oc on the anti-chronological
branch (—) (cf. Fig. 2.1). In cases of systems prepared at time ¢, this value is (instead
of —o0) the start and end point of the real-time contour. In particular the path-ordered
Green functions are defined as (x1 = (¢1,%1), T2 = (t2,72))

G(x1,29) = (TP{d(z1) d(22) }) (2.2)
= Op(ts —t2) (¢(21) @(72) ) + Op(t2 — 1) (d(22) ¢(71) ),

where the operator T? orders the field operators according to the position of their ar-
guments on the real-time path as accomplished by the path step-functions ©,

7
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Figure 2.1: Closed real-time contour with upper chronological (+) branch and lower
anti-chronological (—) branch. Time coordinates are characterized by their physical
value and by the branch they belong to.

1, if ¢, islater on the contour as t5,
@p(tl - tg) == (23)
0, if ¢y isearlier on the contour as ;.

The expectation value in (2.2) is taken with respect to some given density matrix py,
which is constant in time, while the operators in the Heisenberg picture contain the
whole information of the time dependence of the nonequilibrium system.

Self-consistent equations of motion for these Green functions can be obtained with
help of the two-particle-irreducible! (2PI) effective action I'[G]. This functional is given
by the double Legendre transform of the generating functional of connected Green
functions W with respect to the local and bilinear external sources. In the case of a
vanishing vacuum expectation value of the scalar field (0| ¢(z)|0) = 0 the effective
action is a functional solely of the two-point Green function G' and given by [24]

ra) =1+ % [In(1 - ®,Go®£) + 0,30, S] + ®[C]. (2.4)

In (2.4) I'° depends only on free Green functions Gy and is treated as a constant with
respect to variation, while the symbols ®, represent convolution integrals over space
and the closed-time-path with the contour specified above (cf. Fig. 2.1). The func-
tional ® is the sum of all closed 2PI diagrams built up by full propagators G (and bare
vertices) [24, 80]. It determines the resummed self-energy by functional variation as

0®

E(.’El,mg) = 2Zm

(2.5)

In general, the self-energy ¥ contains a singular contribution ¥° on the contour and a
non-local part, which can be expressed — analogously to the Green functions (2.2) — by
a sum over O,-functions

!n-particle-irreducible diagrams remain connected when n arbitrary internal lines are cut.



2.1. The Kadanoff-Baym Equations

Y(zy,20) = X0(z4) (51(,“1)(3;1—:152) (2.6)
+ Op(t1—t2) X7 (21, 12) + Op(ta—t1) (21, 22).
The §,-function on the closed-time-path is defined as
T, — & (2.7)

5](Jd+1) (.’1)1 — 1'2) = 5p(t1 — tQ) 5(d) (331 — 372) y

d(t; —t2), if both ¢; and t, are on the upper (+) branch,
5p(t1 - tg) - —(5(t1 - tg) ,
0, in other cases,

if both ¢; and ¢, are on the lower (—) branch,

in accordance with the contour integration. Here d denotes the spatial dimension of
the problem (d = 2 in the case considered below). The equations of motion for the
Green functions are obtained by the stationarity condition of the effective action (2.4)

LMY (2.8)

0G

giving the Dyson-Schwinger equations for the full path-ordered Green functions

G($15$2) = Go(xlax2) + /dd+1y /dd+lz Go(xl,y) E(yaz) G('Z’m2)’ (2'9)
p p

G(z1,22) = Golz1,22) + /dd+1y /dd+1z G(z1,y) 2(y,2) Go(z, z2) -
p p

Since the free propagator G solves the Klein-Gordon equation as

[6ﬁ18§1 + m2] Go(xl,ﬂiz) = — 61()d+1)($1 — 332), (210)

the equations of motion for the path-ordered Green functions read

— (000 +m?] G(zy,23) = 51(,d+1)(:v1 — 1) +/dd+1z Y(z1,2) G(z,22), (2.11)

p

— (8208 +m?] Glz,m) = §&V(zi — 1) + /dd“z Glar, 2) Sz 25).
p

The functional ® allows — by restricting to a particular set of diagrams — for the
construction of effective theories, which are conserving and thermodynamically consis-
tent [24, 81]. In our present calculation we take into account contributions up to the
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Figure 2.2: Contributions to the ®-functional for the Kadanoff-Baym equation: two-
loop contribution (L.h.s.) giving the tadpole self-energy and three-loop contribution
(r.h.s.) generating the sunset self-energy. The ®-functional is built up by full Green
functions (double lines) while open dots symbolize the integration over the internal
coordinates.

three-loop order for ®-functional (cf. Fig. 2.2), which reads explicitly

2
i = Zé\/dd“ G(z,z)* — i_s/ddel/dde? G(x1,22)". (2.12)
p p p

This approximation corresponds to a weak coupling expansion such that we consider
contributions up to the second superficial order in the coupling constant A (cf. Fig.
2.3). For the superficial coupling constant order we count the explicit coupling factors A
associated with the visible vertices. The hidden dependence on the coupling strength
— which is implicitly incorporated in the self-consistent Green functions that build
up the ®-functional and the self-energies — is ignored on that level. For our present
purpose this approximation is sufficient since we include self-consistently the leading
mean-field effects as well as the leading order scattering processes that pave the way
to thermalization.

For the actual calculation it is advantageous to change to a single-time represen-
tation for the Green functions and (the non-local part of) the self-energies defined on
the closed-time-path. In line with the position of the coordinates on the contour there
exist four different two-point functions

G(z1,72) = G (z1,22) = iG(z{,23) = (T°{g(z1) b(22)}), (2.13)
iGN (z1,22) = 1GT (21,22) = iG(a,23) =  ({d(z2) d(21) }),
iG7(z1,22) = iGN (z1,22) = iGlay,23) =  ({o(z1) d(z2) }),

Gz1,22) = 1G (1, m2) = 1G(ar,35) = (T{o(x1) d(x2) }).
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Here T°(T°) represent the (anti-)time-ordering operators in case of both arguments
lying on the (anti-)chronological branch of the real-time contour. These four functions
are not independent of each other. In particular the non-continuous functions G¢ and
G* are built up by the Wightman functions G~ and G< and the usual ©-functions in
the time coordinates

GC(LEl,J?Q) = @(tl — tg) G>(.’L'1,.’L'2) + @(tg — tl) G<(£E1,.’L'2) y (214)
Ga(LEl,J?Q) = @(tg — tl) G>(.’L'1,.’L'2) + @(tl — tg) G<(£E1,.’L'2) .
Since for the real boson theory (2.1) the relation G~ (x1,z2) = G<(z3,x1) holds (2.13),
the knowledge of the Green functions G<(z1,z2) for all z;, zy characterizes the system

completely. Nevertheless, we will give the equations for G< and G~ explicitly since
this is the familiar representation for general field theories [8, 18, 19].

By fixing the time arguments of the Green functions on different branches of the
contour and resolving the time structure of the path-ordered quantities in the Dyson-
Schwinger equations (2.11) we obtain the Kadanoff-Baym equations for the time evo-
lution of the Wightman functions [19, 67]:

— (0708 +m?] GR(z1,22) = X°(21) G2 (21, 72) (2.15)
/dzo/d (5 (21, 2) — < (a1, 2) ] GZ(z,22)
/dzO/ddz 2 (a1, 2) [ (2, 22) — G<(2,29)] |
(00 4 m?] GR(an, @) = B (va) G2, )
/dzo/d (G (1, 2) — G<(a1,2)] £2(2,2)

/dzo/d GZ(21,2) [£”(2,22) — T<(2,1)] |

Within the three-loop approximation for the 2PI effective action (i.e. the ®-
functional (2.12)) we get two different self-energies: In leading order of the coupling
constant only the local tadpole diagram (Lh.s. of Fig. 2.3) contributes and leads to
the generation of an effective mass for the field quanta. This self-energy (in coordinate
space) is given by

Y(r) = %iGﬂx,x). (2.16)
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Figure 2.3: Self-energies of the Kadanoff-Baym equation: tadpole self-energy (1.h.s.)
and sunset self-energy (r.h.s.). Since the lines represent full Green functions the self-
energies are self-consistent (see text) with the external coordinates indicated by full
dots.

In next order in the coupling constant (i.e. A\?) the non-local sunset self-energy (r.h.s.
of Fig. 2.3) enters the time evolution as

2 2
22(1'1,3?2) = —)\— Gz(.’l?l,,fg) Gz(xl,l‘Q) G§($2,$1) = —A— [Gz(ﬂ?l,l'g)]:;

- ; (2.17)

Thus the Kadanoff-Baym equation (2.15) in our case includes the influence of a mean-
field on the particle propagation — generated by the tadpole diagram — as well as
scattering processes as inherent in the sunset diagram.

The Kadanoff-Baym equation (2.15) describes the full quantum nonequilibrium
time evolution on the two-point level for a system prepared at an initial time %, i.e.
when higher order correlations are discarded. The causal structure of this initial value
problem is obvious since the time integrations are performed over the past up to the
actual time ¢; (or t, respectively) and do not extend to the future.

Furthermore, also linear combinations of the Green functions in single-time repre-
sentation are of interest. The retarded Green function G and the advanced Green
function G4 are given as

GR(.Z'l, 332) = @(tl — t2) [G>(.T1, LL‘Q) — G<($1, 3?2)] (218)
= Ot —t2) ([o(z1), Blz2)]_)
= GC($1,LE2) — G<(.’1?1,$2) = G>(.’IJ1,$2) — Ga($1,$2),
GA(.’L'1, 332) = — @(tg — t1) [G>(3§1, Z‘Q) — G<($1, 1?2)] (219)

= —O(tz — t1) ([(z1), D(z2)]_)
= Gc(xl,xg) - G>($1,$2) = G<(SE1,$2) — Ga($1,$2).
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These Green functions contain exclusively spectral, but no statistical information of
the system. Their time evolution is determined by the Dyson-Schwinger equations
(2.11) as well and given by

— [0 0 + m® + £ (21)] GR(a1,22) = (2.20)

8D (w1 —m5) + /ddﬂz S (w1,2) Gz, 22)

— (g1 o+ m® + 30 (21)] GH(z1,22) = (2.21)
(5(‘”1)(361—962) + /dd—l—lz SA(z1,2) GA(z, 20),

where the retarded and advanced self-energies X%, ¥4 are defined via ¥>, < similar to
the Green functions (2.18) and (2.19). Thus the retarded (advanced) Green functions
are determined by retarded (advanced) quantities, only.

2.2 Homogeneous Systems in Space

In the following we will restrict to homogeneous systems in space. In order to obtain
a numerical solution the Kadanoff-Baym equation (2.15) is transformed to momentum
space:

07 G<(Prt1,ta) = — [P+ m>+5°(t1)] G(P,t1,t2) (2.22)

t1
- / 4t [ (Ft,t) — S5 1, )] G251, 1)

to

to
4 / a5, 1) [G7 (5,0 1) — G<(, 1 1)

to

= —[PP+m*+E(t)] G(B tr,ts) + IF (Bt ta),

where we have summarized both memory integrals into the function I;*. The equation
of motion in the second time direction 5 is given analogously.
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In two-time and momentum space representation the self-energies in (2.22) read

S() = % / gf;d iG<(FL.1) | (2.23)

X2 [ dy [ dr
SR(p 4, 1) = - q/

5 | @ni) e GZ(q,t,t) GR(7t,t') GR(F—q—7,t,t"). (2.24)
For the numerical solution of the Kadanoff-Baym equations (2.22) we have developed
a flexible and accurate algorithm, which is described in more detail in Appendix A.
Furthermore, a straightforward integration of the Kadanoff-Baym equations (2.22) in
time does not lead to meaningful results since in 2+1 space-time dimensions both self-
energies (2.23,2.24) are ultraviolet divergent. We note, that due to the finite mass m
adopted in (2.1) no problems arise from the infrared momentum regime. The ultraviolet
regime, however, has to be renormalized by introducing proper counterterms. The
details of the renormalization scheme are given in Appendix B as well as a numerical
proof for the convergence in the ultraviolet regime.



Chapter 3

Numerical Studies on Equilibration

In the following Sections we will use the renormalized mass m = 1, which implies that
times are given in units of the inverse mass or ¢ - m is dimensionless. Accordingly, the
coupling A in (2.1) is given in units of the mass m such that \/m is dimensionless, too.

As already observed in the 141 dimensional case [69] the mean-field term, gen-
erated by the tadpole diagram, does not lead to an equilibration of arbitrary initial
momentum distributions since it only modifies the propagation of the particles by the
generation of an effective mass. Our calculations lead to the same findings and thus
we skip an explicit presentation of the actual results. Accordingly, thermalization in
2+1 dimensions requires the inclusion of the collisional self-energies as generated by
the sunset diagram. All calculations to be shown in the following consequently involve
both self-energies.

3.1 Initial Conditions

In order to investigate equilibration phenomena on the basis of the Kadanoff-Baym
equations for our 2+1 dimensional problem, we first have to specify the initial condi-
tions for the time integration. This is a problem of its own and discussed in more detail
in Appendix C. For our present study we consider four different initial distributions
that are all characterized by the same energy density (see Section 3.3 for an explicit
representation). Consequently, for large times (¢ — oc) all initial value problems
should lead to the same equilibrium final state. The initial equal-time Green functions
G<(p,t=0,t=0) adopted are displayed in Fig. 3.1 (upper part) as a function of the
momentum p, (for p, = 0). We concentrate here on polar symmetric configurations
due to the large numerical expense for this first investigation®. Since the equal-time
Green functions G<(p, t,t) = G%(ﬁ, t,t) are purely imaginary, we show only the real
part of ¢ G< in Fig. 3.1. Furthermore, the corresponding initial distribution functions
in the occupation density n(p,t=0), related to i G<(p,t=0,t=0) via

n Section 5 we will present also calculations for non-symmetric systems.

15
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Figure 3.1: Initial Green functions ¢ G<(| p'|,t=0,t=0) (upper part) and corresponding
initial distribution functions n(|p'|,¢ = 0) (lower part) for the distributions D1, D2,
D3 and DT in momentum space (for a cut of the polar symmetric distribution in p,
direction for p, = 0).

g i Gy (B, 4=0,t=0) = n(p,t=0) + n(—p,t=0) + 1, (3.1)

are shown in Fig. 3.1 in the lower part. For an explicit representation of the other
Green functions G, , G4 and G, (cf. Appendix A) at initial time ¢y we refer to the
discussion of the general initial conditions in Appendix C.

While the initial distributions D1, D2, D3 have the shape of (polar symmetric)
‘tsunami’ waves [44] with maxima at different momenta in p,, the initial distribution
DT corresponds to a free Bose gas at a given initial temperature Ty & 1.736 m that is
fixed by the initial energy density. According to (3.1) the difference between the Green
functions and the distribution functions is basically given by the vacuum contribution,
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which has its maximum at small momenta. Thus even for the distributions D1, D2,
D3 the corresponding Green functions are non-vanishing for | 5| ~ 0.

Since we consider a finite volume V' = a? we work in a basis of momentum modes
characterized by the number of nodes in each direction. The number of momentum
modes is typically in the order of 40; we checked that all our results are stable with
respect to an increasing number of basis states and do not comment on this issue any
more, since this is a strictly necessary condition for our analysis. For times ¢t < 0 we
consider the systems to be noninteracting and switch on the interaction (~ \) for t = 0
to explore the quantum dynamics of the interacting system for ¢ > 0.

We directly step on with the actual numerical results.

3.2 Equilibration in Momentum Space

The time evolution of various (selected) momentum modes of the equal-time Green
function for the different initial states D1, D2, D3 and DT is shown in Fig. 3.2, where
the dimensionless time ¢ - m is displayed on a logarithmic scale.

We observe that starting from very different initial conditions — as introduced in Fig.
3.1 — the single momentum modes converge to the same respective numbers for large
times as characteristic for a system in equilibrium. As noted above, the initial energy
density is the same for all distributions and energy conservation is fulfilled strictly in
the time integration of the Kadanoff-Baym equations. The different momentum modes
in Fig. 3.2 typically show a three-phase structure. For small times (¢ - m < 10) one
finds damped oscillations that can be identified with a typical switching-on effect at
t = 0, where the system is excited by a sudden increase of the coupling constant to
A/m = 18. Here dephasing and relaxation of the initial conditions happen on a time
scale of the inverse damping rate (cf. Appendix C). We note in passing that one
might also start with an effective initial mass m* including the self-consistent tadpole
contribution [69], however, our numerical solutions showed no significant difference for
the equilibration process such that we discard an explicit representation. The damping
of the initial oscillations depends on the coupling strength A/m and is more pronounced
for strongly coupled systems.

For ‘intermediate’ time scales (10 < ¢ - m < 500) one observes a strong change of
all momentum modes in the direction of the final stationary state. We address this
phase to ‘kinetic’ equilibration and point out, that — depending on the initial conditions
and the coupling strength — the momentum modes can temporarily even exceed their
respective equilibrium value. This can be seen explicitly for the lowest momentum
modes (| 7|/m = 0.0, 0.8) of the distribution D1 (long dashed lines) in Fig. 3.2,
which possesses initially maxima at small momentum. Thus the time evolution towards
the final equilibrium value is — after an initial phase with damped oscillations — not
necessarily monotonic. For different initial conditions this behaviour may be weakened
significantly as seen for example in case of the initial distribution D2 (short dashed
lines) in Fig. 3.2. Coincidently, both calculations D1 and D2 show approximately the
same equal-time Green function values for times ¢ - m > 80. Note, that for the initial
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Figure 3.2: Time evolution of selected momentum modes of the equal-time Green
function | 7|/m = 0.0, 0.8, 1.6, 2.4, 3.2 (from top to bottom) for four different initial
configurations D1, D2, D3 and DT (characterized by the different line types) with the
same energy density. For the rather strong coupling constant A/m = 18 the initial
oscillations — from switching on the interaction at ¢ = 0 — are damped rapidly and
disappear for ¢t - m > 10. Finally, all momentum modes assume the same respective
equilibrium value for long times (¢ - m > 500) independent of the initial state.

distribution D3 (dotted lines) the non-monotonic behaviour is not seen any more.

In general, we observe that only initial distributions (of the well type) show this
feature during their time evolution, if the maximum is located at sufficiently small
momenta. Initial configurations like the distribution DT (solid lines) — where the
system initially is given by a free gas of particles at a temperature 7 — do not show
this property. We also remark that this ‘overshooting’ — as in the particular case of D1
— is not observed in a simulation with a kinetic Boltzmann equation (see Section 5.4).
Hence this highly nonlinear effect must be attributed to quantal off-shell and memory
effects not included in the standard Boltzmann limit. Although the DT distribution is
not the equilibrium state of the interacting theory, the actual numbers are much closer
to the equilibrium state of the interacting system than the initial distributions D1, D2
and D3. Therefore, the evolution for DT proceeds less violently. We point out, that
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in contrast to the calculations performed for ¢*-theory in 141 space-time dimensions
[69] we find no power law behaviour for intermediate time scales.

The third phase, i.e. the late time evolution (¢ -m > 300) is characterized by
a smooth approach of the single momentum modes to their respective equilibrium
values. As we will see in Section 3.6 this phase is adequately characterized by chemical
equilibration processes.

The three phases addressed in context with Fig. 3.2 will be investigated and ana-
lyzed in more detail in the following Sections.

3.3 Build-up of Initial Correlations

The time evolution of the interacting system within the standard Kadanoff-Baym equa-
tions is characterized by the build-up of early correlations. This can be seen from Fig.
3.3 where all contributions to the energy density [24] are displayed separately as a func-
tion of time with the initial value at t; = 0 subtracted. The kinetic energy density ez,
is represented by all parts of £,,; that are independent of the coupling constant (o< \°).
All terms proportional to A\! are summarized by the tadpole energy density 4,4 includ-
ing the actual tadpole term as well as the corresponding tadpole mass counterterm (cf.
Appendix B). The contributions from the sunset diagram (o< A?) — again given by the
correlation integral as well as by the sunset mass counterterm (cf. Appendix B) — are
represented by the sunset energy density €gy,,.

Etot(t) = €rin(t) + €taa(t) + Esun(t), (3.2)
cwnlt) = 3 [l (7 iGEE0 + 5 [ G0,
ca) = 5 [ Sualt) G5t + 5 [0 i 1G5,
conl) = =3 [0 iE G0 + 5 [0 i, 1G5

) oot i

The calculation in Fig. 3.3 has been performed for the initial distribution DT (which
represents a free gas of Bose particles at temperature Ty &~ 1.736 m) with a coupling
constant of \/m = 18. This state is stationary in the well-known Boltzmann limit
(cf. Section 5), but it is not for the Kadanoff-Baym equation. In the full quantum
calculations the system evolves from an uncorrelated initial state and the correlation
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Figure 3.3: Change of the different contributions to the total energy density in time.
The sunset energy density £g,, decreases rapidly in time; this contribution is approx-
imately compensated by an increase of the kinetic energy density €;;,. Together with
the smaller tadpole contribution £;,4 the total energy density e, is conserved.

energy density £y, decreases rapidly with time. The decrease of the correlation energy
€sun Which is — with exception of the sunset mass counterterm contribution — initially
zero is approximately compensated by an increase of the kinetic energy density egy.
Since the kinetic energy increases in the initial phase, the final temperature 77 is slightly
higher than the initial ‘temperature’ 7. The remaining difference is compensated by
the tadpole energy density €;,4 such that the total energy density is conserved.

While the sunset energy density and the kinetic energy density always show a time
evolution comparable to Fig. 3.3, the change of the tadpole energy density depends
on the initial configuration and may be positive as well. Since the self-energies are
obtained within a ®-derivable scheme the fundamental conservation laws, as e.g. energy
conservation, are respected to all orders in the coupling constant. When neglecting
the oc A2 sunset contributions and starting with a non-static initial state of identical
energy density one observes the same compensating behaviour between the kinetic and
the tadpole terms.

From Fig. 3.3 one finds that the system correlates in a very short time (¢-m < 1) in
comparison to the time for complete equilibration. The time to build up the correlations
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Figure 3.4: Normalized change of the correlation energy density &.,. for various cou-
pling constants A/m = 2 — 20 in steps of 2 for the same initial distribution DT. The
normalization has been performed with respect to the asymptotic correlation strength
(for ¢ - m > 10). The systems correlate approximately independent from the coupling
strength after 7., - m ~ 0.16.

Teor 1S Tather independent of the interaction strength as seen from Fig. 3.4, where
calculations with the same initial state DT are compared for several coupling constants
A/m =2 —20 in steps of 2. For all couplings A/m the change of the correlation energy
density here has been normalized to the asymptotic correlation strength (¢ -m > 10).
Fig. 3.4 shows that the correlation time 7., (which we define by the position of the first
maximum) is approximately the same for all coupling constants. Within our definition
the correlation time is 7., - m =~ 0.16 for all couplings A. This result is in line with the
KB studies of nonrelativistic nuclear matter problems, where the same independence
from the coupling strength has been observed for the correlation time [63]. A similar
result has, furthermore, been obtained within the correlation dynamical approach of
Ref. [52]. Thus quantum systems apparently correlate on time scales that are very
short compared to ‘kinetic’ or ‘chemical’ equilibration time scales.

The question now arises how such short time scales come about. We recall, that
equations of motion containing memory integrals, like the Kadanoff-Baym equations,
are the inevitable result of a reduction of multi-particle dynamics to the one-body
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level which induces phase correlations into the history of the system [82, 83]. This
is similar to the situation encountered in the derivation of the standard Boltzmann
equation, which only holds if one can separate between two time scales, T < Tper (Te-
laxation time scale), distinguishing between rapidly changing (‘irrelevant’) observables
and smoothly behaving (‘relevant’) observables. Indeed, it had been shown for a nucle-
onic system [61] that such a finite memory in the collision process may have a profound
influence on thermalization for medium-energy nuclear reactions. In any case, a finite
correlation time is generated by first a constructive and then destructive interference
of the various scattering channels building up for times going more and more in the
past. For a fermionic system typical memory kernels for the collision integral are given
in Refs. [60, 61, 62]). The structure of such memory kernels is governed by the off-shell
behaviour and the phase-space average of the two-particle scattering amplitude, i.e.

h

Ten ™ AR 33

Of present concern is now the formation of the correlation energy and not the memory
kernels of the collisional integrals, although they are closely related. The explicit corre-
lation part of £4,, contains the momentum integral over the function I (p,t,t), which
itself is given by a memory integral over time as stated in (A.4) in Appendix A. From
the explicit expression one notices that I;75(p,¢ = 0, = 0) = 0 and for small times
builds up coherently by the various ‘scattering’ contributions. For a fermionic system
describing cold nuclear matter, similar expressions for the collisional energy density
have been found and analyzed in detail by Ko6hler and Morawetz [63]. It has been
found, that the time to build up the correlation energy by collisions from an initially
uncorrelated system is given by 7., ~ 2fi/Ep, where Er denotes the Fermi energy.
The memory integrals of I — or those entering the quantal transport equations — can
also contain classical contributions. For a dilute and equilibrated Maxwell-Boltzmann
gas of nonrelativsitic particles at finite temperature 7" and assuming a static, Gaussian
interaction potential V(r) = Vjexp(—r?/r2), the various kernels can be worked out
analytically [8, 83, 63]. The correlation time is then given by

Teor =\ 3T + (B/T)? (3.4)

The first part reflects the intuitive expectation, i.e. the time a classical particle passes
through the range of a potential; the second part reflects the average temporal extent
associated with the time-energy uncertainty relation induced by the characteristic (off-
shell) energy scale in a typical collision. For our present situation, i.e. a relativistic
bosonic theory interacting via a 4-point coupling, the temperature defines the only
scale. Hence, 7., ~ h/T, which is a pure quantal effect. This estimate is also in
agreement with our numerical findings.
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3.4 Time Evolution of the Spectral Function

Within the Kadanoff-Baym calculations the full quantum information of the two-point
functions is retained. Consequently, one has access to the spectral properties of the
nonequilibrium system during its time evolution. The spectral function A(z,xs) for
the present settings is given by

Az1,29) = ([d(21), d(22)]- ) = i [G” (21, 22) — G(w1,72)]. (3.5)

From our dynamical calculations the spectral function in Wigner space for each system
time t = (¢;+ t2)/2 is obtained via Fourier transformation with respect to the relative
time coordinate At = t; — t9:

A, po,t) = / A exp(i Atpy) A(F,t = t+AH2, 1 = t—At/2).  (3.6)

—0o0

We note, that a damping of the function A(p,t, ;) in relative time At corresponds to
a finite width I' of the spectral function in Wigner space. This width in turn can be
interpreted as the inverse life time of the interacting scalar particle. We recall, that
the spectral function — for all times ¢ and for all momenta p'— obeys the normalization

o d - .
/ 2%0190 A(P,po,t) =1  Vp,t, (3.7)

which is nothing but a reformulation of the equal-time commutation relation.

In Fig. 3.5 we display the time evolution of the spectral function for the initial
distributions D1, D2, D3 and DT for two different momentum modes |p'|/m = 0.0
and |p’|/m = 2.0. Since the spectral functions are antisymmetric in energy for the
momentum symmetric configurations considered, i.e. A(@, —po,t) = —A(D, po,t), we
only show the positive energy part. For our initial value problem in two-times and
momentum space the Fourier transformation (3.6) is restricted for system times ¢ to
an interval At € [—2t,2¢]. Thus in the very early phase the spectral function assumes
a finite width already due to the limited support of the Fourier transform in the time
interval and a Wigner representation is not very meaningful. We, therefore, present the
spectral functions for various system times ¢ starting from ¢-m = 15 up to t - m = 480.

For the free thermal initialization DT the evolution of the spectral function is very
smooth and comparable to the smooth evolution of the equal-time Green function as
discussed in Section 3.2. In this case the spectral function is already close to the
equilibrium shape at small times being initially only slightly broader than for late
times. The maximum of the spectral function (for all momenta) is higher than the
(bare) on-shell value and nearly keeps its position during the whole time evolution.
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Figure 3.5: Time evolution of the spectral function A(j, po, t) for the initial distributions
D1, D2, D3 and DT (from top to bottom) with coupling constant A\/m = 18 and for
the two momenta | 7|/m = 0.0 (Lh.s.) and | §|/m = 2.0 (r.h.s.). The spectral function
is shown for several times t - m = 15, 30, 60, 120, 240, 360, 480 as indicated by the
different line types.
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This results from a positive tadpole mass shift, which is only partly compensated by a
downward shift originating from the sunset diagram.

The time evolution for the initial distributions D1, D2 and D3 has a richer structure.
For the distribution D1 the spectral function is broad for small system times (see the
line for ¢ - m = 15) and becomes a little sharper in the course of the time evolution
(as presented for the momentum mode | 5|/m = 0.0 as well as for |p'|/m = 2.0). In
line with the decrease in width the height of the spectral function is increasing (as
demanded by the normalization property (3.7)). This is indicated by the small arrow
close to the peak position. Furthermore, the maximum of the spectral function (which
is approximately the on-shell energy) is shifted slightly upwards for the zero-mode and
shifted downwards for the mode with higher momentum being always higher than the
vacuum on-shell value.

For the initial distribution D3 we find the opposite behaviour. Here the spectral
function is quite narrow for early times and increases its width during the time evolution
as observed for both momentum modes. Especially in the case of | p'|/m = 2.0 the width
for early times is so small that the spectral function shows oscillations originating from
the finite range of the Fourier transformation from relative time to energy. Although
we have already increased the system time for the first curve to t-m = 21 (for t-m = 15
the oscillations are much stronger) the spectral function is not fully resolved, i.e. it
is not sufficiently damped in relative time At in the interval available for the Fourier
transform. For later times the oscillations vanish and the spectral function tends to
the common equilibrium shape.

The time evolution of the spectral function for the initial distribution D2 is in
between the last two cases. Here the spectral function develops (at intermediate times)
a slightly higher width than in the beginning before it is approaching the narrower
static shape again. The corresponding evolution of the maximum is again indicated
by the (bent) arrow. Finally, all spectral functions show the (same) equilibrium form
represented by the solid gray line.

As already observed in Section 3.2 for the equal-time Green functions, we emp-
hazise, that there is no unique time evolution for the nonequilibrium systems. In fact,
the evolution of the system during the equilibration process depends on the initial con-
ditions. Our findings are slightly different from the conclusions drawn in [68] for the
141 dimensional case stating that the Wigner transformed spectral function is slowly
varying, which might be due to the lower dimension. Still the time dependence of the
spectral function is moderate enough, such that one might also work with some time-
averaged or even the equilibrium spectral function. In order to investigate this issue
in more quantitative detail, we concentrate on the maxima and widths of the spectral
functions in the following.

Since the solution of the Kadanoff-Baym equation provides the full spectral infor-
mation for all system times the evolution of the on-shell energies can be studied as
well as the spectral widths. In Fig. 3.6 we display the time dependence of the on-shell
energies w(p, t) — defined by the maximum of the spectral function — of the momentum
modes |F|/m = 0.0 (Lh.s.) and |p|/m = 2.0 (r.h.s.) for the four initial distributions
D1, D2, D3 and DT. We see that the on-shell energy for the zero momentum mode
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Figure 3.6: Time evolution of the on-shell energies w(p,t) of the momentum modes
|P|/m = 0.0 and |p'|/m = 2.0 for the different initializations D1, D2, D3 and DT
with A\/m = 18. The on-shell self-energies are extracted from the maxima of the
time-dependent spectral functions.

increases with time for the initial distribution D1 and to a certain extent for the free
thermal distribution DT (as can be also extracted from Fig. 3.5). The on-shell energy
of distribution D3 shows a monotonic decrease during the evolution while it passes
through a minimum for distribution D2 before joining the line for the initialization D1.
For momentum | p'|/m = 2.0 a rather opposite behaviour is observed. Here the on-shell
energy for distribution D1 (and less pronounced for the distribution DT) are reduced
in time whereas it is increased in the case of D3. The result for the initialization D2
is monotonous for this mode and matches the one for D1 already for moderate times.
Thus we find, that the time evolution of the on-shell energies does not only depend on
the initial conditions, but might also be different for various momentum modes. It turns
out — for the initial distributions investigated — that the above described characteristics
change around |p’|/m = 1.5 and are retained for larger momenta (not presented here).
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Figure 3.7: Time evolution of the on-shell widths —I'm SE(5, w(p,t),t) /w(p,t) of the
momentum modes |p'|/m = 0.0 and |7|/m = 2.0 for the different initializations D1,
D2, D3 and DT with A\/m = 18.

Furthermore, we show in Fig. 3.7 the time evolution of the on-shell width for the
usual momentum modes and different initial distributions. The on-shell width ~,, is
given by the imaginary part of the retarded sunset self-energy at the on-shell energy
of each respective momentum mode as

L 2ImER(pw(pt),t)  T(Fw(pt),t)
TulPit) = 20 (f 1) T T 2wl (38)

As already discussed in connection with Fig. 3.5 we observe for both momentum modes
a strong decrease of the on-shell width for the initial distribution D1 (long dashed
lines) associated with a narrowing of the spectral function. In contrast, the on-shell
widths of distribution D3 (dotted lines) increase with time such that the corresponding
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spectral functions broaden towards the common stationary shape. For the initialization
D2 (short dashed lines) we observe a non-monotonic evolution of the on-shell widths
connected with a broadening of the spectral function at intermediate times. Similar
to the case of the on-shell energies we find, that the results for the on-shell widths of
the distributions D1 and D2 coincide well above a certain system time. As expected
from the lower plots of Fig. 3.5, the on-shell width for the free thermal distribution
DT (solid lines) exhibits only a weak time dependence with a slight decrease in the
initial phase of the time evolution.

In summarizing this Section we point out, that there is no universal time evolution
of the spectral functions for the initial distributions considered. Peak positions and
widths depend on the initial configuration and evolve differently in time. However, we
find only effects in the order of < 10% for the on-shell energies in the initial phase of
the system evolution and initial variations of < 50% for the widths of the dominant
momentum modes. Thus, depending on the physics problem of interest, one might
eventually discard an explicit time dependence of the spectral functions and adopt the
equilibrium shape.

3.5 The Equilibrium State

In Section 3.2 we have seen that arbitrary initial momentum configurations of the same
energy density approach a stationary limit for £ — oo, which is the same for all initial
distributions. In this Section we will investigate, whether this stationary state is the
proper thermal state for interacting Bose particles.

This question has already been addressed in Ref. [48] for an O(N)-invariant scalar
field theory with unbroken symmetry. There it was shown that in the next-to-leading
order (NLO) approximation the only translational invariant solutions are thermal ones.
The importance of using the NLO approximation lies in the fact that — in contrast to the
leading order (LO) calculation — scattering processes are included in the propagation
which provide thermalization. Furthermore, the correlations induced by scattering lead
to a non-trivial spectral function, whereas in the LO approximation one obtains the
o-function quasiparticle shape. Additionally, in the NLO calculation particle number
non-conserving processes are allowed that lead to a change of the chemical potential
1, which approaches zero in the equilibrium state in agreement with the expectations
for a neutral scalar theory without conserved quantum numbers.

As shown before, in our present calculations within the three-loop approximation of
the 2PI effective action we describe kinetic equilibration via the sunset self-energies and
also obtain a finite width for the particle spectral function. It is not obvious, however,
if the stationary state obtained for ¢ — oo corresponds to the proper equilibrium state.

In order to clarify the nature of the asymptotic stationary state of our calculations
we first change into Wigner space. The Green function and the spectral function in
energy po are obtained by Fourier transformation with respect to the relative time
At = t; —ty at every system time t = (t; +3)/2 (cf. (3.6))
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GZ(F.po,t) = /dAt explipy A1) GZ(F,tr = t+ AL/2, 4y =t — AL/2),  (3.9)

o0

A pot) = / AL exp(ipy At) A(ty = t+ AL/2, 1 =1 — At/2).  (3.10)

o

We recall, that the spectral function (3.10) can also be obtained directly from the
Green functions in Wigner space by (3.5)

A(ﬁ;p()at) =1 [é>(ﬁ;p07t) - G<(ﬁap05t)] . (311)

Now we introduce the energy and momentum dependent distribution function N (7, po, t)
at any system time ¢ by

Z.G<(ﬁ7p0:t) = A(p’apoat) N(p’ap(ht)a (312)

Z.G>(ﬁ7p0:t) = A(p’,p(),t) [N(ﬁ'ipovt)—i_]‘]

In equilibrium (at temperature T') the Green functions obey the Kubo-Martin-Schwinger
relation (KMS) [84, 85] for all momenta p’

Gz, (B, po) = exp(po/T) G5, (P, o) vVp. (3.13)

If there exists a conserved quantum number in the theory we have, furthermore, a
contribution of the corresponding chemical potential in the exponential function, which
leads to a shift of arguments: py/T — (py — 11)/T. In the present case, however, there
is no conserved quantum number and thus the equilibrium state has to give yu = 0.

From the KMS condition of the Green functions (3.13) we obtain the equilibrium
form of the distribution function (3.12) at temperature T as

- i 1
Ne‘](p’po) = Neq(pﬂ) - eXP(pO/T)_l

= Npose(po/T), (3.14)

which is the well-known Bose distribution. As is obvious from (3.14) the equilibrium
distribution can only be a function of energy p, and not of the momentum variable
explicitly.

In Fig. 3.8 (lower part) we present the spectral function A(f,po,t) for the initial
distribution D2 at late times ¢t - m = 540 for various momentum modes | p'|/m = 0.0,
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Figure 3.8: Spectral function A for various momentum modes | '|/m = 0.0, 0.8, 1.6, 2.4,
3.2, 4.0 as a function of energy for late times ¢ - m = 540 (lower part). Corresponding
distribution function N at the same time for the same momentum modes (upper part).
All momentum modes can be fitted with a single Bose function of temperature T,,/m =
1.835 and a chemical potential close to zero.
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0.8, 1.6, 2.4, 3.2, 4.0 as a function of the energy p,. We note, that for all other initial
distributions — with equal energy density — the spectral function looks very similar at
this time since the systems proceed to the same stationary state (cf. Section 3.2). We
recognize that the spectral function is quite broad, especially for the low momentum
modes, while for the higher momentum modes its width is slightly lower.

The distribution function N(py) as extracted from (3.12) is displayed in Fig. 3.8
(upper part) for the same momentum modes as a function of the energy py. The
comparison is achieved by selecting a certain energy band around the maximum of
each momentum mode considering all energies p, with A(| 7|, po) - m? > 0.5. We
find that N(py) for all momentum modes can be fitted by a single Bose function with
temperature 7'/m = 1.835. Thus the distribution function emerging from the Kadanoff-
Baym time evolution for ¢ — oo approaches a Bose function in the energy py that is
independent of the momentum as demanded by the equilibrium form (3.14). Fig. 3.8
(upper part) demonstrates, furthermore, that the KMS-condition is fulfilled not only
for on-shell energies, but for all po. We, therefore, have obtained the full off-shell
equilibrium state by integrating the Kadanoff-Baym equations in time. In addition,
the limiting stationary state is the correct equilibrium state for all energies py, i.e. also
away from the quasiparticle energies.

We note in closing this Section, that the chemical potential u — used as a second
fit parameter — is already close to zero for these late times as expected for the correct
equilibrium state of the neutral ¢*-theory which is characterized by a vanishing chemi-
cal potential p in equilibrium. This, at first sight, seems rather trivial but we will show
in the next Section that it is a consequence of our exact treatment. In contrast, the
Boltzmann equation (cf. Section 5.4) in general leads to a stationary state for ¢t — oo
with a finite chemical potential. We will attribute this failure of the Boltzmann ap-
proach to the absence of particle number non-conserving processes in the quasiparticle
limit (see below).

3.6 Chemical Equilibration and Approach to KMS

As we have seen in the previous Section the chemical potential y for the stationary
state of the propagation at large times is close to zero in agreement with the properties
of the neutral ¢*-theory. In this Section we will address the question of chemical
equilibration in the late time evolution of the systems calculated before. In particular
we are interested to examine, how the chemical potential p vanishes with time for
configurations initialized with finite chemical potentials u # 0 at ¢t = 0.

To this aim we calculate the distribution function N (py, t) for various system times ¢
and extract the time-dependent chemical potential p(t) by fitting a Bose function with
parameters p and 7. The time evolution of the chemical potential u (as extracted from
the zero momentum mode) is displayed in Fig. 3.9 for various initial configurations
and found to decrease almost exponentially with ¢ to zero. For small times ¢ the curves
do not show an exponential behaviour since here we are still in the regime of kinetic
nonequilibrium. Moreover, the chemical potential relaxation rate is nearly the same
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Figure 3.9: Logarithmic representation of the time evolution of the chemical potential
 for the initial distributions D1, D2 and DT. The corresponding relaxation rate I'; is
determined from the exponential decrease.

for all initial configurations with the same energy density.

In order to understand the reason for this observation we calculate an estimate for
this relaxation rate along the lines of Calzetta and Hu [48]. For reasons of transparency
we first provide a brief derivation for the three-loop approximation of the 2PI effective
action.

Since we are interested in the properties of the system close to equilibrium we again
change to a Wigner representation for the Kadanoff-Baym equation. A first order gra-
dient expansion of the Wigner transformed equation yields the following real valued
transport, equation (cf. Section 6.3 or [34, 35, 36])

{p?—m?—S(t) — ReSR(p, 1), iG<(p, )} — {iS<(p,t), ReGR(p,1)}

= iG”(p,t) i¥<(p,t) — iG<(p,t)i%”(p,t) = C(p,t). (3.15)
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Here { , } denotes the (d+1)-dimensional representation of the general Poisson bracket.
For the present case of spatially homogeneous systems all derivatives with respect to
the mean spatial coordinates vanish. Thus it contains mean time and energy deriva-
tives, only, and is given for arbitrary functions Fi /e = Fi2(p,t) = Fi/2(P, po, t) as
(F B} = OF 0F,  OF 8F2. (3.16)
ap() ot ot ap()

We first concentrate on the collision term C(p,t) — as given by the r.h.s. of equation
(3.15) — for small deviations from thermal equilibrium. In our representation the cor-
relation self-energies X2 read in Wigner space

_— A da+1 da+1 dtls 41 5(d+1)
ZE<(p7p07t) = E (271_)(1-}-1 (27T)d+1 (27T)d+1 (27T) 0 (p—q—’f'—S) (317)

iGR(q, qo,t) 1GR(F,70,t) 1GZ(5, 50,1),

where the energy and momentum integrals extend from —oo to co. In order to simplify
the collision term we express the Green functions (similar to (3.12)) by the spectral
function A and a distribution function N via

iG2(Fp0,t) = sign(po) A(Fp0.1) [©(£p0) + N(Fpo,t) ] - (3.18)

The advantage of this representation is that the spectral function term sign(po) A(p, po, t)
as well as the modified distribution function N (7, po, t) are symmetric in the energy
coordinate py as can be deduced from G (p,py,t) = G<(=p, —po,t) = G<(P, —po, 1)
for the momentum symmetric (5 — —p’) configurations considered here. The remain-
ing asymmetric character of the Green functions is contained in the step-functions in
energy. By this separation we may express the integrations over the full energy space
in terms of integrations over the positive energy axis, only. Thus the collision term —
additionally integrated over momenta and positive energies — can be written as

dd—|—1p _
/W O(po) C(p;1) (3.19)
B /(;Zj:% O(po) A(p,t) {[1+N(p,t)] i=<(p,t) — N(p,1) "i>(p’t)}

= [op {1+5G.0) 5500 - N1) £ 001) )

2
= % /Dp/Dq/Dr/Ds (2m) 4t 5D (p—g—r—5)

x {N(p,t) [1+N(g, )] [14+N(r, )] [1+N(s,8)] — [1+N(p,t)] N(q,t) N(r,t) N(s,t)}.
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Here we have introduced the short-hand notation:

[ov = | (jw;fl 0w An.t) = [ 000 [5G0, (320

We are interested especially in the very late time evolution, where the system is al-
ready close to equilibrium. Thus we can evaluate the integrated collision term with
further approximations. First, we use the thermal spectral function fleq(ﬁ, Do) at the
equilibrium temperature 7,,. This spectral function is calculated separately within a
self-consistent scheme, which is explained in detail in Chapter 4. We note in passing,
that the self-consistent thermal spectral functions (calculated numerically) are in ex-
cellent agreement with the dynamical spectral functions in the long-time limit of the
nonequilibrium Kadanoff-Baym dynamics. Second, we adopt an equilibrium Bose func-
tion for the symmetrical nonequilibrium distribution function N in energy, but allow
for a small deviation in terms of a small chemical potential i = p/T. This chemical
potential /i depends on the system time ¢ as indicated by its relaxation observed in Fig.
3.9, but is assumed to be independent of energy and momentum. The near equilibrium
distribution function is thus given by

- 1

N(p) ~ Nﬁ(?o) = exp([pol/T — i) — 1 No(po) = Niose(|pol/T) - (3.21)

B

We now expand the integrated collision term with respect to the small parameter p
around the equilibrium value z., = 0. Since the zero-order contribution vanishes for
the collision term in equilibrium, the first non-vanishing order is given by

dd+1p B )2
/7(270(14_1 O(po) C(p,1) = - ) 20 /Dpeq /quq /Dreq /Dé‘eq (3.22)

x (2m) " 6 (p—g—r—s) [1+N°(p)] N°(q) N°(r) N°(s)

with the integration weighted by the thermal spectral function A, as

Do = [ 00 Aut) = (5 000 (5 Autim). (329

On the left-hand-side of the transport equation we neglect, furthermore, the time
derivative terms of the self-energies as well as the second Poisson bracket. The only
contribution then stems from the drift term 2pg 8; iG< (P, po, t), which might be ex-
tended by considering the energy derivative of the real part of the retarded self-energy.
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The Green function is expressed again in terms of symmetric functions in energy
(3.18), where the distribution function N is given by the near equilibrium estimate
(3.21) with a small time-dependent deviation fi(t). Since the spectral function is ap-
proximated by its equilibrium form, the time derivative of the drift term gives only a
contribution from the chemical potential. When integrating the complete drift term
over momentum and (positive) energy space — as done above for the right-hand-side —
we obtain in lowest order of the small chemical potential

/7(;[;;1 O(po) {2p0 0, iG<(p,t)} =~ /(;T% O(po) Aug(p) 200 8, NP(p, 1) (3.24)

< 2O [Dp 230 Kp0) 14870

By taking also into account the energy derivative of the retarded self-energy we gain
the improved result

dd+1 P

/W O(po) { (2p0 — FpoRe SE (p)) 0:iG<(p, 1)} (3.25)

on(t _ - -
aff ) /Dpeq (2]90 - 0p0Re Efq(p)) No(po) [1+N0(p0)] )
Combining now both half-sides of the approximated transport equation we obtain

a’;—ff) Ki([Aeg(A\ T T) = — p(t) Ka([Aeg(N, T T, ) (3.26)

with the temperature and coupling constant dependent functions
Ky ([Aeg(A\ T T) = /D:Deq (2p0 — Dp Re X35 () N°(po) [1+N°(po)]  (3.27)
2
Kol TTN) = 23 [Py [Dacy [Dry [Dseg @)1 6 (p=g=r—5)
[14+N%(po)] N%(g0) N°(ro) N°(s0) (3.28)

2
= §A2 /Dpeq /quq /Dreq /Dseq (2m)dtt (5(d+1)(p—q—r—s)

NO(po) [148°(q0)] [14+8°(ro)] [1+8°(s0)].
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Thus the chemical potential decreases exponentially as
a(t) = exp(—Ky/Ky-t) = exp(—Iy 1) (3.29)
with the relaxation rate given by
Iz =K,/K;. (3.30)

The equations above provide an explanation for the observed behaviour of the relax-
ation of the chemical potential. At first we recognize the exponential nature (3.29) of
the processes seen in Fig. 3.9. The relaxation of the chemical potential originates —
as seen from (3.28) — from particle number non-conserving 1 <+ 3 processes. This is
easily recognized when considering the distribution functions N assigned to incoming
particles as well as the corresponding Bose enhancement factors 1 + N for the out-
going ones. Ordinary particle number conserving 2 <> 2 scattering processes do not
contribute. Thus it is not surprising, that a relaxation of the chemical potential is
not described in the on-shell Boltzmann limit and the correct equilibrium state with
vanishing chemical potential is missed (cf. Section 5.4).

The corresponding time evolution of the total particle number density n.%; is shown

in Fig. 3.10. It is obtained as the momentum space integral over the effective dis-
tribution function, which is defined for symmetric (5 — —p) configurations by the
equal-time Green functions as [69]

ness(@1) = £/ GELE LY GE@LH) — 5 (331)
From Fig. 3.10 we clearly see that the particle number for the full Kadanoff-Baym
equation is not constant in time, but changes due to 1 <> 3 transitions. Finally, the
distributions D1, D2 and DT show an excess of particles — related to their positive
chemical potential — that is reduced until the common particle number is reached in
the stationary limit. In contrast, the distribution D3 (dotted line) with initially well
separated maxima in momentum space has too few particles, however, during the time
evolution particles are produced such that the system reaches the common equilibrium
state as well.

Furthermore, we point out the importance of the spectral function entering the re-
laxation rate (3.28) via the integral measures. Since 1 <+ 3 processes are responsible for
the chemical equilibration, especially the shape of the spectral functions for high and
low energies, i.e. above and below the three-particle threshold, is of great importance.
From the formula above we also find an explanation for the fact, that all equal energy
initializations — although starting with different absolute values of the chemical po-
tential — show approximately the same relaxation rate. The spectral functions for the
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Figure 3.10: Total particle number density n’%(t) for the initializations D1, D2, D3
and DT as a function of time. The particle number is not constant during the evolution,
but changes due to non-conserving transitions (1 <+ 3) that are allowed within the full
Kadanoff-Baym dynamics.

different initializations have already almost converged to the thermal spectral function
(for the equilibrium temperature of 7,,/m = 1.835 and coupling constant A\/m = 18)
and are therefore comparable during the late stage of the evolution. The same holds ap-
proximately for the respective distribution functions, that approach Bose distribution
functions at temperature T,,. Thus we can deduce from (3.28) that the relaxation rate
should be approximately the same for the different initial value problems considered.

Indeed, the estimate for the chemical relaxation (3.30) rate works rather well quan-
titatively. By calculating the thermal spectral functions independently within a self-
consistent scheme at equilibrium temperature 7, for coupling constant A/m = 18 we
find (together with the distribution functions of the same temperature) — by solving
the multidimensional integrations — a value of I';/m =~ 1.12- 102 (for the drift term
only) and I';/m & 1.17- 1072 (when including additionally the energy dependence of
the retarded self-energy) for the relaxation rate. The agreement with the results of the
actual calculations in Fig. 3.9 given by I'?"'/m ~ 1.04-107%, I'??/m ~ 1.06 - 102, and
[T /m ~1.19 - 1072, is sufficiently good.
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3.7 Dynamics Close to the Thermal State

In this Section we address the properties of systems close to thermal equilibrium. It is
a widely used assumption that there exists a regime close to the thermal state, where
the relaxation approximation is valid. Especially interesting are settings, where all
momentum modes are in equilibrium, but only a single momentum mode p'is out of
equilibrium and deviates from its equilibrium value by a small amount § N. In such
a case 0N (t) should decrease exponentially in time. The corresponding rate can be
calculated in the usual quasiparticle approximation (i.e. starting from the standard
Boltzmann equation) and is given by the on-shell width of the particle as determined
from the imaginary part of the retarded self-energy at the on-shell energy (with respect

to the momentum p) as v, (p) = —Im ZE(p, w(p))/w (D).
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Figure 3.11: Time evolution of the zero momentum mode of the distribution function
that has been excited at the system time ¢ - mn = 1000 (upper part). From the expo-
nential decrease of the deviation from the equilibrium value (that has been subtracted
in the lower plot) the relaxation rate can be extracted.
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In order to study the relaxation behaviour within the full Kadanoff-Baym theory we
generate a corresponding initial state by the following procedure: We first start with
a general nonequilibrium distribution at ¢ = 0 and let it evolve in time. After a suffi-
ciently long time period all momentum modes of the system get close to equilibrium.
We then excite only a single momentum mode at a specific time ¢; by multiplying the
equal-time Green functions G3,(p,,t) and G5, (p)t,t) at t =t with a factor close to

1. As a result the corresponding effective occupation number n.;s(p,t) (3.31) differs
slightly from its equilibrium value by AN ().

For ¢ > t; this deviation AN(¢) indeed vanishes exponentially according to the
full Kadanoff-Baym equations as shown in Fig. 3.11 for the zero momentum mode
of the distribution function. For the specific case shown in Fig. 3.11 the equilibrium
state has been generated by starting with the initial distribution DT for a coupling
constant \/m = 18. At the time ¢, -m = 1000 both Green functions have been changed
simultaneously by only 1072 in order to avoid large disturbances of the system. From
the exponential decrease of the deviation one can directly extract the relaxation rate.

) T T T T T T T T T T T
—
S 0,5 - self-consistent on-shell width |-
o = relaxation rate
2
s 041 T/m=1.835 -
I n Am =18
—
~ 0,34
£
~—
a
~. 0,2
>
Y
o
= 014
=
2
o 0,0 - 4
c
o

momentum p/m

Figure 3.12: Comparison of the relaxation rates for single excited momentum modes
(full dots) with the on-shell widths calculated at finite temperature for various momen-
tum modes. The equilibrium state is characterized by A\/m = 18 and a temperature of
Teq/m = 1.835.
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This extraction has been done for several momentum modes and leads to the num-
bers displayed in Fig. 3.12 by the full squares. In this plot, furthermore, the extracted
relaxation rates are compared to the on-shell width of the particles as indicated by the
line. The latter values have been obtained within an independent finite temperature cal-
culation involving the self-consistent spectral function (and width). The exact method
is described in detail in Section 4.1. We note, that — apart from the coupling constant —
only the equilibrium temperature 7T,,/m = 1.835 enters into the self-consistent scheme
as input. It yields the on-shell energies w(p) and the self-consistent width for all mo-
menta and energies such that the on-shell width 7, (p) can be determined via (3.8). The
comparison in Fig. 3.12 shows a very good agreement of the results for the relaxation
rate obtained from a time-dependent single mode excitation of an equilibrated system
with the findings for the on-shell width calculated within the self-consistent thermal
approach. Thus the strong relation between both quantities has been shown explicitly
for the case of a general off-shell nonequilibrium theory.



Chapter 4

Self-Consistent Spectral Functions
at Finite Temperature

Whenever dealing with strongly interacting systems the single-particle spectral function
is of great importance. In particular for systems at high temperature and/or high
densities the spectral functions may exhibit a large width connected to a possibly
complicated structure rather than showing a é-function shape as in the case of on-shell
quasiparticles.

For systems in equilibrium there are two standard approaches for calculating the
spectral function: i) within the imaginary time formalism (ITF) by summation over
discrete Matsubara frequencies, ii) within the real-time formalism (RTF), where the
energy is considered as a real and continuous variable [85]. One great advantage of
the approach ii) lies in the fact that it can be easily connected to the nonequilibrium
situation. Therefore, we will use for our further developments the real-time formalism
(RTF) as familiar from nonequilibrium calculations. We recall that the perturbative
calculation of the sunset graph has been given in various works [86, 87, 88, 89]. Very
recently a first self-consistent treatment of the ¢*-theory in 341 dimensions up to this
order has been presented in [79].

4.1 The Iteration Scheme

In this Section we present a method for the calculation of self-consistent spectral func-
tions, which i) treats different order contributions in the number of loops of the self-
energy on the same footing and ii) incorporates the finite width due to the imaginary
part of the self-energy. Thus the actual spectral function reenters the calculation and
is iterated until self-consistency is reached.

Our iteration scheme is divided into the following steps:

1) The Green functions GZ are specified in energy-momentum space (p,po). In the

41
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initial step this can be done by assuming free Green functions (i.e. with é-function like
spectral functions) at the desired equilibrium temperature 7.

2) We change to the mixed representation by Fourier transformation with respect to p
and calculate the Green functions G as a function of momentum 7 and relative time
At. Since we are interested in a (static) equilibrium situation, there is no dependence
on a mean time variable. In case of the initial on-shell Green functions the mixed
representation (p, At) is obtained analytically (5.1).

3) The collisional self-energies ¥2(p, At) are calculated in the mixed representation
with the Green functions GZ(p, At) via (2.24).

Additional remark: step 3) can be performed in several ways depending on the ex-
plicit structure of the self-energy diagrams. For the case of the sunset diagram in
¢*-theory we utilize another Fourier-method. Here the self-energies are first evaluated
as a function of relative spatial (and time) coordinates, since the sunset self-energy is
(in coordinate space) simply a product of coordinate space Green functions that are
available by Fourier transformation with respect to the momentum. In the final step
these self-energies are transformed by a spatial Fourier transformation back into the
desired mixed representation.

4) From the collisional self-energies ¥ (p, At) we determine the retarded self-energy
SE(pAL) = O(At) [X7(p, At) — X<(5, At) ] (4.1)

Thus the retarded self-energy is calculated in the mixed representation by explicit in-
troduction of a step-function in relative time. As we will discuss below this is the main
advantage of our scheme because it guarantees analyticity and thus the normalization
of the self-consistent spectral function.

5) The retarded self-energy is Fourier transformed back into energy-momentum space
(P,po) and separated into its real part Re YR(p, py) and its imaginary part, which is
related to the width as T'(p, po) = —2 Im SE(p, po).

6) Calculating, furthermore, the real valued tadpole self-energy >° the spectral func-
tion is given as

T/ = F(ﬁv pO)
A — _ _ — . 4.2
Pip) = 5 e —om? =5 — ReSEGp) P+ Gpo)jd D

2

Here besides the initial physical mass m the mass counterterms ém? = dm? , + om?,,
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enter, that have to be calculated independently (see Appendix B). The expression
(4.2) for the spectral function is valid in general within a first order gradient ex-
pansion of the transport equation and is exact in equilibrium [34]. It is obtained as
A(p,po) = —2Im GE(p,py) from the Green function that solves the retarded Dyson-
Schwinger equation (2.20) (see also Section 6.2).

7) Now we can determine the Wightman functions G2 in the next iteration step in
energy-momentum space by the relations

iG<(p,po) = N(F,po) AP, o), iG” (B, po) = [1+ N(@,po)] A@,po). (4.3)

The separation of the Wightman functions into distribution functions NV and spectral
function A is always possible and well-known from the derivation of transport equations
[34]. We recall that in thermal equilibrium the distribution function N only depends
on the energy variable py and is independent of the momenta p. It is given — for the
scalar theory — by the Bose distribution

o i 1
NeQ(p’pO) = Neq(pO) - eXp(pO/T)_l

= Nbose(pO/T) 3 (44)

at equilibrium temperature 7. The method is not restricted to finite temperature,
but can be easily extended to finite densities. The presence of conserved quantities, as
given for a charged complex scalar theory in the most simple case, can be accounted for
by inclusion of a corresponding chemical potential i in the Bose distribution function.
In thermal equilibrium the Wightman functions are connected by the Kubo-Martin-
Schwinger (KMS) periodicity condition

G~ (P,po) = exp(po/T) G=(P,po) (4.5)

as inherent in the relations (4.3). The same holds for the collisional self-energies at
finite temperature. Thus the calculations take slightly less effort than implied above.

By calculating the new Green functions in 7) we have closed the iteration loop. The
iteration procedure is reentered at step 2), where the new Green functions are trans-
formed to relative time space in order to calculate the corresponding new collisional
self-energies. The alternating calculation of the Green function G< and of the spectral
function A is performed until self-consistency is reached.

The scheme proposed above has one central advantage in comparison to the related
approach given in [90]. In that case an iteration loop between the Green function
and the spectral function or — to be more precise — the width is used as well. The
width is determined from the imaginary part of the collisional self-energies directly in
energy-momentum space and inserted into the equation for the spectral function. The
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real part, however, is either neglected or calculated by a dispersion relation in energy.
The improvement of our method lies in using the mixed representation: Since the
retarded self-energy is calculated in (p, At)-space with an explicit ©-function in relative
time, analyticity is imposed automatically, i.e. the real part ReXE(p,p;) and the
imaginary part Im S%(, po) of the retarded self-energy in energy-momentum space are
connected by a dispersion relation. Furthermore, the spectral function A is normalized
accordingly. This is not the case for some schemes that obtain the real part and the
imaginary part of the retarded self-energy by different methods. Here problems with
the normalization of the spectral function and analyticity may arise. Lateron we will
illustrate this point in detail.

Within that context we also note that phenomenological models frequently use
form factors, i.e. non-local vertices, to cure renormalization problems. Such form
factors typically have poles in the complex energy plane. Using the form factors for
the calculation of real and imaginary part of a self-energy therefore messes up the
analyticity properties and in general destroys the normalization of the spectral function.
A proper way out is indeed the calculation of only the imaginary part of the retarded
self-energy from the corresponding loop expressions including form factors. The real
part is calculated afterwards from a dispersion relation to insure the correct analyticity
properties. Within our ¢*-theory renormalization is a well-defined concept. Hence
in our case there is no need to resort to form factors. Therefore, we can use the
computationally less expensive method discussed above for the iterative calculation of
the self-energies and the two-point functions.

A further advantage lies in the fact that our method, especially in combination with
the Fourier-prescription for the momentum integrals, is computationally fast in com-
parison to standard procedures of calculating multidimensional momentum integrals.
Furthermore, due to the spherical symmetry of the equilibrium state it can be per-
formed very efficiently. Moreover, it is easily applied to all temperatures and chemical
potentials, i.e. as long as the distribution function Neq (po, T, 1) is specified.

Our scheme is appropriate for simple self-energies, as for example the sunset dia-
gram. Basically it is applicable also for more complex diagrams since it always reduces
the number of necessary integrations. The whole procedure profits from the fact that
the appearing convolution integrals in momentum and energy correspond to ordinary
products of coordinate space functions. Thus the required integrations to obtain the
self-energy can be reduced considerably. In case of the sunset diagram, that has only
two external points (given by the coordinates of the self-energy) but no internal points,
integrations can be avoided completely besides the Fourier transformation itself. For
more complicated diagrams one has to integrate over the space-time coordinates of
all internal points. Nevertheless, at least the contributions from the external points
can be handled in a multiplicative manner rather than performing time consuming
energy-momentum integrations.

When discussing the range of applicability of our method one should note as well,
that it is mainly suited for field theories that are void of complicated renormalization
prescriptions. In our case of ¢*-theory in 2+1 space-time dimensions the renormaliza-
tion can be done by simple mass counterterms since only the pure vacuum contributions
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of both self-energies diverge. This mass renormalization scheme can be easily included
in the iteration procedure as seen by the representation for the spectral function (4.2).
In cases of diverging diagrams, that contain temperature dependent parts, the renor-
malization procedure is much more involved [78, 79]. In such situations our method
might be complicated significantly.

Our approach of using a mixed representation of momentum and relative time (in-
stead of the energy) is related to a method used within the imaginary time formalism
(ITF). In this case a mixed representation is established as well, which is known as the
Saclay-method [91, 92]. The representation is obtained by transforming from discrete
and imaginary energy variables — the Matsubara frequencies w,, = 2minT (for bosons)
— towards an imaginary time variable 7. Due to the discrete structure of the tempera-
ture dependent Matsubara frequencies the imaginary time variable is restricted by the
temperature 7" as 7 € [0,1/7]. In contrast, in the real-time formalism (RTF) the rela-
tive time variable At is unbounded in accordance with the continuous energy variable
po- The energy integrations of the RTF correspond in the ITF to summations over the
infinite number of discrete Matsubara frequencies. In case of perturbative calculations
there exist comfortable expressions for the latter series which make the calculation
easier. In a self-consistent calculation the finite temperature Green functions assume a
complicated structure rather than the simple on-shell form and a numerical evaluation
is necessary. This is of course possible, but intricate, since the very high Matsubara-
frequencies give still a considerable contribution to the series. Thus it is necessary
to include all these large modes even if the retarded self-energies are rather small at
high frequencies. In order to reduce the large computing time one might calculate the
retarded self-energy only up to a certain Matsubara frequency ignoring the small re-
tarded self-energy for all higher modes. For the higher modes the Green function of the
next iteration step is determined by inclusion of the frequency and momentum inde-
pendent — and thus for large frequencies non-vanishing — tadpole self-energy, only. As
we have tested, this prescription seems to lead to a sufficient accuracy with a reduced
computational time.

4.2 Finite Temperature Spectral Functions

In the following we show the actual results calculated within the self-consistent scheme
described above. The tadpole self-energy as well as the retarded sunset self-energy are
included self-consistently using the renormalization prescription of Appendix B. In Fig.
4.1 the width T is displayed as a function of the energy py for four different momentum
modes | p|/m = 0, 2, 4, 6 for a temperature of 7/m = 1.835 and a coupling constant
of A/m = 18. This configuration corresponds to the thermalized state obtained by the
time evolution of the polar symmetric initial momentum distributions D1, D2, D3 and
DT in Section 3. For comparison we present, furthermore, the width as obtained by
a perturbative calculation (as indicated by the dashed lines) for the same momentum
modes, and with the same external parameters 7"and A. The results have been obtained
with the (self-consistent) effective mass m},,;;/m = 1.490 on the tadpole level, i.e. by
the iterative solution of the tadpole gap equation. This is in the spirit of Wang and



46 4. Self-Consistent Spectral Functions at Finite Temperature

L) l L) I L) I L) I L) I L) I L)
95 —— full self-consistency

— ’ perturbative, tadpole mass iterated

S Mm=18 T/m=1835 m*_ /m=1.49

o

Q.
n:v

A

I= -

o

I

o

=

=

S

S

=

[pim=0,2,4,6] ]
L) l L) l L) l L) l L) l L) l L)
0 2 4 6 8 10 12 14

energy p,/m

Figure 4.1: Self-consistent width (solid lines) and perturbative width (dashed lines) as
a function of the energy po/m for various momentum modes |F|/m = 0, 2, 4, 6 for a
thermal system at temperature 7'/m = 1.835 with coupling constant A\/m = 18. For
the highest momentum mode |7|/m = 6 of the perturbative calculation, the collision
contribution (2 <> 2) and the decay contribution (1 <+ 3) to the width are explicitly
displayed.

Heinz [88] who firstly determined the effective mass in lowest order (also in a self-
consistent way) and inserted this mass in the following into the expressions for the
width calculated within the next order. We see from Fig. 4.1 that the perturbative
width shows a similar (two maxima) shape for all momentum modes (for the given case
of m* < T¢,). It is characterized by an increase towards a maximum around the on-shell
energy wy = 1/p? + m*? and falling off beyond. This behaviour stems from the 2 <> 2
processes in the self-energies as indicated for the highest momentum mode |p’|/m = 6
by the thin line. Particles can be scattered by other particles — present in the system
at finite temperature — such that they achieve the shown (collisional) damping width.
This collision contribution vanishes for a system at temperature 7" = 0. Furthermore,
particles with sufficient energy can decay into three other particles. Above the threshold
of po4n(P) = /P? + (3m*)? these 1 <+ 3 processes lead to an increase of the width (as
marked for the highest momentum mode by the second thin line). Finally, the width
I' decreases for larger energies and assumes a momentum-independent constant value
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Figure 4.2: Self-consistent spectral function as a function of the energy py/m for various
momentum modes | p'|/m =0, 2, 4, 6 for a thermal system at temperature T'/m = 1.835
with coupling constant A/m = 18 (solid lines). Furthermore, spectral functions as
obtained in a perturbative calculation with (dotted lines) and without (dashed lines)
inclusion of the real part of the retarded self-energy are shown in comparison.

in the high energy limit. This behaviour is in contrast to the case of 3+1 dimensions,
where the width shows a monotonous increase for very high energies.

In comparison, the width calculated within the self-consistent scheme shows a sim-
ilar two maximum shape. Here, both processes are incorporated although they cannot
be separated easily due to the self-consistent iteration. Apparently, the sharp structures
present in the perturbative calculation have been washed out considerably. The kink
structures resulting from threshold effects slightly disappear since the (broad) spectral
function reenters the evaluation in this iteration scheme. Furthermore, also the po-
sition of the first maximum can be moved, as seen especially for the low momentum
modes. This is an effect of the self-consistent spectral function that accounts also for
mass shifts caused by the tadpole self-energy and the real part of the retarded sunset
self-energy. Overall, Fig. 4.1 shows that the width in the self-consistent calculation
can be significantly larger than in the corresponding perturbative estimate. However,
the differences are reduced for smaller coupling constants in agreement with results
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Figure 4.3: Self-consistent spectral function as a function of the energy po/m for cou-
pling constants A\/m = 10, 12, 14, 16, 18 at temperature 7'/m = 1.8. With increasing
interaction strength the spectral functions become broader for all momentum modes
|p|/m=0,1,2,3,4,5.

obtained within the classical approximation [93].

In Fig. 4.2 we present the corresponding spectral functions for the system at tem-
perature T/m = 1.835 and coupling constant A/m = 18. The spectral functions are
displayed as a function of the energy for the same four momentum modes of |F|/m =
0, 2, 4, 6. We observe that the larger width of the full self-consistent calculation (solid
lines) in comparison to the perturbative result (dashed lines in Fig. 4.2) reflects itself in
a slightly broader spectral function. Furthermore, the perturbative spectral function is
located at higher energies compared to the full result, in particular for the low momen-
tum modes. This is due to the fact, that in the perturbative calculation the effective
mass of the particles is fixed before evaluating the width by a solution of the tadpole
gap equation. Mass modifications due to the interactions of higher order are neglected
within this approximation in line with [88], where the spectral function is determined
solely by the imaginary part of the retarded self-energy. On the other hand, the re-
duction of the effective mass due to the real part of the retarded sunset self-energy
is included in the self-consistent approach leading to a shift of the spectral function
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maxima to lower on-shell energies. Moreover, the tadpole mass shift is not fixed in that
calculation but modified during the iteration process as well. In the present case the
momentum and energy independent tadpole mass shift within the self-consistent second
order calculation is given as Am? ,/m? = 1.094 in comparison to the value obtained
for the first order calculation by the tadpole gap equation of Am? ,/m? = 1.220. This
indicates already a shift of the spectral function to lower on-shell energies although the
size is small compared to the effect coming from the second order self-energy. Thus
both spectral functions are getting closer again for higher momenta where the sunset
mass shift is smaller.

At this point we emphasize that the spectral function obtained by the self-consistent
scheme obeys the normalization condition to high accuracy (3.7). This is not the
case for a perturbative calculation where only the imaginary part of the retarded self-
energy is taken into account as in [88]. When inserting only the expression for the
width into the equilibrium form of the spectral function but neglecting the real part of
the retarded self-energy, the normalization condition may be violated strongly. In the
present perturbative calculation the correct normalization is underestimated by ~ 20%
for the small momentum modes. Thus these kinds of spectral functions, furthermore,
strongly violate the desired analyticity properties. In order to show the importance of
the real part of the retarded self-energy even on the shape of the spectral function we
present in Figure 4.2 a calculation which takes this contribution explicitly into account.
Calculating the complete retarded self-energy perturbatively with an effective mass of
M;aait/m = 1.490 yields the spectral function displayed for the same momentum modes
with dotted lines. We see that the shape of the spectral function is strongly affected
in particular for the small momentum modes. The inclusion of the real part causes a
significant shift of the spectral function to lower energies. Since the width is smaller
in that region (cf. Fig. 4.1), the spectral function assumes — especially for the low
momentum modes — a much narrower shape. Nevertheless, the inclusion of the real part
of the retarded self-energy leads to a proper normalization of the corresponding spectral
functions. Still there is a significant disagreement between the improved perturbative
(dotted line) and the self-consistent solution (solid line).

In order to illustrate the dependence on the interaction strength we show in Fig.
4.3 the spectral function at temperature 7/m = 1.8 for coupling constants \/m =
10, 12, 14, 16, 18. As expected, the spectral functions are significantly broader for
increasing interaction strength. Again the low lying momentum modes achieve the
broadest shape, respectively. Furthermore, the on-shell value is changing with A\, which
is easily visible for the small momentum modes. Here two effects are superimposed: The
upward mass shift generated by the tadpole diagram is competing with the negative
shift from the retarded self-energy, which gives a significant contribution primarily in
the low momentum regime. With increasing coupling strength the higher order term
dominates, which results in a lowering of the on-shell energies for small momenta as
seen in Fig. 4.3. In the high momentum region — where the real part of the retarded
self-energy is small — the constant tadpole mass shift dominates and leads to an increase
of the effective mass with the coupling constant. This effect can already be seen for
the modes | '|/m = 4, 5 and is even stronger for higher momenta (not displayed here).



50 4. Self-Consistent Spectral Functions at Finite Temperature

1O e S T LI B S L B B B B B B
70-
60—.
50-
.
30—.

20

spectral function A(p,p,) * T?

10

0_

| | | | | | | | | | | |
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14
energy p,/ T

Figure 4.4: Spectral functions of three momentum modes |p'|/7 = 0.0, 0.5, 1.0 for
different coupling constants A\/T = 2, 2.5, 3, 3.5, 4, 4.1, 4.2, 4.25, 4.265 as a function
of energy for the massless case m = 0. With increasing coupling A\/T the spectral
function of the zero momentum mode becomes broader and moves to lower energies.

4.3 The Massless Case

As the final part of this Chapter we consider the case of massless scalar fields in the
Lagrangian (2.1). The dynamics of massless quantum field theory has been extensively
discussed over the last years especially for the dynamics of the soft, infrared modes
which might be described by classical wave dynamics. In particular the diffusion rate
of the topological charge in electroweak theory has been calculated within classical
simulations [94]. The connection between classical and quantal correlation functions
has then been worked out in a variety of papers [95]. Also it was shown recently within
¢*-theory that the classical wave dynamics is equivalent to a standard Boltzmann
description for the soft modes when including the correct Bose statistics and staying
in the weak coupling regime [96].

From our (numerical) studies we find no qualitative difference in the dynamics of
massless fields compared to the one with finite masses for moderate couplings, which
is due to the generation of an effective thermal mass by the leading tadpole diagram as
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suggested in [97]. We note that there is a logarithmic divergence in the infrared sector
for the sunset self-energy in vacuum for 2+1 dimensions (cf. (B.2)) and thus a sublety,
which we have cured by evaluating the vacuum counterterm in our renormalization
description at a very small but finite mass.

In the following we concentrate on the structure of the spectral function with respect
to the coupling strength A/7T. In Fig. 4.4 the spectral function of three low momentum
modes |p'|/T = 0.0, 0.5, 1.0 for various coupling constants \/T = 2, 2.5, 3, 3.5, 4, 4.1,
4.2, 4.25, 4.265 as a function of energy po/T is displayed. Since the temperature
represents the scale for the massless case, we give all quantities in units of 7. We find
that the spectral function is shifted to larger energies with increasing and still moderate
coupling strength (A\/T < 3.5). However, in the strong coupling regime (A\/T > 3.5)
especially the spectral function of the zero momentum mode moves downward again,
leading to a major reduction of the effective mass. Simultaneously, the spectral width
grows with the coupling constant A/7. Thus for large couplings the on-shell width
becomes comparable to the effective mass (as given by the maximum position of the
zero-mode spectral function).

To summarize our findings we show in Fig. 4.5 (upper part) the evolution of the on-
shell energy of the zero momentum mode as a function of the coupling constant /7.
The effective mass — as given by the maximum of the spectral function — increases
with \/T up to moderate couplings \/T" = 3.5 which is — as already discussed for
the non-zero mass case — essentially an effect of the mass generation by the tadpole
self-energy. For larger couplings A\/T > 3.5 the contribution from the retarded self-
energy plays a more important role and results in a decrease of the effective mass.
The reduction of the effective mass becomes rather strong for couplings A\/T > 4.25
indicating a significant shift of the corresponding self-consistent spectral function to
smaller energies. This behaviour is accompanied by a strong increase of the on-shell
width 7, (] 7| = 0) of the zero momentum mode as seen from Fig. 4.5 (middle part).
While the width grows smoothly with the coupling constant for moderate couplings,
we find a strong steepening in the high coupling regime as well. Thus the zero-mode
spectral function for high coupling constants becomes extremely broad with an on-shell
width comparable to or even larger than its effective mass.

As seen from Fig. 4.5 the evolution of the self-consistent spectral function in the
strong coupling regime becomes singular and critical, such that the iteration processes
do not lead to a convergent result for A\/m ~ 4.266. We address this effect to the
onset of Bose condensation. In order to illustrate this interpretation we show in Fig.
4.5 (lower part) the change of the effective occupation number (as obtained from the
equal-time Green functions (3.31)) with the coupling A\/T for four different momentum
modes |p'|/T = 0.0, 0.5, 1.0, 1.5. Whereas the effective particle number of the higher
momentum modes remain approximately constant, the occupation number of the zero
momentum mode changes rapidly for /T > 4.26 indicating a preferential occupation
of the condensate mode for higher couplings.

We recall that such an onset of a Bose condensation is possible for the massless
relativistic theory in 2+1 space-time dimensions. Although the effective mass is not
identical to zero we observe significant spectral support at low energies due to the broad
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spectral functions for the strongly interacting system. We note that in the present
description the system has to stay in the symmetric phase, where no coherent field can
develop. However, when including additionally a non-vanishing field expectation value
[55], the symmetry will be broken and the system might enter a new phase. A detailed
investigation of the issue we delay to a future study.
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Figure 4.5: Effective mass (upper plot) and on-shell width of the zero momentum mode
(middle plot) as a function of the coupling constant \/T" for a massless theory. With
increasing coupling A\/T" the occupation number of the zero momentum mode grows
considerably in contrast to higher momentum modes (lower plot) indicating the onset
of Bose condensation for A\/T > 4.26.
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Chapter 5

Full versus Approximate Dynamics

The Kadanoff-Baym equations studied in the previous Chapters represent the full quan-
tum field theoretical equations with the chosen topology for the self-consistent dissi-
pative self-energy on the single-particle level. However, its numerical solution is quite
involved and it is of interest to investigate, in how far approximate schemes deviate
from the full calculation. Nowadays, transport models are widely used in the descrip-
tion of quantum system out of equilibrium (cf. Introduction). Most of these models
work in the ‘quasiparticle’ picture, where all particles obey a fixed energy-momentum
relation and the energy is no independent degree of freedom anymore; it is determined
by the momentum and the (effective) mass of the particle. Accordingly, these particles
are treated with their d-function spectral shape as infinitely long living, i.e. stable ob-
jects. This assumption is rather questionable e.g. for high-energy heavy-ion reactions,
where the particles achieve a large width due to the frequent collisions with other par-
ticles in the high density and/or high energy regime. Furthermore, this is doubtful for
particles that are unstable even in the vacuum. The question, in how far the quasipar-
ticle approximation influences the dynamics in comparison to the full Kadanoff-Baym
calculation, is of general interest [59, 62].

5.1 Derivation of the Boltzmann Approximation

In the following we will give a short derivation of the Boltzmann equation starting
directly from the Kadanoff-Baym dynamics in the two-time and momentum space rep-
resentation as employed within this work. This derivation is briefly reviewed since we
want i) to emphasize the link of the full Kadanoff-Baym equation with its approxi-
mated version and ii) to clarify the assumptions that enter the Boltzmann equation.
The conventionally employed derivation of the (equivalent) Boltzmann equation will
be discussed later on.

Since the Boltzmann equation describes the time evolution of distribution functions
for quasiparticles we first consider the quasiparticle Green functions in two-time rep-
resentation for homogeneous systems:

95
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For each momentum p the Green functions are freely oscillating in relative time t; — ¢y
with the on-shell energy wz. The time-dependent quasiparticle distribution functions
are given with the energy variable fixed to the on-shell energy as N, (p,t) = N (P, po =
wp, t), where the on-shell energies w; might depend on time as well. Such a time
variation e.g. might be due to an effective mass as generated by the (renormalized)
time-dependent tadpole self-energy. In this case the on-shell energy reads

— P m (0. (5.2)

Vice versa we can define the quasiparticle distribution function by means of the quasi-
particle Green functions at equal times ¢ as [11]

No(t) = | B iG5, 000 +

2 2(,0:3_*( ) ZG:TF qp(p7 t; t) :| (53)

[qup(p, t) — Gip (@i, t) } .

Using the equations of motions for the Green functions in diagonal time direction (A.2)
(exploiting G5, (9, t,t) = —[ Gr4(P;t,t)]*) the time evolution of this distribution func-
tion is given by
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Oy N‘H’(ﬁ’ t) = —Re{ If;qp(ﬁ’ 2 t) } - Im{ Il<,2;qp(ﬁa t t) } : (5-4)

wy(?)

The time derivatives of the on-shell energies cancel out since the quasiparticle Green
functions obey

Grr(Bit,t) = wilt) Goy(P,t,t) (5.5)

as seen from (5.1). Furthermore, we remark that contributions containing the energy w]%
— as present in the equation of motion for the Green functions (A.2) — no longer show up.
The time evolution of the distribution function is entirely determined by (equal-time)
collision integrals containing (time derivatives of the) Green functions and self-energies,

t
L5, tt) = /t dt’ To,(B, 1) Gop (B 151) — E,(01,1) Goy (B, 1), (5.6)
0

t
LBt t) = /t dt' X5, (,t,t) Gop (B 151) — Sg, (0t t) Go, (D 11) .
0

Since we are dealing with a system of on-shell quasiparticles within the Boltzmann
approximation, the Green functions in the collision integrals (5.6) are given by the
respective quasiparticle quantities of (5.1). This holds for the collisional self-energies
as well and is indicated by the index -,

A2 [diq [d%r [d% 1
S2 (Gt ty) = i om) § g — L s
qp(pa t17t2) ¢ 6 /(27T)d/(27T)d/(27T)d ( 7T) 5 (p q—r 5‘) 2(4)@*20);-‘20&* (5 7)
X { qu(:':q_') qu(:FF) qu(ng) exp(+i [t1—12] [iwé’i wi + wgz])
+3 qu(:FCf') qu(q:f‘) [qu(:té')"‘l] eXp(+i[t1_t2][iwé’in:F ws))

+3 Ngp(F@) [ Nop(£F)+1] [Ngp(£58)+1]  exp(+i [t~y | [+wg F wr F wr)

+ [ Nop(£qQ)+1] [ Nop(£7) +1] [ Nop(£8)+1] - exp(+i [11 =2 | [ Fwz F wr F ws]) }

For a free theory the distribution functions N, (p) are obviously constant in time which,
of course, is no longer valid for an interacting system out of equilibrium. Thus one has
to specify the above expressions for the quasiparticle Green functions (5.1) to account
for the time dependence of the distribution functions.
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The actual Boltzmann approximation is defined in the limit, that the distribution
functions have to be taken always at the latest time argument of the two-time Green
function [60, 62]. Accordingly, for the general nonequilibrium case we introduce the
ansatz for the Green functions in the collision term,

> . —1 . '
Gopgp(Prt1t2) = 5— { Nop(F D tmas) exp(Eiwy (t1—12))

Qwﬁ

+ [ Nop(£ 5, tmaz) +1] exp(Fiwy(hi—ta)) }, (5.8)
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G?’“’:QP(p’ tl,tz) = 5 { :Fqu(:Fpa tmaa:) eXp(ﬂzlwﬁ (tl—tg))

+ [qu(j:ﬁa tmaz) +1] eXp(:Fiwﬁ(tl_tZ)) }s

with the maximum time ¢,,,, = maz(t;,t2). The same ansatz is employed for the time-
dependent on-shell energies which enter the representation of the quasiparticle two-time
Green functions (5.8) with their value at t,,45, i.6. w5 = Wi(tmaz = maz(ty, t2)).

The collision term contains a time integration which extends from an initial time
to to the current time ¢. All two-time Green functions and self-energies depend on the
current time ¢ as well as on the integration time ¢’ < ¢. Thus only distribution functions
at the current time, i.e. the maximum time of all appearing two-time functions, enter
the collision integrals and the evolution equation for the distribution function becomes
local in time. Since the distribution functions are given at fixed time ¢, they can be
taken out of the time integral. When inserting the expressions for the self-energies and
the Green functions in the collision integrals the evolution equation for the quasiparti-
cle distribution function reads:

Oy Nyp(Dy t) = %/(;W(id/(;;d/(gw’;d (2m)¢ (5(d)(ﬁ_,7_7:*_§') 1 (5.9)
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t
+3 [ Nﬁt N—(j’,t N—F,t NS",t — Nﬁ,t N_q"’t N_,,‘-"t Né’,t ] /dt, COS([ t_tl] [Wﬁ+w(j’+WF—W§])
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+ [Nyt Ngt Nry Nsp — Ny Nz Nrg Ns*,t]/dt' COS([t—t'][wﬁ—wer—ws*])},

to

where we have introduced the abbreviation Nz, = N,, (7, t) for the quasiparticle distri-
bution function at current time ¢ and Nz, = N,, (7, t) + 1 for the according Bose factor.
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Furthermore, a possible time dependence of the on-shell energies is suppressed in the
above notation.

The terms in the collision term (5.9) for particles of momentum p’ are ordered as
they describe different types of scattering processes where, however, we always find the
typical gain and loss structure. The first line in (5.9) corresponds to the production and
annihilation of four on-shell particles (0 — 4, 4 — 0), where a particle of momentum p’
is produced or destroyed simultaneous with three other particles with momenta ¢, 7, §.
The second line and the forth line describe (1 — 3) and (3 — 1) processes where the
quasiparticle with momentum p’is the single one or appears with two other particles.
The relevant contribution in the Boltzmann limit is the third line which respresents
(2 > 2) scattering processes; quasiparticles with momentum p can be scattered out of
their momentum cell by collisions with particles of momenta ¢ (second term) or can be
produced within a reaction of on-shell particles with momenta 7, § (first term).

The time evolution of the quasiparticle distribution is given as an initial value
problem for the function N,,(p) prepared at initial time ¢,. For large system times
t (compared to the initial time) the time integration over the trigonometric function
results in an energy conserving §-function.

¢
lim dt' cos((t—t')@) = lim

t—to—00 to t—to—00

% sin((t—t) &) = 76(@).  (5.10)

Here & = wy + wg £ wi £ wy represents the energy sum which is conserved in the limit
t — ty — oo where the initial time ¢y is considered as fixed. In this limit the time
evolution of the distribution function amounts to
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In the energy conserving long-time limit (5.10) only the 2 <> 2 scattering processes
(third line in (5.9)) are contributing. All other terms vanish since the corresponding
energy o-functions can not be fulfilled for on-shell quasiparticles. In the following we
will solve the energy conserving Boltzmann equation for on-shell particles:
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The system evolution given by (5.12) is explicitly local in time since it depends only on
the current configuration; there are no memory effects from the integration over past
times as present in the full Kadanoff-Baym equation.

We point out, that the numerical algorithm for the time integration of (5.12) is
basically the same as the one employed for the solution of the Kadanoff-Baym equation
(cf. Appendix A). Energy conservation can be assured by a precalculation including a
shift of the lower boundary ty to earlier times. Even small time shifts suffice to keep the
kinetic energy conserved. We note, that in contrast to the Kadanoff-Baym equation
no correlation energy is generated in the Boltzmann limit.

In addition to the procedure presented above, we calculate the actual momentum-
dependent on-shell energy for every momentum mode by a solution of the dispersion
relation including contributions from the tadpole and the real part of the (retarded)
sunset self-energy. In this way one can guarantee that at every time ¢ the particles are
treated as quasiparticles with the correct energy-momentum relation.

Before presenting the actual numerical results we like to comment on the deriva-
tion of the Boltzmann equation within the conventional scheme that is different from
ours. Here, at first the Kadanoff-Baym equation (in coordinate space) is transformed
to the Wigner representation by Fourier transformation with respect to the relative
coordinates in space and time (for ¢*-theory see Refs. [19, 11]). The problem then is
formulated in terms of energy and momentum variables together with a single system
time. For non-homogeneous systems a mean spatial coordinate is necessary as well. As
a next step the ‘semiclassical approximation’ is introduced, which consists of a gradient
expansion of the convolution integrals in coordinate space within the Wigner transfor-
mation. For the time evolution only contributions up to first order in the gradients
are kept (cf. (3.15)). Finally, the quasiparticle assumption is introduced as follows:
The Green functions appearing in the transport equation — explicitly or implicitly via
the self-energies — are written in Wigner representation as a product of a distribution
function N and the spectral function A (cf. Section 3.6). The quasiparticle assumption
is then realized by employing a dé-like form for the spectral function which connects the
energy variable to the momentum. By integrating the first order transport equation
over all (positive) energies, furthermore, the Boltzmann equation for the time evolution
of the on-shell distribution function (5.12) is obtained.

Inspite of the fact, that the Bolzmann equation (5.12) can be obtained in different
subsequent approximation schemes, it is of basic interest, how its actual solutions
compare to those from the full Kadanoff-Baym dynamics.
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5.2 Boltzmann vs. Kadanoff-Baym Dynamics

In the following we will compare the solutions of the Boltzmann equation with the
solution of the Kadanoff-Baym theory. We start with a presentation of the nonequilib-
rium time evolution of two colliding particle accumulations (tsunamis) [44] within the
full Kadanoff-Baym calculation (cf. Fig. 5.1). Such configurations are also used for
simulations in the heavy-ion physics context [59, 44, 60, 61, 62].

During the time evolution the bumps at finite momenta (in p, direction) gradually
disappear, while the one close to zero momentum — which initially stems from the vac-
uum contribution to the Green function — is increased as seen for different snapshots
at times ¢t - m = 0, 15, 30, 45, 75, 150 in Fig. 5.1. The system with initially appar-
ent collision axis slowly merges — as expected — into an isotropic final distribution in
momentum space.

For the comparison between the full Kadanoff-Baym dynamics and the Boltz-
mann approximation we concentrate on equilibration times. To this aim we define
a quadrupole moment for a given momentum distribution N(p) at time ¢ as

/(;iﬂ_z;g [pi_pz] N(ﬁat)

d*p . ’
Je )

which vanishes for the equilibrium state. For the Kadanoff-Baym case we use in (5.13)
the effective distribution function n.f(p,t), which is determined by the equal-time
Green functions (3.31). When constructing the distribution function by means of equal-
time Green functions the energy variable has been effectively integrated out. This has
the advantage that the distribution function is given independently of the actual on-
shell energies. We note, that a calculation with the on-shell energies basically leads to
the same results.

Q) = (5.13)

The relaxation of the quadrupole moment (5.13) has been studied for two different
initial distributions: The evolution of distribution d2 is displayed in Fig. 5.1 while for
distribution d1 the position and the width of the two particle bumps have been mod-
ified. The calculated quadrupole moment (5.13) shows a nearly exponential decrease
with time (see Fig. 5.2) and we can extract a relaxation rate I'g via the relation

Q) x exp(-Tg-t). (5.14)

Fig. 5.3 shows for both initializations that the relaxation in the full quantum cal-
culation occurs faster for large coupling constants A than in the quasi-classical ap-
proximation, whereas for small couplings the equilibration times of the full and the
approximate evolutions are comparable. We find that the scaled relaxation rate I'g/\?
is nearly constant in the Boltzmann case, but increases with the coupling strength in
the Kadanoff-Baym calculation (especially for the initial distribution d2).
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Figure 5.1: Evolution of the Green function in momentum space within the full
Kadanoff-Baym dynamics. The equal-time Green function is displayed for various
times t - m = 0, 15, 30, 45, 75, 150. Starting from an initially non-isotropic shape it

develops towards a rotational symmetric distribution in momentum space.
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Figure 5.3: Relaxation rate (divided by the coupling A squared) for Kadanoff-Baym and
Boltzmann calculations as a function of the interaction strength. For the two different
initial configurations the full Kadanoff-Baym evolution leads to a faster equilibration.
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These findings are explained as follows: Since the free Green function — as used
in the Boltzmann calculation — has only support on the mass-shell, only (2 « 2)
scattering processes are described in the Boltzmann limit. All other processes with a
different number of incoming and outgoing particles vanish (as noted before). Within
the full Kadanoff-Baym calculation this is different, since here the spectral function —
determined from the self-consistent Green function (cf. Section 3.5) — aquires a finite
width. Thus the Green function has support at all energies although it drops fast far
off the mass shell. Especially for large coupling constants, where the spectral function
is sufficiently broad, the three particle production process gives a significant contribu-
tion to the collision integral. Since the width of the spectral function increases with
the interaction strength, such processes become more important in the high coupling
regime. As a consequence the difference between both approaches is larger for stronger
interactions as observed in Fig. 5.3. For small couplings A\/m in both approaches ba-
sically the usual 2 <+ 2 scattering contributes and the results for the rate I'g are quite
similar.

In summarizing this Section we point out that the full solution of the Kadanoff-
Baym equations does include 0 <+ 4, 1 <> 3 and 2 <> 2 off-shell collision processes which
— in comparison to the Bolzmann on-shell 2 <+ 2 collision limit — become important
when the spectral width of the particles reaches ~ 1/3 of the particle mass. On the
other hand, the simple Boltzmann limit works surprisingly well for smaller couplings
and those cases, where the spectral function is sufficiently narrow.

5.3 Estimate for the Quadrupole Relaxation

In this Section we concentrate on the quadrupole relaxation rates observed for the full
Kadanoff-Baym and the Boltzmann approximation in order to provide a simple and
intuitive explanation for the actual values extracted in the last Section. To this aim
we study an idealized initial state given by two J-functions in momentum space. For
symmetry reasons they are placed on the positive and negative p,-axis at p, = 0. Thus
the initial distribution function reads

where N¢ is a normalization constant. We are now interested in the time evolution of
this distribution function in particular in view of the relaxation rate of the quadrupole
moment. For simplicity we will explore this question employing the Boltzmann equa-
tion, since the differences between the full and the quasiparticle calculation are rather
moderate.

The special form of the initial distribution N (5.15) has the particular advantage,
that the collision term of the Boltzmann equation can be calculated analytically at
the beginning of the evolution. We find for the time evolution of momentum moments
within the Boltzmann approximation in 241 space-time dimensions:
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Here O can be a function of the momentum coordinates, but is assumed to be indepen-
dent of time, e.g. O € {1,p3,p>}. Furthermore, the energy is fixed in this quasiparticle

calculation by the momentum as py = wy = y/m? + p2. For our special initial state
N? and for the chosen operators © all contributions of products of more than two
distribution functions cancel out. Thus the derivative of the mean value is given by
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By inserting the explicit form of the initial conditions and performing the integrations
over the momentum J-functions we obtain for the gain term
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where we take into account explicitly the different choices for the operator O €
{1,p2,p2}. In (5.18) we have introduced the on-shell energy of the initial particle
localization in momentum space

Wini = VmQ—i—pfm (5.19)

as well as the energies

Wpy = \/m2 + (po & 2pini)® + P - (5.20)

Since the integration over the last two J-functions in energy yields zero, the only con-
tribution to the integral stems from the first term, which can be evaluated as
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with the energy functions wr, given as above. Due to the appearance of N°(p) in the
loss term the integration over the momentum p'is performed directly such that the val-
ues of the operator are fixed. Again only the first term of the integral gives a non-zero
result and we get for the loss term in the early time evolution

2 202 .
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1 ni 2

From (5.21) and (5.23) we find — in agreement with the general properties of the Boltz-
mann equation — that the total particle number is conserved for our particular initial
state

= 0. (5.24)

t=0

d d?p d
it Niot(t) = /(271')2 dt N(p)

Thus the total particle number is given by Ny, (t) = 2Ng/(27)? for all times t. Fur-
thermore, for the reduction of the quadrupole moment (calculated with the initial
distribution N?) we obtain
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1 / d*p 5 o, d
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—0 Ntot (271')2 [ T Yy ] dt ( _) 0
where the gain term does not give a contribution due to the symmetry in the momentum
coordinates p, and p,.

As indicated by the numerical studies shown in the last Section the quadrupole
moment, decreases nearly exponentially in time. Thus assuming a decrease of the
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quadrupole moment of the form Q(t) = Qo exp(—Ig - t) we can determine the relax-
ation rate as

) 2
= 1
FQz—M:N‘S A

Q(t = 0) P 64272 S 2l

with the initial value Q(¢ = 0) = p? .. In order to connect this result to the initial
distributions employed in our calculations

(5.26)

n(p,t =0) = ng exp(—(|ps| — Pini)*/202) exp(—pz/Qaj) (5.27)

we avail the corresponding representation of the §-function and identify NJ = 27 ng o, Oy-
Thus we can estimate the relaxation rate for the distribution d1 (ny = 1, o, = 0.75,
oy = 0.75, pini = 2.5) as 'y ~ 7.16-10°- \? and for distribution d2 (no = 1, 0, = 0.5,
oy = 1.0, pins = 3.0) as T ~ 3.93-107°- A2, respectively. In both cases an initial mass
m = 1 has been used. A comparison of this rather rough estimate with the results
from the actual calculations shows a remarkably good agreement. When taking into
account, that the effective mass slightly increases with the coupling A/m in the full
calculations, the agreement is even better.

Thus momentum relaxation in the full Kadanoff-Baym equations as well as in the
Boltzmann limit can be understood in rather simple terms. Turning the argument
around, we can conclude that relaxation phenomena — as described by the Kadanoft-
Baym equations — do not differ very much in comparison to semiclassical limits though
the full quantum off-shell propagation is invoked.

In addition, we note that the relaxation time for the quadrupole moment is one
order of magnitude larger than the typical inverse damping width, which dictates the
relaxation of a single mode out of equilibrium (see Section 3.7). Going from the equa-
tion (5.16) to equation (5.17) one notices that the Bose enhancement factors have
dropped out for the further estimate of the quadrupole relaxation rate. On the other
hand these factors enter crucially in the total width. For a 241 dimensional system
these Bose factors are of special importance and increase significantly the damping
width. This explains the obvious difference between the quadrupole relaxation — char-
acterizing kinetic equilibration of a far-from-equilibrium system — and the relaxation
of a single mode out of equilibrium.

5.4 Stationary State of the Boltzmann Evolution

In Sections 3.2 and 3.7 we have described the characteristics of equilibration within the
full Kadanoff-Baym theory. In this Section we additionally show the nonequilibrium
evolution in the Boltzmann limit and in particular work out the differences in both
approaches.



68 5. Full versus Approximate Dynamics

3,0 T T T T T
[ Boltzmann - distribution D1 | _ p/m=0.0.
251 Mm=18 . g
/I
2,0 ) 1
= S P/m=0.8 |
s 1,51 e 4
p— [ 7
l vz
Z 1‘0_ _____ 77
§§§§§ -~ Y. ____pm=16
---~—--—-—_____:?€:"
054 - A pIm=2.4
_________ -t I-7 Tt -----__pm=32
010_:::::==--—---‘ ——-p/—rﬁ=—4.—0-_
0,1 1 10 100 1000
1,44 [ Boltzmann - distribution D2 | /m=0.0 |
1,24 AMm =18 p """" e

084 [ Boltzmann - distribution D3 ] 1
‘ Am =18

time tm

Figure 5.4: Time evolution of momentum modes |p'|/m = 0.0, 0.8, 1.6, 2.4, 3.2, 4.0 of
the on-shell distribution function N (7, t) for initializations D1 (upper plot), D2 (middle
plot) and D3 (lower plot) in the Boltzmann approximation for A/m = 18. All initial
configurations (of the same energy) equilibrate, but lead to different stationary states
(note the different scales for N(p)t)).
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In Fig. 5.4 we present the time evolution of various momentum modes for the
initial momentum space distributions D1, D2, D3 within the Boltzmann equation.
In these calculations the effective on-shell energies are determined by including the
time-dependent renormalized tadpole self-energy. The distributions D1, D2, D3 have
been modified relative to our study of the Kadanoff-Baym dynamics in Chapter 3 such
that they i) have the same energy density with respect to the modified total energy
(where all sunset contributions are absent) and ii) are self-consistent with respect to
the effective tadpole mass in order to avoid strong initial oscillations induced by a
sudden change of the on-shell energies at very early times. For completeness we note,
that the initial effective masses are determined by the solution of a gap equation taking
into account the energy- and momentum-independent tadpole self-energy for the given
initial momentum distribution.

We see from Fig. 5.4 that the time evolution given by the on-shell Boltzmann ap-
proximation deviates in several aspects from the Kadanoff-Baym dynamics. At first we
find that in case of the Boltzmann equation the equal-energy initial distributions D1,
D2 and D3 equilibrate towards different stationary states for ¢ — oco. It can directly
be read off from Fig. 5.4 when comparing the final occupation numbers of the vari-
ous momentum modes. This behaviour is in contrast to the Kadanoff-Baym evolution
where all initial distributions with the same energy reach a common stationary state
(cf. Fig. 3.2). As pointed out in Section 3.6 this is an effect of the chemical equilibra-
tion mediated by particle number non-conserving processes, which are included in the
Kadanoff-Baym dynamics since the full spectral function is taken into account. For the
on-shell Boltzmann approximation, however, the particle number is strictly conserved
and thus the initializations D1, D2, D3, that contain different number of particles, can
not approach the same final state. Accordingly, the stationary state of the non-thermal
initializations D1, D2, D3 exhibits a finite chemical potential (see below). Without ex-
plicit representation we note that the self-consistent initial configuration DT is already
the thermal state of the Boltzmann equation and all momentum modes remain constant
in time, whereas within the Kadanoff-Baym dynamics the ‘free’ thermal initialization
DT evolves in time due to the generation of correlations (cf. Section 3.3).

In order to demonstrate, that the time evolution on the basis of the Boltzmann
equation leads to a thermal state of quasiparticle excitations, we show in Fig. 5.5 the
on-shell distribution N (p,t) as a function of the time-dependent on-shell energy wz(?)
for various times t - m = 25, 50, 75, 100, 150, 200, 300, 500 for the initialization D1
and coupling strength \/m = 18. We have displayed the quantity

F(Ft) = In(1+1/N(5,t)) (5.28)

in order to obtain a straight line with slope 1/7" and intersection point —u /7T in case
of a Bose distribution N = 1/(exp((wz — p)/T") — 1) with temperature 7" and chemical
potential u. We see from Fig. 5.5 that the distribution at early times (¢ - m = 25) is
small for very low and very high momenta as reflected by the high values of the quantity
F in the low and high energy regime. The particle accumulation at finite momentum
for initialization D1 (cf. Fig. 3.1 (lower part)) shows up as a small dip in the curve. In
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Figure 5.5: Distribution function F' as a function of the time-dependent on-shell energy
wz(t) for various times ¢-m = 25, 50, 75, 100, 150, 200, 300, 500 starting from an initial
configuration D1 with coupling constant A\/m = 18. For large times a thermal state
— characterized by a straight line in this representation — is reached with temperature
T/m = 1.260 and finite chemical potential p/m = 1.297 as indicated by the fitting
function (dotted line).

course of the time evolution these structures slowly vanish such that finally a straight
line is reached (see lines for ¢-m = 300, 500) indicating that the stationary limit is indeed
a thermal distribution (at temperature 7'/m = 1.260). However, the chemical potential
of the stationary distribution is non-vanishing — as recognized by the non-zero intersect
of the dotted fit function — as p/m = 1.297. The initializations D2, D3 achieve different
asymptotic temperatures which are given by T'/m = 1.562 for D2 and T'/m = 2.218 for
D3. The chemical potential of the stationary state for these distributions is non-zero as
well and has the values u/m = 0.658 for D2 and u/m = —0.521 for D3. We recall, that
systems with large chemical potential distribute the total energy on many particles
such that the final temperature is considerably lower. Thus, in general, the Boltzmann
approximation does not drive the system to the proper equilibrium state of the neutral
¢*-theory, which is characterized by a vanishing chemical potential.

Furthermore, we see from Fig. 5.4 that in the Boltzmann limit the momentum
modes evolve monotonically in time; there is no overshooting of the stationary limit
as observed in the Kadanoff-Baym picture (cf. Fig. 3.2). Thus the non-monotonic
behaviour shows up as a quantum phenomenon that is missing in the semiclassical
treatment.



Chapter 6

Derivation of Generalized
Transport Equations

In the previous Chapter we have discussed the Boltzmann equation as a rather crude —
but frequently used — approximation to the full quantum theory. It treats the system
evolution in terms of on-shell quasiparticles with fixed energy-momentum relation. As
we have seen above this approximation exhibits also thermalization with comparable
quadrupole relaxation rates for moderate coupling constants. However, characteristic
features of the dynamics within the full Kadanoff-Baym equation are not observed
for the Boltzmann case, such as the overshooting of low momentum equal-time Green
function modes or complete chemical equilibration to the proper equilibrium state.
The latter phenomenon is mediated by broad spectral functions and thus can not be
obtained within the on-shell Boltzmann approach.

From the point of applications to experimental heavy-ion collisions there are further
objections against the Boltzmann limit. Since it includes only on-shell particles, it is
not able to treat resonances with their finite width in a consistent way. This extends
to (in vacuum) stable particles (like protons) that assume a considerable width in the
dense and/or hot medium due to collisions. Therefore it is also of practical interest
to formulate transport theory in a more general way in order to include a consistent
treatment of particles with broad dynamical spectral functions. In the following we will
thus present a generalized transport equation based on a first order gradient expansion
scheme. The quasiparticle assumption, employed in the standard derivation of the
Boltzmann equation additionally, is not applied such that the semiclassical approach
is able to deal with unstable particles as well. We will perform the derivation for
an arbitrary (scalar) quantum-field theory containing only one elementary field and
demand no restrictions on translational invariance in space or time.

The derivation of the generalized transport equation is based on the Kadanoff-Baym
equation for the Wightman functions in coordinate space (z1=(t1,71), 22 = (t2, T2))

(0% 0% +m® + X0(21)] iG2 (21, 32) = i IZ(z1,72). (6.1)

T17 @

71
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The collision terms are given in D = d + 1 space-time dimensions by convolution inte-
grals over coordinate space self-energies and Green functions:

IR(zy,20) = — /tldDz [S7 (21, 2) — B<(21,2)] GZ(2,22) (6.2)

0

b [0 S0, (66w - 6],

to

In the general case of an arbitrary (scalar) quantum field theory X° is the local part
of the path self-energy while Y2 resemble the non-local collisional self-energy contri-
butions. They are kept unspecified in the further derivation, but have to be fixed
for actual applications. In the representation (6.2) the integration boundaries are ex-
clusively given for the time coordinates. The integration starts at an initial time %,
and ends at the current time coordinates of the Green function (¢1,%,) indicating the
causal structure of the Kadanoff-Baym equation. However, the convolution of the spa-
tial coordinates extends over the whole spatial volume from —oc to 400, which is not
indicated explicitly in (6.2).

6.1 Wigner Representation

Transport theories a usually formulated in phase-space. Thus one changes in the fol-
lowing to the Wigner representation via Fourier transformation with respect to the
rapidly varying relative coordinate Ax = x; — x5 and treats the system evolution in
terms of the mean space-time coordinate x = (z; + 22)/2 and the four-momentum
p = (po,P)- The functions in Wigner space are obtained as

F(p,z) = / dPAz TR Pz =24 Ax/2, 15 = v — Az/2), (6.3)

—0oQ

with the corresponding back transformation to coordinate space given by

[e'e} D,
Flon,m) = OD_ idar' pp ). (6.4)
1, 2 _00(27T)D p’

For the formulation of transport theory in the Wigner representation we have to focus
not only on the transformation properties of ordinary two-point functions as given in
(6.3), but also of convolution integrals as appearing in the equation of motion (6.2). A
convolution integral in D dimensions (for arbitrary functions F, G),

H(zy,mo) = /OodDz F(z1,2) G(z,22) (6.5)

—0oQ
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transforms as
Hip,x) = / Az " A% H (3, ) (6.6)

= /dDAx etidoupt /dDz F(x1,2) G(2,29)

o —00

= IGO0 By g) G )]

z'=z,p'=p

In accordance with the standard assumption of transport theory we assume that all
functions only smoothly evolve in the mean space-time coordinates and thus restrict to
first order derivatives. All terms proportional to second or higher order derivatives in
the mean space-time coordinates (also mixed ones) will be dropped. Thus the Wigner
transformed convolution integrals are given in first order gradient approximation by

A(px) = Flp,2) Glp.a) + i {F(p2), Glo,2)} + O@2), (6.7)

with the relativistic generalization of the Poisson bracket

Thus the Wigner transformed convolution integral of two functions is given by the prod-
uct of the Wigner transformed functions plus gradient corrections including derivatives
with respect to energy-momentum and space-time coordinates.

Writing the Wigner transformation in explicit units (and not for the standard
units using A = 1), it explicitly contains the Planck constant in the exponential
term as exp(i Axp/h). From the expression for the corresponding series operator
exp(i [0} aﬁ' - 6ﬁ')] /2) we find that the first Poisson bracket term contains a
factor i as well i/2 {F,G} — i/2 h{F,G}. Therefore the Poisson bracket can be inter-
preted as a first order correction in /A to the purely multiplicative contribution of the
Wigner transformed convolution integral. The results obtained in a first order gradient
expansion are thus also referred to as the semiclassical approzimation.

Furthermore, the Klein-Gordon derivative operator — applied to some arbitrary
function F' — transforms in Wigner representation to

T17 W
oo N~

~0

s , 1 f
/dDAx et AP [l 0% + m?| F(21,72) = [—pQ—ip“aﬁ-l-Zai—i-mQ] F(p,z), (6.9)



74 6. Derivation of Generalized Transport Equations

where the second order space-time derivatives have to be neglected in the first order
gradient scheme.

6.2 Approximate Dynamics of the Spectral Func-
tion

Before we will come to the derivation of the actual transport equation we discuss the
time evolution of the spectral properties of the system. In order to obtain the dynamics
within the approximate scheme we start with the Dyson-Schwinger equations for the
retarded and advanced Green functions in coordinate space (2.20,2.21)

— o050k +m” + X0 (z1)] GF(m1,22) (6.10)

= 6Pz —z,) +/dDZ S (w1, 2) G (z,22),

— 050k + m® + ¥ (21)] G, 20)

= 6O) (g 1) —|—/dDz YAz, 2) GA(z,22).  (6.11)

—0o0

The time evolution of the retarded (advanced) Green function G*“) is determined —
apart from the time local term X% — by retarded (advanced) self-energies L4 only.
The convolution integrals in (6.10) and (6.11) extend over the whole space and time
range in contrast to the equations of motion for the Wightman functions given in (6.1)
and (6.2).

The further procedure consists in the following steps: at first we i) transform the
above equations into the Wigner representation and apply the first order gradient ap-
proximation. In this limit the convolution integrals yield the product terms and the
general Poisson bracket of the self-energies and the Green functions { L#/4 GR/4 Y,
We, furtheron, represent both equations in terms of real quantities, only, by the de-
composition of the retarded and advanced Green functions and self-energies as

G4 = ReGR £ iImG? = ReGR 5 iA/2, A = F2ImGR/A,
(6.12)
YA = ReXE 4+ iImXF = ReX® Fil/2, [ = F2ImXk/A,

We find that in Wigner space the real parts of the retarded and advanced Green
functions and self-energies are equal, while the imaginary parts have opposite sign and
are proportional to the spectral function A and the width I', respectively. The next step
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consists in ii) the separation of the real part and the imaginary part of the two equations
for the retarded and advanced Green functions, that have to be fulfilled independently.
Thus we obtain four real-valued equations for the self-consistent retarded and advanced
Green functions. In the last step iii) we get simple relations by linear combination of
these equations, i.e. by adding/subtracting the relevant equations.

This finally leads to two algebraic relations for the spectral function A and the real
part of the retarded Green function Re G® in terms of the width I' and the real part
of the retarded self-energy Re X% as:

(P2 —p2—m? =52 + ReS® | ReG® = 1 + -T A, (6.13)

R

(P2 —p?—m?> -2+ ReXR]A = T ReG®. (6.14)

A first consequence of (6.13) and (6.14) is a direct relation between the real and the
imaginary parts of the retarded/advanced Green function, which reads (for I # 0):

B 0 =2 2§ _ poSR
ReGR = D0~ P mf °= A, (6.15)

Furthermore, the solution of (6.13) and (6.14) yields the following result for the spec-
tral function and the real part of the retarded Green function

i-= : - (6.16)
[P -p?—-m2 -0 — ReXR]24T2/4  M24+12/4° ‘
_ 2 _ 22 2_25_R ER M
ReGR — =P —m eX”] - (6.17)

[p2—p2—m?— %0 — ReSR|? +12/4 M2 +T12/4°

where we have introduced the mass-function M in Wigner space:
M(p,x) = py—p°—m®=5°(z) - ReS%(p,x) . (6.18)

The (6.16) spectral function shows a typical Breit-Wigner shape with energy- and
momentum-dependent self-energy terms. Although the above equations are purely al-
gebraic solutions and contain no derivative terms, they are valid up to the first order
in the gradients. Moreover, subtraction of the real parts and adding up the imaginary
parts lead to the time evolution equations

- 1 - R 1 - _
propA = 5{25+R62R,A}+§{F,R6GR}, (6.19)

=~ 1 = _ _ 1 -
p' ol ReG" = 5{2‘5+R62R,R6GR}— g{F,A}. (6.20)
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The Poisson bracket containing the mass-function M leads to the well-known drift op-
erator p* 97 I' (for an arbitrary function F), i.e.

{M,F} = {po—p?>—m?> -5 —ReSE F} (6.21)

= 2pPOLF — {S°+ ReSF F}, (6.22)

such that the first order equations (6.19) and (6.20) can be written in a more compre-
hensive form as

{M,A} = {T, ReG"}, (6.23)
{T, A}. (6.24)

When inserting (6.16) and (6.17) we find that these first order time evolution equations
are solved by the algebraic expressions. In this case the following relations hold:

(31,4} = {T, ReG®} = {N,T} % (6.25)
{M,ReG™) = — (T, A} = {M,T} % (6.26)

Thus we have derived the proper structure of the spectral function (6.16) within the
semiclassical approximation. Together with the explicit form for the real part of the
retarded Green function (6.17) we have now access to the dynamics of the spectral
properties which is consistent up the first order in the gradients.

6.3 Derivation of the Semiclassical Transport Equa-
tion

In this Section we will derive the transport equations for the phase-space distribution
in the first order gradient approximation. For this aim we start, as already mentioned,
with the Kadanoff-Baym equation for the Green functions G2. In order to apply the
relations for the Wigner transformation of convolution integrals (6.7) we rewrite the
memory terms such that the time integrations extend from —oo to +o0o. In this re-
spect we consider the initial time ¢t = —oo whereas the upper time boundaries 1, t5
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are taken into account by ©-functions:

Ilz(xl,acz) = — / dP’z Ot —t') [X7(x1,2") — X< (x1,2") ] Gz(x',xg)

o

+ / P2 N2 (z1,2") Oty — ) [G (&, 1) — G<(2', 29) ]

o0

= - / dPz' SB(zy,2") GR(a', xy) + T2(z1,2") GA(2',z) . (6.27)

o0

We now perform the analogous steps as invoked in the preceeding Section for the re-
tarded and advanced Dyson-Schwinger equations. We start with a first order gradient
expansion of the Wigner transformed Kadanoff-Baym equation using (6.27) for the
memory integrals. Again we separate the real and the imaginary parts in the resulting
equation, which have to be satisfied independently. At the end of this procedure we
obtain a generalized transport equation:

2p" 07 iGR — {£°+ReSF,iGR} — {i52, ReG®} = iS<iG”> — iS” iG<

-

{M,iGR} — {i¥2, ReGR} = iZ<iG> — x> iG< (6.28)
as well as a generalized mass-shell equation

_ _ _ _ _ 1 _ _ 1 _ _
[p? —m? — X% — Re$R] iGZ = iX2 Re G + Z{ii?, iG<Y — Z{i2<, iG>} (6.29)

e
M

with the mass-function M specified in (6.18). Since the Green function GZ(zy,s)
consists of an antisymmetric real part and a symmetric imaginary part with respect
to the relative coordinate x; — x5, the Wigner transform of this function is purely
imaginary. It is thus convenient to represent the Wightman functions in Wigner space
furtheron by the real-valued quantities iGZ(p,z). Since the collisional self-energies
obey the same symmetry relations in coordinate space and in phase-space, they will
be kept also as i¥2(p, ) furtheron.

In the transport equation (6.28) one recognizes on the Lh.s. the drift term p*g7iG<,
as well as the Vlasov term with the local self-energy ¥? and the real part of the retarded
self-energy Re X%. On the other hand the r.h.s. represents the collision term with its
typical ‘gain and loss’ structure. The loss term i3> iG< (proportional to the Green
function itself) describes the scattering out of a respective phase-space cell whereas
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the gain term X< iG> takes into account scatterings into the actual cell. The last
term on the Lh.s. { £ Re G®} is very peculiar since it does not contain directly the
distribution function iG<. This second Poisson bracket vanishes in the quasiparticle
approximation and thus does not appear in the on-shell Boltzmann limit. As we will
discuss in detail in Chapter 8 the second Poisson bracket {i¥2, Re GE} governs the
evolution of the off-shell dynamics for nonequilibrium systems.

Although the generalized transport equation (6.28) and the generalized mass-shell
equation (6.29) have been derived form the same Kadanoff-Baym equation in a first
order gradient expansion, both equations are not exactly equivalent. Instead, they
deviate from each other by contributions of higher gradient order (see below). This
raises the question: which one of these two equations has be considered to higher prior-
ity? The question is answered in praxis by the prescription of solving the generalized
transport equation (6.28) for 4G< in order to study the dynamics of the nonequilib-
rium system in phase-space. Since the dynamical evolution of the spectral properties
is taken into account by the equations derived in first order gradient expansion from
the retarded and advanced Dyson-Schwinger equations, one can neglect the generalized
mass-shell equation (6.29). Thus for actual numerical studies we will lateron use the
generalized transport equation (6.28) supported by the algebraic relations (6.16) and
(6.17).

For the neutral ¢*-theory G<(x1,2z2) = G”(x2,2;) holds in coordinate space and
thus iG<(p,x) = iG> (—p,z) for the Wigner transformed functions. Hence it is suffi-
cient (in case of a neutral theory) to solve the evolution for the Wightman function iG'<,
only. The evolution equations are presented here for both functions for the sake of com-
pleteness. Furthermore, one recognizes by subtraction of the iG> and iG'< mass-shell
and transport equations, that the dynamics of the spectral function A = iG> — iG<
is determined in the same way as derived from the retarded and advanced Dyson-
Schwinger equations (6.16) and (6.23). The inconsistency between the two equations
(6.28) and (6.29) vanishes due to the subtractions since the differences are contained
in the collisional contributions on the r.h.s..

In order to evaluate the {i3<, Re G }-term on the Lh.s. of (6.28) it is useful to
introduce distribution functions for the Green functions and self-energies as

iG<(p,x) = N(p,z) A(p, ), iG”(p,x) = [1+ N(p,z)] A(p,z), (6.30)

i5<(p,z) = N*(p,z) T(p, ), %7 (p,z) = [1+ N*(p,z)] T(p,z). (6.31)

In equilibrium the distribution function with respect to the Green functions N and
the self-energies N* are given as Bose functions in the energy py at given temperature
and thus are equal. Following the argumentation of Botermans and Malfliet [18] the
distribution functions N and N in (6.30) should be identical within the second term
of the L.h.s. of (6.28) within a consistent first order gradient expansion. In order to
demonstrate their argument we write
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i< =TN”=TN + K. (6.32)

The ‘correction’ term K is proportional to the collision term (r.h.s.) of the generalized
transport equation (6.28),

=i

K =T (N* — N) = (i¥iG> — %> iG<) A, (6.33)

which itself is of first order in the gradients. Thus, whenever a distribution function
N?* appears within a Poisson bracket the difference term (N* — V) becomes of second
order in the gradients and should be omitted for consistency. As a consequence N~
can be replaced by N and thus the self-energy < by G<-T'/A in the Poisson bracket
term {$<, ReG®}. The generalized transport equation (6.28) then can be written in
short-hand notation

AT {M,iG<}—%{F,M-iG<} _ iS<iG7 — iS5 iGe (6.34)

N~

with the mass-function M (6.18).

The transport equation (6.34) within the Botermans-Malfliet (BM) form resolves
the discrepancy between the generalized mass-shell equation (6.29) and the generalized
transport equation in its original (so-called Kadanoff-Baym (KB)) form (6.28). Indeed,
the solution of (6.34) is in full consistency with the corresponding mass-shell equation.

Furthermore, the consistent Botermans-Malfliet form will be the starting point for
the derivation of an efficient transport approach for the description of realistic heavy-
ion collisions. Together with a test-particle ansatz this equation allows for the study
of the time evolution of phase-space densities including the approximate dynamics of
the spectral function. As we will see in Section 8.3 the incorporation of the off-shell
dynamics will have significant influence when testing theoretical approaches against
experimental data.
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Chapter 7

Dynamics within the Generalized
Transport Equation

In this Chapter we will perform numerical studies of the dynamics inherent in the gen-
eralized transport equations derived in Chapter 6. Again we perform the calculations
for the ¢*-theory in 241 space-time dimensions within the three-loop approximation
for the effective action. This fixes the self-energies % and %2 in (6.28) and (6.29) to
be the same as in the case of the full Kadanoff-Baym theory given by the tadpole and
the sunset contributions, respectively. For the first investigation we concentrate on the
dynamics of the generalized transport equation (6.28) that has been obtained by gra-
dient expansion of the Wigner transformed Kadanoff-Baym equation. As in Chapter 3
we restrict ourselves to homogeneous systems in space. Consequently the derivatives
with respect to the mean spatial coordinate # vanish, such that the generalized trans-
port equation (6.28) reduces to

2p0 0, iIG< — {E°+Re SR iG<} — {iZ<, ReGR} = iZ<iG” — i¥”iG<  (7.1)
with the simplified Poisson brackets (for arbitrary functions F, Q)

{F(D,po,t), G(F,po, ) } (7.2)

= apo F(ﬁpmt) até(ﬁp()at) - at F(ﬁapmt) apo é(ﬁ”p()at) .

7.1 The Initial State

In order to specify the problem for the first order transport equation in time, the initial
state has to be fixed, i.e. the initial Green function iG*< (5, po,t = 0) has to be specified
for all momenta p and all energies py.

81
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To this aim, we first assume a given initial distribution function n(g,¢=0) in mo-
mentum space equivalent to those used in the investigation of the full Kadanoff-Baym
theory in order to allow for a comparison of the two schemes. Next, the complete initial
phase-space distribution function N (5, py,t=0) has to be specified as a function of the
energy po as well. We achieve this by the most simple ansatz of N being constant
in the energy variable py as a starting point. In order to determine the initial Green
function we employ the self-consistent iteration procedure for the full spectral function
as described in Section 4.1. However, we use the specified nonequilibrium distribution
function N instead of a Bose distribution at given temperature. The iteration process
then yields the fully self-consistent spectral function for this initial distribution and
thus determines the initial Green function via

iG<(P,po,t=0) = N(P,po,t=0) A(p,py,t=0). (7.3)

In principle one might choose the initialization — in particular the energy dependence
of the distribution functions — in various ways. We employ here the simple description
introduced above since it approximately reproduces the same equal-time (i.e. energy
integrated) initial Green function as in the full Kadanoff-Baym calculation. However,
with increasing coupling strength A the spectral function achieves a considerable width
and the on-shell values can be shifted. In this case the equal-time Green function
deviates slightly in the low momentum region from the ‘quasiparticle’-like initialization
(3.1) used for the Kadanoff-Baym calculation. This difference can be easily understood
as follows:

For small coupling strength A the spectral function is very narrow and located
close to the bare on-shell energy wy. Therefore, when calculating the equal-time Green
function by means of an energy integration, one can introduce an artificial factor py/wy
(which is approximately 1 in the region of considerable strength) without changing
the integral sizeably. Using the normalization condition of the (p, weighted) spectral
function (3.7), the energy integration can be preformed and one obtains equal-time
Green functions in the ‘quasiparticle’ form (3.1). On the other hand, strong couplings
lead to broad spectral functions such that the artificial factor py/wy is no longer close to
one. This comes about since i) the range of the spectral support is broad and thus the
linear energy dependence of the factor is important and since ii) the spectral function
is not located at the bare on-shell energy anymore, but slightly shifted to higher values.
Thus the energy integration leads to somewhat different results as the ‘quasiparticle’
form when evaluating the energy integral. As we will see in the following, the equal-
time Green functions — obtained within this scheme — show the same characteristics
as those for the Kadanoff-Baym calculation, although they deviate for large couplings
and small momenta. Nevertheless, they are useful for a comparison of the dynamics
within the full quantum theory and the semiclassical approximation.

The initial distribution functions for the following studies are shown in Fig. 7.1
for polar symmetric settings as a function of the momentum coordinate p, for p, =
0. They are identical to those used in the first part of our investigations for polar
symmetric systems within the full Kadanoff-Baym theory (c.f. Fig. 3.1 (upper plot)).
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Figure 7.1: Initial momentum distributions for the initializations D1, D2 and D3. For
the polar symmetrical settings in momentum space the distributions are shown as
function of p, (for p, = 0).
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The resulting initial equal-time Green functions — for the coupling constant A\/m = 18
— are displayed in Fig. 7.2. By comparison with the initial Green functions of the
Kadanoff-Baym calculation (c.f. Fig. 3.1 (lower plot)) we find tiny deviations in the
region of small absolute momenta. This is, of course, a consequence of the large coupling
constant employed, which we use in order to compare to the calculations within the
full quantum evolution for the same coupling strength. Since the initial states are
very close to those used for the Kadanoff-Baym theory, we will also denote them as
initializations D1, D2 and D3.

The advantage of the initialization prescription introduced above is that the actual
spectral function — directly obtained by A = iG> — iG< from the Green functions —
complies with the one determined from the self-energies (6.16) in accordance with the
first order gradient expansion scheme. During the nonequilibrium time evolution this
correspondence is maintained since the analytic expression for the spectral function
already is a solution of the generalized transport equation itself. Furthermore, the real
part of the retarded Green function, that enters the peculiar second Poisson bracket
on the Lh.s. in (6.28), can be taken in the first order scheme (6.17) which simplifies
the calculations sizeably.

We mention that other prescriptions are also possible for the calculation of Re G®:
1) One can determine it directly from iGZ by a Fourier technique similar to one used
in the calculation of the self-consistent spectral functions in Section 4.1. Here the real
part of the retarded Green function is obtained via inverse Wigner transformation with
respect to the energy, multiplication by the (for retarded quantities characteristic)
O-function in relative time and transformation back into phase-space.
2) One can also use dispersion relations with the spectral function to specify Re G.
As we have checked in our actual simulations all prescriptions lead to practically iden-
tical results.

7.2 Numerical Study of Equilibration

Now we turn to the actual solutions of the generalized transport equation in the KB
form (6.28). In Fig. 7.3 we show the time evolution of the equal-time Green function
iG<(|P|,t,t) for the polar symmetric initial states D1, D2 and D3 as specified above.
We have displayed several momentum modes |5|/m = 0.0, 0.8, 1.6, 2.4, 3.2, 4.0 of
the equal-time Green function on a logarithmic time scale. As in the full Kadanoff-
Baym theory we find that for all initializations the quantum system approaches a
stationary state for ¢ — oo, i.e. all momentum modes approach a constant. However,
the respective momentum modes of the different initializations do not achieve identical
values for ¢ — oo, as seen in particular for the low momenta |p’|/m = 0.0, 0.8. This
is not surprising since the various initializations — obtained within the self-consistent
scheme described above — do not correspond to exactly the same energy. Thus the
respective long-time limits should differ slighty. The small difference in energy is, of
course, most prominently seen in the low momentum (energy) modes. Moreover, the
dynamics within the generalized transport equation (6.28) is in general very similar



7.2. Numerical Study of Equilibration 85

20_’ - — = distribution D1 | ]
-] eeeees distribution D2 | |
1,8 i distribution D3 |-

i G (p,t,t) m

time tm

Figure 7.3: Evolution of several momentum modes | 7|/m = 0.0, 0.8, 1.6, 2.4, 3.2, 4.0 of
the equal-time Green function on a logarithmic time scale for the different initializations
D1, D2 and D3.

to the full Kadanoff-Baym theory. For all three initial states we find (apart from the
very initial phase ¢ - m < 1) the same structures during the equilibration process. In
particular for the initializations D1 and D2 the characteristic overshooting for the low
momentum modes is seen as in the full quantum evolution. Even the positions of the
maxima are in a comparable range: For the initialization D1 they are shifted to slightly
larger times and are a little bit lower than in the full calculation; the same holds for
the initial state D2. The initial distribution D3 yields a monotonous behaviour for
all momentum modes within the generalized transport formulation which is again in a
good agreement with the full dynamics.

Some comments are worthwhile with respect to the comparison performed above:
The spectral function in the Kadanoff-Baym calculation is completely undetermined
in the initial state; it develops during the very early phase to an approximate form
(which in the following still evolves in time). In contrast to this, the spectral function
in the generalized transport formulation (6.28) has a well-defined structure already
from the beginning. This principle difference results from the fact, that we deal in the
Kadanoff-Baym case with a true initial value problem in the two time directions. Thus
the relative time integral — to obtain the spectral function as a function of energy by
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Wigner transformation — is very small in the initial phase as discussed in Section 3.4.
Consequently, the spectral shape in Wigner space is determined by the finite integration
interval in time rather than by the interactions itself. On the other hand, we have used
an infinite relative time range in deriving the generalized transport equation within the
first order gradient expansion. Thus in this case we deal with a completely resolved
spectral function already at the initial time, that clearly exhibits the incorporated
physics. This demonstrates why both approaches can only be compared to a certain
extend.

Nevertheless, the inclusion of the dynamical spectral function in terms of the gen-
eralized transport equation surpasses the shortcomings of the quasiparticle Boltzmann
limit. Whereas the latter approach leads to a strictly monotonous evolution of the
momentum modes, the inclusion of quantum effects in terms of a semiclassical approx-
imation correctly yields the overshooting effects known from the solution of the full
Kadanoff-Baym equation (Fig. 3.2).

Finally, concentrating on the very early time behaviour, we find a significant differ-
ence between the full and the approximate dynamics in the gradient scheme (6.28). For
the generalized transport equation we find a monotonous evolution of the equal-time
Green function momentum modes, whereas strong oscillations are observed in the ini-
tial phase for the solution of the full Kadanoff-Baym theory. Thus, with respect to the
early time behaviour the generalized transport equation behaves much more like the
Boltzmann approximation, which is a first order differential equation in time as well.
However, the Kadanoff-Baym evolution is given by an integro-differential equation of
second order in time. In this case the phase correlations between the Green functions
G;¢a G7f¢, Gz, are kept and the instantaneous switching-on of the interaction results
in an oscillatory behaviour of the single momentum modes. When including the colli-
sional self-energies, i.e. on the three-loop level for the effective action, these oscillations
are damped in time typically with the respective on-shell width for given momentum.
If only the tadpole term is included, these oscillations are not damped and maintain
forever. Therefore, the origin of the oscillatory behaviour can be traced back to the
order of the underlying differential equation.

7.3 Evolution of the Spectral Function

Since the Green functions develop in time also the spectral properties of the system
change as well. In Fig. 7.4 the time evolution of the spectral function for the initial-
izations D1, D2 and D3 within the gradient scheme are displayed. We also focus on
the spectral functions for two particular momentum modes |p'|/m = 0.0 (Lh.s.) and
|p'|/m = 2.0 (r.h.s.) for various system times ¢ -m = 5, 20, 60, 120, 240, 360, 480, 600
up to the long-time limit. This representation corresponds to Fig. 3.5, where the re-
spective evolution of the spectral function is studied for the full Kadanoff-Baym theory.
We find that the time evolution of the spectral functions obtained from the generalized
transport equation (6.28) is very similar to the one from the full quantum calculation.
The zero-mode spectral function for the initial distribution D1 becomes sharper with
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Figure 7.4: Time evolution of the spectral function A(7, po, t) for the initial distributions
D1, D2 and D3 (from top to bottom) with coupling constant A\/m = 18 for the two
momentum modes | p'|/m = 0.0 (Lh.s.) and |p'|/m = 0.0 (r.h.s.). The spectral function
from the transport eq. (6.28) is shown for times ¢ - m = 5, 20, 60, 120, 240, 360, 480,
600 as indicated by the different line types.

time and is moving to slightly higher energies. The opposite characteristics is observed
for the zero-mode spectral function for the initialization D3, which broadens with time
(reducing the peak correspondingly) and slowly shifts to smaller energies. Together
with the weak evolution for the distribution D2 (which only slightly broadens at in-
termediate times and returns to a narrower shape at smaller energies in the long-time
limit) the evolution of all three initializations in the semiclassical approximation is well
comparable to the full Kadanoff-Baym dynamics (cf. Fig. 3.5). Furthermore, the max-
ima of the zero-mode spectral functions are located above the bare mass (as indicated
by the on-shell arrow) for all initial states during the time evolution.

The spectral functions for the momentum mode |p’|/m = 2.0 are in a good agree-
ment with the Kadanoff-Baym dynamics as well. Again we observe — for the initial
distribution D1 — a narrowing of the spectral function, while for D3 the spectral func-
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Figure 7.5: Time evolution of the on-shell energies w(p,t) of the momentum modes
|p|/m = 0.0 and |7|/m = 2.0 for the different initializations D1, D2 and D3 with
A/m = 18 in the semiclassical KB limit (6.28). The on-shell self-energies are extracted
from the maxima of the time-dependent spectral functions.

tion broadens with time. Moreover, the width of the spectral function starting from
distribution D2 shows a non-monotonous behaviour with a maximum at intermediate
times.

In order to study the dynamics of the spectral function in a more quantitative
manner we display in Fig. 7.5 the time evolution of the on-shell energies (as derived
from the maxima of the spectral function) for the momentum modes |p|/m = 0.0
(upper plot) and 2.0 (lower plot) for the initializations D1, D2 and D3 with A\/m = 18.
By comparison with the corresponding results from the Kadanoff-Baym theory (cf. Fig.
3.6) we observe a close similarity of the evolutions within the full and the semiclassical
KB scheme. The effective mass of the zero momentum mode decreases for initialization
D3, passes a minimum for D2 and increases for the initial state D1. As familiar from
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Figure 7.6: Time evolution of the on-shell widths —Im X&(p,w(p,t),t)/w(p,t) of the
momentum modes |p’|/m = 0.0 and |p|/m = 2.0 for the different initializations D1,
D2 and D3 with A\/m = 18 in the semiclassical transport eq. (6.28).

the Kadanoff-Baym calculations in Section 3.4 the behaviour of the on-shell energies
is different for higher momentum modes. We find for the momentum mode | p|/m =
2.0 a monotonous decrease of the on-shell energy for the initializations D1 and D2 and
an increase for distribution D3. Altogether, the evolution of the on-shell energies for
the higher modes is rather moderate compared to the lower ones in accordance with
the dominant momentum contribution and the weakening of the retarded self-energy
for larger modes.

Finally, the on-shell energies approach a stationary state for all modes and all ini-
tializations. However, the long-time limit of the equal momentum modes is not exactly
the same for all initial distributions D1, D2 and D3. There is still a small difference due
to the specific initial state generation from the given momentum distribution function
(see discussion in Section 7.1).
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Next we consider the time evolution of the on-shell width as determined by the
imaginary part of the retarded self-energy at the maximum position of the spectral
function. In Fig. 7.6 the on-shell width is displayed for the two momentum modes
|p|/m = 0.0 and |p'|/m = 2.0 for all three initial distributions D1, D2 and D3 with
A/m =18 as a function of time. For both momentum modes the on-shell width increases
for the distribution D3, while it has a maximum at intermediate times (¢ - m = 40) for
the initialization D2. Thus the results — together with the reduction of the on-shell
width for both momentum modes for the initialization D1 — is in good agreement with
the results obtained for the full Kadanoff-Baym theory (cf. Fig. 3.7). However, the
stationary values for the on-shell widths deviate again slightly in accordance with the
preparation of the initial state in the gradient scheme.

Summarizing this Section we find that the main characteristics of the full quantum
evolution of the spectral function are maintained in the semiclassical transport equation
(6.28) as well. This includes the evolution of the on-shell energies as well as the width
of the spectral function. Since the generalized transport equation is formulated directly
in Wigner space one has access to the spectral properties at all times, whereas the very
early times in the Kadanoff-Baym case have to be excluded due to the very limited
support in the relative time interval ¢; — 5.

7.4 Stationary State of the Semiclassical Evolution

As we have observed in the previous Sections the evolution within the generalized
transport equation (6.28) leads to a stationary state for all three different initializations
D1, D2 and D3. Thus we turn to the investigation of this long-time limit itself, here
in particular for the initialization D2. In Fig. 7.7 we show the distribution function
N of various momentum modes |F|/m = 0.0, 0.8, 1.6, 2.4, 3.2, 4.0 for large times
(t - m = 600) as derived from the Green function itself and the spectral function via
the relation N = iG</A. The distribution function for a given momentum mode is
calculated for all energies py where the corresponding spectral function — as displayed
in the lower part of Fig. 7.7 — exceeds a value of 0.5. Since the width of the late time
spectral function decreases with increasing momentum, the energy range for which the
distribution function is shown, is smaller for larger momentum modes. We find, that
all momentum modes of N can be fitted at all energies by a single Bose function with a
temperature 7'/m = 1.827 and a very small chemical potential p/m = 0.000817. Thus
the generalized transport formulation (6.28) leads to a complete (off-shell) equilibration
of the system very similar to the solution of the full Kadanoff-Baym equation (cf. Fig.
3.8 in Section 3.5). Furthermore, the long-time limit of the semiclassical time evolution
exhibits a vanishing chemical potential y/m in accordance with the properties of the
neutral ¢*-theory. This might have been expected since in the generalized transport
equation particle number non-conserving processes — which lead to the decrease of
the chemical potential — are included by means of the dynamical spectral function.
Thus the semiclassical approximation (6.28) solves the problems within the Boltzmann
limit, which does not yield a full relaxation of the chemical potential, since only on-shell
transitions of quasiparticles are taken into account.
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Figure 7.7: Spectral function A for various momentum modes as a function of energy
po/m at the late time ¢ - m = 600 (lower part) for initial distribution D2 with coupling
constant A\/m = 18. The corresponding distribution function N (at the same time for
the same momentum modes) is shown in the upper part. All momentum modes can
be fitted for all energies by a single Bose function of temperature 7/m = 1.827 and a
chemical potential u/m close to zero.
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Figure 7.8: Relaxation of the chemical potential p/m for the three initial distributions
D1, D2, D3 within the generalized transport equation (6.28) in a logarithmic repe-
sentation as a function of time. The decrease is approximately exponential in time
ox exp(—I',, - t) and the relaxation rate I, is practically equal for all initializations.

After observing, that the chemical potential decreases to zero in the long-time limit,
it is interesting to study the relaxation process itself. The relaxation of the chemical
potential p/m is shown for the three different initializations D1, D2 and D3 with
coupling constant A/m = 18 in Fig. 7.8. We see — as in the case of the Kadanoff-Baym
evolution — that all initial states show an approximately exponential decrease in time.
The relaxation rates — as determined from the slope of the exponential decline — are
also approximately the same for all distributions. They are given by I'?* ~ 0.98 - 1072
for distribution D1, I'?? & 1.01 - 1072 for distribution D2 and T'}® ~ 1.07 - 1072 for
distribution D3. Thus the relaxation rates are in the same range as the ones found
within the full Kadanoff-Baym theory. This is exactly the result one expects from
the analytical estimate for the chemical potential relaxation rate. In Section 3.6 we
have found that the relaxation rate I', can be explained within a linearized evolution
equation including only equilibrium properties, i.e. the equilibrium spectral and (Bose)
distribution function. It is appropriate for small deviations from the equilibrium state
in terms of the chemical potential p. In the present case of the generalized transport
equation (6.28) we encounter exactly the same situation. We know from the validity of



7.4. Stationary State of the Semiclassical Evolution 93

0,1+
0,01 4

1E-3 -

] Am= 8 "0\.
1|—+—wm=10

1E-4_§ —v—Am=12 " e _E
J|—2—im=14 \\ 3
1|—e—1Mm=16

1|—=—wm=18 | distribution D2 |
1E_5 l L) l L) L) l L) l L) l L) l L) l L) l L) l L) l
0 200 400 600 800 1000 1200 1400 1600 1800 2000

chemical potential u/ m

time tm

Figure 7.9: Relaxation of the chemical potential p/m for initial distribution D2 with
coupling constants A/m = 8, 10, 12, 14, 16, 18 using the generalized transport equation
(6.28).

the estimate that a linearized description is meaningful. Thus the evolution within the
first order gradient equation should yield a comparable result as long as the equilibrium
properties are nearly equal. This is indeed the case since the final temperatures for
the various initial states are approximately the same (also compared to the Kadanofi-
Baym case). They are given by T)' /m ~ 1.819, Tn?/m ~ 1.827 and TJ* /m ~ 1.834.
Consequently, the same similarity holds for the spectral function, which is determined
in equilibrium by the temperature 7" and the coupling strength A. Therefore we can
conclude, that the generalized transport equation (6.28) is sufficient to describe the
correct relaxation of the chemical potential p.

Finally, we study the relaxation of the chemical potential as a function of the
coupling strength. To this aim we display in Fig. 7.9 the relaxation of the chemical
potential p for the initial distribution D2 for coupling constants A\/m = 8, 10, 12, 14,
16, 18 as obtained form the generalized transport equation (6.28). For all coupling
constants A the chemical potential y is reduced exponentially in time o exp(—I, - t)
and thus allows for the determination of a proper relaxation rate I',.

The results for the relaxation rates I';, of the chemical potential as a function of
the coupling strength A are displayed in Fig. 7.10. They are scaled by the coupling
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Figure 7.10: Scaled relaxation rate I',/A? of the chemical potential as a function of the
coupling strength A/m for the initial distribution D2.

constant squared (A?) in order to take into account the overall coupling dependence of
the collisional self-energy. We see that the relaxation rate I', increases much stronger
than quadratically with the coupling strength. Whereas the relaxation is very weak for
small and medium couplings A\/m < 8, it increases considerably for larger values of the
interaction strength. By inspection of the analytical estimate for the relaxation rate
of the chemical potential (3.30) we find an explanation for this strong dependence: At
first here an overall factor of the coupling constant squared (\?) enters the expression
for the relaxation rate, that stems from the collisional integral in terms of the scattering
(sunset) self-energies. This factor, only, would yield a constant line in Fig. 7.10 and
thus underestimate the observed behaviour significantly. Therefore, one has to keep in
mind the additional A\ dependence of the (equilibrium) spectral function that strongly
influences the estimate for the relaxation rate since it appears in the energy-momentum
integration weights several times. Thus the relaxation rate is determined explicitly (via
the K,-term (3.28)) and implicitly through the spectral functions in both contributions,
K, (3.27) and K, (3.28), by the coupling strength A in a nonlinear way.

We conclude that there might be a tiny relative shift of the different time scales
of kinetic and chemical equilibration in dependence on the coupling strength. While
the kinetic equilibration proceeds approximately with the coupling constant squared
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Figure 7.11: Scaled Relaxation rate for the generalized transport equation as a function
of the coupling strength (half-filled symbols) for the initial distributions d1 (squares)
and d2 (triangles). Additionally the results obtained within the Kadanoff-Baym (full
symbols) and the Boltzmann calculation (open symbols) are shown for comparison.

(as indicated by the calculations for non-polar-symmetric systems), the chemical re-
laxation rate is a higher order process in A as seen from Fig. 7.10. Thus the chemical
equilibration should move with increasing coupling strength A to earlier times relative
to the kinetic one which — in its extreme case — might lead to a mixture of the different
time scales.

7.5 Quadrupole Relaxation

In this Section we no longer restrict to polar symmetric systems and discuss the time
evolution of more general initial distributions within the generalized transport approx-
imation (6.28). We start with conditions similar to those employed in Section 5.2, but
combined with the initialization scheme for the semiclassical limit. Again — as in the
full Kadanoff-Baym and the Boltzmann case — the decrease of the quadrupole moment
of the distribution is approximately exponential in time (ox exp(—Ig - t)) and thus
allows for the extraction of a quadrupole damping rate I'g. The scaled quadrupole
damping rates — as obtained for the two initial distributions d1 and d2 - are displayed
in Fig. 7.11 as a function of the coupling strength A/m. The calculations show that
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the quadrupole relaxation rates within the semiclassical approximation (6.28) for both
initial distributions d1 and d2 is well within in the range of the full Kadanoff-Baym
and the on-shell Boltzmann case. Additionally, the quadrupole relaxation rate is rather
flat in the coupling A when divided by the coupling constant squared (\?) as already
observed for the other two evolution schemes.

7.6 Validity of the Gradient Approximation

As we have seen in the previous Sections the generalized transport equation (6.28)
leads to a good agreement with the Kadanoff-Baym dynamics. This indicates that the
semiclassical limit can be applied without loosing essential features of the full quantum
dynamics for homogeneous systems (in particular D1, D2 and D3). We recall, that the
underlying assumption for the validity of the first order gradient expansion scheme —
which has been used to derive the generalized transport equation — is that all functions
are slowly evolving in the mean space and time coordinates. Thus, in comparison to
the first order time derivatives, the second order time derivatives should be small, such
that they can be neglected to a good approximation. In this Section we will study now
this criterion in a more quantitative way. To this aim we consider as a relative measure
the energy-momentum integrals over the absolute value of first and second order time
derivatives of various functions entering the generalized transport equation. Explicitly
this measure is given at time ¢ by

M2 = [P 50 F e 74
F () (27T)D t (p7p0: ) ( : )

for an arbitrary function F' in Wigner space. In the following we take into account the
time derivatives of the Green functions and the self-energies, i.e.

F € {iG<, i<, ReG®, Re SR} . (7.5)

The time evolution of this measures is shown in Fig. 7.12 for the first and the second
order time derivatives of the Green function and in Fig. 7.13 for the collisional and the
retarded self-energies. The calculation has been performed for the initial distribution
D2 with a coupling strength of A\/m = 18. For the Green functions as well as the self-
energies the second order time derivatives are about one order of magnitude smaller
than the first order expressions. Thus the underlying assumption of the first order
gradient expansion is fulfilled very well indicating that the results obtained within
the semiclassical scheme should match with those for the full quantum evolution to a
large extent. This is exactly what we have found from the explicit comparison of the

evolution of the equal-time Green functions as well as the spectral functions in Sections
7.2 and 7.3.
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Figure 7.12: Time evolution of the first/second order time derivative measure for the
Green functions functions iG< and Re G® for initial distribution D2 with coupling
constant A/m = 18. During the whole evolution the second order time derivatives are
more than an order of magnitude smaller than the first order derivatives supporting

the validity of the gradient expansion.
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7.7 Generalized Transport in Botermans-Malfliet
Form

In this Section we will perform a detailed comparison of the generalized transport equa-
tion (in the original Kadanoff-Baym (KB) form) (6.28) with the modified Botermans-
Malftiet (BM) form (6.34). As discussed in detail in Section 6.3 the latter form results
from the replacement of the collisional self-energy by i%< = iG<-T/A in the second
Poisson bracket on the Lh.s. of the original kinetic equation (6.28). This is done in
order to obtain a consistent first order equation in the gradients and to achieve consis-
tency of the resulting transport equation with the corresponding generalized mass-shell
relation.

In Fig. 7.14 we compare the time evolution within the generalized transport equa-
tion in the KB form to the consistent equation in BM form. In this respect several
momentum modes of the equal-time Green function are displayed evolving in time from
an initial distribution D2 for a coupling constant A\/m = 16. We find that the devia-
tions between both approximations (KB and BM) are rather moderate. Only for very
small momentum modes | p'|/m < 1.6 deviations between both calculational modes are
visible. For the very low momentum modes the range of difference starts at ¢ - m =~
10 and extends to ¢ - m & 100 for the non-zero modes. For the zero momentum mode
the deviation lasts even longer. In this region the semiclassical transport in the BM
form is slightly slower than in the original KB choice. Nevertheless, also the BM form
exhibits the typical overshooting behaviour of the low momentum modes beyond the
stationary limit as observed for the KB form. However, the maxima are shifted slightly
to later times. Finally both gradient approximations converge in the long-time limit
to very similar configurations.

We recall that the relation i¥< = iG< - T'/A is valid exactly in equilibrium, only.
Otherwise the difference is at least of gradient order which justifies this replacement
inside Poisson bracket terms as in the Botermans-Malfliet formulation. Thus the differ-
ences resulting from an exchange of the terms should become smaller when performed
at later time, i.e. closer to equilibrium. In this respect we show in Fig. 7.15 calcula-
tions that start with a propagation in terms of the transport equation in KB form and
then change to the BM form at a given time ¢z, -m = 10, 20, 40, 60. Furthermore, for
the initial distribution D2 at A\/m = 16 also the full evolution within the BM choice is
displayed (tgpr - m = 0, solid lines). For the low lying momentum modes | p'| = 0.0, 0.8
the direct use of the Botermans-Malfliet transport equation yields the respective low
lying curves. All other lines with tgy; - m > 0 follow the results of the original (KB)
gradient form — as given in Fig. 7.14 — until the switch to the Botermans-Malfliet type
is performed. Thus the results for later switching times are (in the intermediate time
regime) slightly higher than the ones obtained by an earlier change of the propagation
scheme. This indicates the small delay of the evolution in the BM form in comparison
to the original (KB) choice. Nevertheless, all respective curves join for very late times
and approach a very similar final state. This, of course, corresponds to the very similar
calculations already obtained for the complete evolution within either the KB or the
BM form. The higher momentum modes a rather insensitive to the switching time for
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Figure 7.14: Time evolution of various equal-time Green function momentum modes
within the generalized transport equation (original KB form, solid lines) and within the
Botermans-Malfiet (BM) form (dashed lines) for initial distribution D2 with coupling
constant A/m = 16.

the propagation method.

As the final part of the comparison we investigate the approximation i< —
iG< - T'/A quantitatively, Thus we introduce a measure for the absolute strength of
the collision term by integrating the collision rates over energy and momentum. Since
the collision term vanishes, if the above substitution holds exactly, i.e. in equilibrium,
the absolute size gives an idea about the validity of this replacement at the zero order
level. Explicitly the measure reads:

iL<iGT — X7 iGT | . (7.6)

M) = [ T

Furthermore, we define a measure for the deviation of the second Poisson bracket in
the original and in the consistent Botermans-Malfliet formulation. It is given by the
integration over the absolute differences of the Poisson terms as
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Figure 7.15: Time evolution of various equal-time Green function momentum modes
for an initial distribution D2 with coupling constant A\/m = 16. The propagation is
performed within the original (KB) generalized transport equation up to times tgy -
m = 0, 10, 20, 40, 60 and then continued within the consistent generalized transport
equation in BM form for later times.

,ReGRY | . (7.7)

|

_ dp 1 < AR A<

With respect to the generalized transport equation (6.28) we include in both cases the
additional factor 1/(2py). In Fig. 7.16 we display the time evolution of the measure
(7.6) (solid line) and the measure (7.7) (dashed line). The calculation has been per-
formed for the initial state D2 with a coupling constant \/m = 16. We find that both
measures decrease as a function of time in accordance with the equilibration of the sys-
tem. Additionally, the contribution from the difference of the Poisson brackets (7.7) is
always smaller than the one stemming from the collision term (7.6). This indicates that
the replacement of the collisional self-energy %< — iG<-T/A is more reliable when it
takes place at the gradient level in accordance with the assumption of Botermans and
Malfliet. However, the relative suppression is not very large.

In summarizing this Chapter we point out that the approximation of the full
Kadanoff-Baym dynamics by the generalized transport equations in Kadanoff-Baym
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Figure 7.16: Time evolution of the measure functions for the collision term (7.6) and
the difference of the second Poisson bracket in standard (KB) and consistent (BM) form
(7.7) for initial distribution D2 with coupling constant A\/m = 16. Both contributions
decrease in time in accordance with the equilibration of the system. The Poisson
contribution (dahed line) is always significantly smaller than that of the collision term
(solid line).

(6.28) or Botermans-Malfliet form (6.34) holds very well for the different momentum
modes of the Green function iG< itself. Slight deviations are only visible for the zero
momentum mode at early to intermediate times (Figs. 3.2, 7.3 and 7.14) for a log-
arithmic representation of the time axis. Consequently, the characteristic features of
quantum equilibration obtained for the full Kadanoff-Baym theory are retained in the
generalized transport limits. The validity of these transport equations — based on a
first order gradient expansion — could be shown explicitly, since second order gradient
terms turned out to be smaller by more than an order of magnitude (cf. Figs. 7.12
and 7.13).
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Chapter 8

Application of Semiclassical
Transport to Heavy-Ion Collisions

In this Chapter we will use the generalized transport equation (6.34) in order to investi-
gate experimental heavy-ion collisions at intermediate and high energies. As indicated
by several experiments, strong modifactions of the spectral properties are observed for
particles in the dense and hot medium. Thus it is interesting to see, if quantum off-shell
effects lead to an improved description of the experimental results.

8.1 Testparticle Representation

The starting point for the following off-shell dynamics is the generalized transport
equation in consistent first order gradient expansion, i.e. the Botermans-Malfliet form
(6.34). As a first step we are interested in the collisionless off-shell propagation of the
particles in the medium. The collisions between the particles are treated in transport
codes separately and will be lateron incorporated explicitly by taking into account the
appropriate quantum transition rates. Thus we consider the off-shell transport of par-
ticles with vanishing collision term, which we rewrite in the following form:

2 2 R
207G — OF (a;;RezR+p m_fte s

r

i

T ) iG*< (8.1)

+ 0;)‘ (QfReER +

p?—m?—ReXR

azr) iG<| = 0.

Here we omit an explicit representation of the local part of the self-energy ¢, since it
can be incorporated — by the replacement Re X% — Y94+ Re % — within the real part of
the retarded self-energy. In order to obtain an approximate solution to this equation we
use a testparticle ansatz for the (real and positive semidefinite) Green function iG<, i.e.

103
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iG< (P, po, T, 1) Z L, Dz — 7)) 65— pi(t) 6(po— €(t)). (8.2)
2p0

Thus the Green function is represented by a system of testparticles (numbered by the
index i) which are located at time ¢ at positions Z;(t), have momenta p;(¢) and energy
€;(t). Since we are interested in the description of realistic heavy-ion collisions, we
will consider the case of d = 3 spatial dimensions. The testparticle ansatz (8.2) is in-
serted in the equation of motion (8.1), which has been rearranged such that the general
property of the d-distribution f(z)§(z — z;) = f(x;) 6(x — x;) can be exploited within
the derivative terms. Since these inner terms only depend on the general testparticle
coordinates, the outer derivatives act only on the product of d-functions themselves.
We obtain for the individual contributions

Opo (0, ReSF-iG<) = Z o 0, ReSfy 6“N&F—1;) 6“Yp—pi) Opy 6(po—es),

0 (Opy ReSF-iG<) = Y [5 0, ReSfy Vo0 a—) 05—p) d(po—e.)

+ _pi b 0, ReSf) 6T-7;) V,0p5-p) d(po—e:)
+ =5 9, ReSE 6T —;) SV F—7) By d(po—er)

1 N hved - — —
+ 2—€Z 815 a€i Re Eg) 5(d)(l'—{121) 5(d)(p_pi) 5(100—61') ] ’

(8.3)
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— — — — ]_ — — —

v, (VzReER-z'GK) = 3" 5 Va ReS 6%a—) ¥, 0%5-7) 6(po—ey), (8.7)
— — — — ]_ — — —

A (VpReER-z’G<) = 3" 5 Vo Re S V0@ —7) 095—7) d(po—es) (8:8)

i

and the analogous contributions for the terms with width I'. Here we have omitted the
time index for the testparticle coordinates z; = 7;(t), p; = pi(t) and ¢ = €;(t). The
notation F(;) implies that the function is taken at the coordinates of the testparticle at
time ¢, i.e. Fi;) = F(pj(t), €;(t), Z5(t),t). The equations of motions for the testparticles
inbetween collisions are obtained by comparison of the coefficients of the linear inde-
pendent contributions for each single testparticle

=

V, 6E — ;) 65— p;) 6(po — €) (8.9)
8Nz — ;) V, 095 — ;) 6(po — &) and

0T — Z;) 07 — i) Opo 6(po — €i(t)) -

In the most general case — where the collisional self-energies depend on four-momentum
p, the spatial coordinates  and time t — the equations of motion for the testparticles
read

di; 11| L op  G-P2-m?—ReXf . _
e — | 25, + V,,Re &F = La |, (810

dp; 11 €2 —p2—m?—Re Eﬁ) L

— = — | V,,Re £F = Y v, T 11
de; 1 1 I ORe 2{5) 6? —ﬁiQ—mZ—Re 2{5) af(z) 819
it 1-Cgoa| o T a |- (8.12)

In egs. (8.10)-(8.12) a common multiplication factor (1 — C(;)) ™

tains the energy derivatives of the retarded self-energy

appears, which con-

1| a ef—ﬁf—mz—Ref}]‘g
ReSE + © ar . (8.13)

) = 2_62 861 F(i) 861

It yields a shift of the system time ¢ to the ‘eigentime’ of particle i defined by #; = ¢/(1—
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C))- As the reader immediately verifies, the derivatives with respect to the ‘eigentime’,
i.e. dZ;/dt;, dp;/dt; and de;/dt; then emerge without this renormalization factor for each
testparticle 7 when neglecting higher order time derivatives in line with the first order
semiclassical approximation scheme. The correction factor is a generalization of the
quasiparticle renormalization factor in the case of finite width. In the limiting case of
particles with vanishing gradients of the width I' the equations of motion (8.10)-(8.12)
reduce to the well-known transport equations of the quasiparticle picture [14].

Following Ref. [34] we take m? = p? — Re % as an independent variable instead of
Py, itself. This then fixes the energy (for given p and m?) to

vy = p? + m? + ReSE(p,m? x). (8.14)

In particular we are interested in the evolution of the mass parameter m of the testpar-
ticles in time. Alternatively, one can directly study the time evolution of the deviation
of the actual mass parameter m from the bare mass m which is given by the mass-
function (6.18) at the testparticle coordinates,

1

Mg = miy —m? = € = — ReX(f —m”. (8.15)

We obtain the time evolution of the off-shell mass (squared) difference M(i) by inserting
the equations of motion for the testparticles (8.10)-(8.12) [34, 35]

dM(i) M(i) df(i) dm? m2 L
_ b i i . 1
dt To dt o dt To  dt (8.16)

Thus the evolution of the off-shellness M is directly determined by the time evolution
of the width T' together with the ratio of both quantities. In (8.16) — as well as
in the equation of motion of the testparticles — the characteristic combination M /T
appears as a weighting factor for the changes in the imaginary part of the retarded self-
energy. It can be traced back to the second Poisson bracket in the consistent transport
equation in the collisionless limit (8.1). Thus the peculiar second Poisson bracket of the
generalized semiclassical transport theory provides the evolution of the off-shellness of
a nonequilibrium system.

Similar equations of motion for the testparticles (8.10)-(8.12) have been also derived
by Leupold for the case of nonrelativistic bosonic or fermionic systems [32]. They
lead to a comparable evolution of the off-shell masses, however, determined by the
nonrelativistic width and the respective mass-function.

8.2 Model Studies

In this part we will explore the physical implications of the equations of motion (8.10)-
(8.12) for the testparticles. Thus we consider the propagation of particles in a time-
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dependent complex potential of Woods-Saxon form in space. For the present investi-
gation we discard an explicit dependence of the self-energy on the momenta and the
energy, which will be investigated lateron. For the retarded self-energy we assume the
form

SEF) = ReSR(F) — ~T(&) = (8.17)

)
*L1+exp{(IZ] - R)/ao} 1+exp{(|Z| - R)/ao} 2

2p

allowing for a non-vanishing vacuum width I'y,. Throughout the model studies (to be
presented below) we use R = 5 fm, ap = 0.6 fm. The distribution function is repre-
sented in terms of the testparticle distribution (8.2), where &;(¢), pi(t) and mZ(t) are
the corresponding solutions of the equations of motion (8.10)-(8.12). In the case (8.17)
all derivatives with respect to energy and momentum vanish such that (8.10)-(8.12)
reduce to

dz; Di

dp; 1 m2—m? 1 o -

— = ——V, ReXl + — —V. Ty (8.19)
dt i @) (4) 261'
d72 n2 — m? dfz

UGG A U (8.20)

In the following we will also use the notation M? = m? for the general off-shell mass
and MZ = m? for the respective bare mass squared of the particles.

We initialize all testparticles ¢ with a fixed energy py at some distance (| Z(t=0) | &~
15 fm) on the negative z-axis with a three-momentum vector in positive z-direction.
The initial mass parameters M;(¢t = 0) are selected according to the vacuum width T'y,
which might be arbitrarily small, but finite. The particles are then propagated in time
according to eqs. (8.18) - (8.20). In Fig. 8.1 (upper part) the results for p;o(z(t)),
M;(2(t)) = mi(2(t)) and p;,(2(t)) are displayed as a function of z(t) instead of the time
t. We show the evolution of 21 testparticles with mass parameters, that are initially
separated by AM = 0.05 - I'y around the vacuum value of My = m = 0.7 GeV. The
potential has a non-vanishing imaginary part (W = 70 MeV, I'y, = 0.8 MeV) whereas
the real part is vanishing (Vo = 0 MeV) (see Fig. 8.1 (lower part)). One recognizes
that the differences between the mass parameters increase when reaching the potential
region, which corresponds directly to a broadening of the spectral function. The same
spreading behavior is observed for the three-momentum of the testparticles, such that
the energy py is conserved throughout the whole calculation (upper line). When leaving
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Figure 8.1: upper part: p;o, p;; and M; as a function of z(¢) for a purely imaginary
potential Wy = 70 MeV (lower part). The vacuum width is 'y = 0.8 MeV and the
initial separation in mass of the testparticles is given by AM = 0.05 - ['y; around the
mean value of My = 0.7 GeV.

the potential region the splitting decreases and the correct asymptotic solution for the
spectral function is restored.

As a next step we present in Fig. 8.2 (upper part) a calculation where we addi-
tionally allow for a non-vanishing real part of the potential (i.e. V5 = —20 MeV, Fig.
8.2 (lower part)). While the spreading of the mass parameter is not affected by this
change, we find a shift of the testparticle momenta where the real part of the potential
deviates from zero, since here the particles are accelerated.

In the next example of this model study we show in Fig. 8.3 (upper part) the
case of a broad vacuum spectral function entering a (time-independent) nonrelativistic
potential with Vo = —20 MeV and Wy = 100 MeV. The vacuum width is chosen as
'y = 160 MeV, while 11 testparticle trajectories are shown with an initial separation
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Figure 8.2: upper part: p;o, p;; and M; as a function of z(¢) for a complex potential
with Vo = —20 MeV, Wy = 70 MeV (lower part). For the vacuum width and the initial
mass separation we have used the same values as in Fig. 8.1.

of the masses AM = 0.05-I'y,. One observes that the spectral function is further
broadened in the complex potential zone and reaches its initial dispersion in mass
again after passing the diffractive and absorptive area.

The question remains if the testparticle distribution (8.2) reproduces the local split-
ting in mass as expected due to quantum mechanics, i.e. in our case a Breit-Wigner
distribution

1 I'y

Fom) = o m = s o

(8.21)

with a local width T'(¥) = 2 Wy(2) + I'y. This is demonstrated in Fig. 8.4, where
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Figure 8.3: upper part: p;, p;; and M; as a function of z(¢) for a broad vacuum spectral
function in a time-independent potential V, = —20 MeV, W, = 100 MeV (lower part).
We have chosen a vacuum width I'y = 160 MeV and an initial mass separation of
AM = 0.05-Ty around My = 0.7 GeV for the testparticle trajectories displayed.

we show the spectral function as a function of mass M from the testparticle evolution
at fixed coordinate z in comparison to the quantum Breit-Wigner distribution with
local width T'(%) (full lines) for a pure imaginary potential with parameters W, = 50
MeV and vacuum width I'y = 2 MeV. The differences to the exact results in Fig.
8.4 are practically not visible for all values of z from - 8 fm to 8 fm. The width
of the distribution increases from 1 MeV in the vacuum (z = £ 8 fm) to 102 MeV
(= 2 Wy+ I'y) in the center of the absorptive potential (z = 0). Thus our off-shell
quasiparticle propagation is fully in line with the quantum mechanical result at least
for quasi-stationary quantum states.

Next we step to more general potentials that include a dependence on the momen-
tum p and the energy po as well. The retarded self-energy is chosen of the type:
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Figure 8.4: The spectral distribution at different coordinates z from the testparticle
distribution in comparison to the analytical result (solid lines) for V5 = 0, Wy = 50
MeV and I'y = 2 MeV. The analytical result is practically identical to the histograms
from the testparticle distribution and thus hardly visible.
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_ . o _ . . 1 . .
SR (P, po, &) = Re (P, po, T) — S po, 7) = (8.22)

V(po
1+ exp{(|Z

, D) o ( W (po, P) n F_V)
| — R)/ao} 1+ exp{(|Z] - R)/a} = 2

again with a constant (relativistic) vacuum width I'y,. While the spatial extension of
the potential is given as in the first model case by a Woods-Saxon shape (with param-
eters R =5 fm and ag = 0.6 fm) its momentum dependence for the real as well as for
the imaginary part is introduced by

AZ Ay

V(p07m = CV A%/ — (pz _}52) ) W(?o:ﬁ) = C1W A%/V — (p% _252) . (823)

Here the constants Cy (Cy) give the ‘strength’ of the complex potential while Ay
(Aw) play the role of cutoff-parameters. Due to the structure in the denominator of
(8.23) the momentum-dependent part of this potential is explicitly Lorentz-covariant.

In our simulation we propagate the testparticles with different initial mass parame-
ters M;, which are shifted relative to each other by I'y,/(20 GeV) around a mean mass
of 1.0 GeV. For each testparticle a momentum in positive z-direction is attributed such
that all of them have initially the same energy py = 2.0 GeV. All testparticles are again
initialized on the negative z-axis with (| Z;(¢ = 0) | &~ 15 fm) and then evolved in time
according to the full equations of motion (8.10), (8.11) and (8.16).

In our first simulation with the energy-momentum dependent trial self-energy (8.22)
we consider a purely imaginary potential with a strength of Cy = 0.6 GeV? and a
cutoff-parameter Ay = 2.0 GeV. The evolution in energy pg;, momentum p,; and in the
mass parameter M; for all testparticles is shown in Fig. 8.5 (upper part) as a function
of z(t). When the testparticles enter the potential region, their momenta and mass
parameters are modified. As already shown for the momentum-independent case, the
imaginary potential leads to a spreading of the trajectories in the mass parameter M;
which in turn reflects a broadening of the spectral function. The relation between the
imaginary self-energy and the spreading in mass is fully determined by relation (8.16).
Since we have chosen a potential with no explicit time dependence, the energy of each
testparticle is a constant of time. According to the explicit momentum dependence of
our ‘trial’ potential each single testparticle is affected with different strength. Since the
imaginary potential is strongest for small momenta (which correspond to the highest
lines in the lower graph of Fig. 8.5), the momentum and mass coordinates of those
testparticles are changed predominantly which are initialized with the lowest momenta
(i.e. with the largest masses). As a result one observes a rather asymmetric distribution
in the mass parameters (and in the momenta) in the potential zone. This is different
from the case of momentum-independent potentials which yield a nearly equidistant
spreading of the mass trajectories. For z(¢) > R the mass and momentum coordinates
of the testparticles return to the proper asymptotic value.
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Figure 8.5: upper part: pj, p;, and M; as a function of z(t) for a momentum-dependent
imaginary potential with Cyy = 0.6 GeV? and Ay = 2.0 GeV (lower part). The vacuum
width is chosen as I'y = 0.02 GeV? and the initial separation in the mass parameter
of the testparticles is AM = I'y/20 around My = 1.0 GeV.

In the next example we allow for an addititonal real part of the self-energy. The
calculation is performed with the parameters Cy = —0.3 GeV?2, Cy = 0.6 GeV? and
Ay = Ay = 2.0 GeV. The momentum-dependent real part (lower part of Fig. 8.6)
causes — as also observed for the momentum independent case (cf. Fig. 8.2) — an
additional shift of the testparticle momenta. Since the real part of the potential is
larger for small initial momenta, these testparticle momenta are shifted up somewhat
more than for particles with larger momenta. This gives rise to a reduction of the
asymmetry introduced by the momentum-dependent imaginary part of the self-energy
(upper part of Fig. 8.6). As observed for the momentum-independent self-energy the
mass parameters of the testparticles are only weakly influenced by the real part of the
potential.

To summarize our model results for the simple complex potential of the Woods-
Saxon type, we find a spreading of the mass trajectories of the testparticles in the
potential region. This resembles the broadening of the spectral function due to the
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Figure 8.6: upper part: p;, p;, and M; as a function of z(t) for a momentum-dependent
complex potential with Cy = —0.3 GeV?, Ay = 2.0 GeV, Cy = 0.6 GeV? and Ay =
2.0 GeV (lower part). For the vacuum width and the initial mass separation the same
values are used as in Fig. 8.5.

space-time dependent imaginary part of the potential in line with quantum mechanics.
When leaving the potential regime the correct asymptotic solutions for the spectral
function are restored. We, furthermore, find that the energy conservation is guaran-
teed on the single-particle level during the propagation, if /0t I' = 0. The model
studies have also shown, that momentum-dependent potentials can lead to a more
asymmetrical spreading in mass which can be reduced by a non-vanishing real part of
the self-energy. Nonetheless, we observe that for the momentum-dependent case the
correct limit for the spectral function is assumed as well for large distances relative to
the potential range.
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8.3 Application to Heavy-Ion Collisions

In this Section we will investigate realistic heavy-ion collisions within the off-shell
treatment derived above. At first we briefly describe some essential features of the
implementation of the off-shell extension into a general transport code appropriate
for nucleus-nucleus collisions at intermediate and high energies. Finally, we will show
some results obtained within the generalized transport scheme in order to point out
the effects of the off-shell dynamics.

While, so far, we have only considered the collisionless propagation of particles in
a medium, we now turn to the explicit inclusion of scattering processes among the
particles. The collision term of the Kadanoff-Baym equation can only be worked out
in more detail by giving explicit approximations for the self-energies 2. A corre-
sponding collision term can be formulated in full analogy to Refs. [14, 98], e.g. from
Dirac-Brueckner theory, and implementing detailed balance as

Loy (P, mQ,x) = TryTrsTry A(P, mQ,x) A(ﬁg,mg,x) A(ﬁg,mg,x) A(ﬁ4,mi,x) (8.24)
o L L L 2
X | T((F,m®) + (B m3) — (B, m3) + (71, m3)) | s 6@ (0 + P2 —ps — pa)

X [N(ﬁﬁl: mgax) N(ﬁ4ami,$) f_(ﬁa m2am) f_(ﬁ% mg,l’)

- N(ﬁa man) N(ﬁ?a mgax) f(ﬁ& mgam) f_(ﬁlla miax) ] .

As in the usual on-shell formulation of quantum-transport theory the distribition func-
tions N (p, m?, z) enter the collision term together with the respective Bose-enhancement,
or Pauli-blocking factors f(p, m?,z) = 1 +n N(p,m?, x) with n = 1 for bosons/fermions.
Additionally, the spectral functions A of the participating particles are taken into ac-
count, which change in time due to the actual interaction. In eq. (8.24) the trace over
particles 2, 3, 4 is given explicitly for fermions as

1 — 2
Try, = Z(— / d®p, &, (8.25)

2./ P5 + M3

where 05, 75 denote the spin and isospin of particle 2. In case of bosons we have

1 3 dp%,Z
Try, = Z @) / d’py = (8.26)

02,72

in accordance with the normalization conditions for the bosonic (scalar) spectral func-
tion Apg
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dpj
— A =1 2
[ Anprn) =1, (527

whereas for fermions the corresponding relation is

/% Ap(p,x) =1. (8.28)

We mention that the spectral function Ap in case of fermions in (8.24) is obtained
by considering only particles of positive energy and assuming the spectral function to
be identical for spin ‘up’ and ‘down’ states [35]. Furthermore, the off-shell in-medium
scattering amplitude T enters the collision term. Here the indices A, S stand for the
antisymmetric/symmetric matrix element in case of fermions/bosons.

Neglecting the ‘gain-term’ in eq. (8.24) one recognizes that the collisional width of
the particle in the rest frame is given by

Coou(P, Mm%, 2) = TryTrs Try A(py, M3, x) A(ﬁ3,m§,x) A(py, mi, x) (8.29)
o _9 o _ 2 o 2 > 2\ |2 (4)
x| T((F,m?) + (Bos m3) — (B3, m3) + (7, m3)) |y s 8 (p+p2—ps —pa) (8:30)

X N(ﬁ?amgum) f_‘(ﬁ&mgwr) f_(ﬁ47m4217x) . (831)

Here as in eq. (8.24) local on-shell scattering processes are assumed for the transitions
P+ p2 — ps + ps. The extension of eq. (8.24) to inelastic scattering processes (e.g.
NN — NA) or (N — A etc.) is straightforward when exchanging the elastic transi-
tion amplitude T by the corresponding inelastic one and taking care of Pauli-blocking
or Bose-enhancement for the particles in the final state. We note, that for bosons a
Bose-enhancement factor is neglected in the following calculations since their actual
phase-space density is small for the systems of interest.

For particles of infinite life time in vacuum — such as protons — the collisional width
(8.29) has to be identified with twice the imaginary part of the self-energy. Thus the
transport, approach determines the particle spectral function dynamically via (8.29) for
all hadrons if the in-medium transition amplitudes T are known in their full off-shell
dependence. Since this information is not available for configurations of hot and dense
matter, which is the major subject of future development, a couple of assumptions and
numerical approximation schemes have to be invoked in actual applications. Since in
binary collisions due to energy and momentum conservation — once the final masses are
fixed — only the final scattering angle {2 = (cos#, ¢) is undetermined, we can replace
the amplitude squared in (8.29) as

1@k = 5 205, (832
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where ¢ is the momentum transfered in the collision at invariant energy /s and y is
the reduced mass of the scattering particles. The differential cross section do/dS) or
T(q) in principle should be evaluated in the Brueckner approach, however, in practice
effective parametrizations are employed [14].

The following dynamical calculations are based on the conventional HSD (hadron
string dynamics) transport approach [27, 99], which has been successfully applied to
heavy-ion collisions from GANIL up to RHIC energies [100]. For the investigations with
energies up to 100 A MeV (GANIL energies) essentially the nucleon degrees of freedom
are important, since inelastic processes such as NN — NA — 7N, «N — A are
suppressed. The real part of the nucleon self-energy is determined as in Ref. [27] and
includes an explicit momentum dependence of the scalar and vector self-energies for
nucleons in order to be appropriate also for relativistic reactions. For the imaginary
part of the retarded self-energy we assume for the low GANIL energies an energy-
momentum independent form. Since this is no longer adequate for relativistic systems,
we will incorporate an additional momentum dependence beginning with the SIS energy
regime (1-2 A GeV). However, we will discard in all cases the explicit dependence of the
self-energy on the energy po. This approximation implies that the correction factors
(1—C)~" in the testparticle equations of motion (8.10)-(8.12) are equal to 1 and thus
do not contribute.

The collisions of nucleons are described by the closest distance criterion of Kodama
et al. [101] in the individual NN c.m.s., i.e.

|fl—fz|f\/0|ﬁ1—52|/ﬁ, (8.33)

where o denotes the total cross section of the process, which is written here as a func-
tion of the three-momentum difference in the c.m.s. In the case of nucleon-nucleon
collisions the Cugnon parametrization [102] for the in-medium NN differential cross
section do/dQ(v/s') is used by identifying (in the NN c.m.s.)

s'—4m3, = s—4m? = 4p*, (8.34)

where my is the nucleon vacuum mass, m the actual off-shell mass and Vs’ the invariant
energy of a nucleon-nucleon collision in the vacuum with the same cms-momentum .
The final nucleon states are selected by Monte-Carlo according to the local spectral
function A determined by the collisional width Teoy((5), ) (8.29), while the angular
distribution in the c.m.s. is taken the same as for on-shell nucleons. This recipe
for off-shell nucleon-nucleon scattering is practically an ad-hoc assumption and has to
be controlled by off-shell matrix elements of the nucleon Brueckner T-matrix in the
medium.

According to eq. (8.24) the nucleons can change their virtual mass m in the scat-
tering process 1 + 2 — 3 + 4, while keeping the energy and momentum balance. This
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Figure 8.7: The nucleon off-shell propagation in mass M?(t) — M3 as a function of time
for 16 randomly chosen testparticles. The system is Ar +Ta at 92 A MeV and impact
parameter b = 1 fm.

process is technically handled by selecting the final nucleon masses by Monte Carlo
according to the local Breit-Wigner distribution. However, our Monte Carlo simula-
tions showed that this change of virtuality for elastic collisions has a minor effect on
the observables.

Apart from the description of particle propagation and rescattering the results of the
transport, approach also depend on the initial conditions, Z;(t=0), p;(t=0), m2(t=0).
In view of nucleus-nucleus collisions, i.e. two nuclei impinging towards each other with
a laboratory momentum per particle p;,p/A, the nuclei can be considered as in their
respective groundstate, which in the semiclassical limit is given by the local Thomas-
Fermi distribution [14]. Additionally the virtual mass m? has been determined by
Monte-Carlo according to the Breit-Wigner distribution (8.21) assuming an in-medium
width I'y = 1 MeV. For the vacuum width of the nucleons we have also used I'yy = 1
MeV which implies that nucleons propagating to the continuum in the final state of
the reaction achieve their vacuum mass on the 0.1 % level.

Our first applications we devote to nuclear reactions at GANIL energies (92 - 95 A
MeV), since here the more recent measurements have lead to conflicting results between
different transport approaches [103]. We start with the reaction Ar+7Ta at 92 A MeV.
As an exemplary study of the off-shell dynamics we present in Fig. 8.7 for some
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Figure 8.8: The number of baryon-baryon (BB) collisions as a function of the invariant
energy /s for Ar +Ta at 92 A MeV integrated over all impact parameters. The solid
line is obtained from including the off-shell propagation in the transport approach while
the dashed line stands for the result in the on-shell limit.

randomly chosen testparticles ¢ their off-mass-shell behaviour M?(t) — MZ (m = M,
m = M) as a function of time in a central collision (b = 1 fm). It is seen that during the
maximum overlap of the nuclei at ¢ ~ 30 fm/c the off-shellness reaches up to 0.2 GeV?,
however, in analogy to the model studies the nucleons become practically on-shell for
t > 90 fm/c. The finite width at the end of the calculation presented here is due to
the fact, that the collisional width T".,; is still different from zero. The fluctuations in
MZ(t) — MZ in time give some idea about the numerical accuracy of the calculation for
the space-time derivative of I'(x); the functions become smoother when increasing the
number of testparticles/nucleon furtheron (> 1000).

We continue with qualitative investigations, that allow to extract the physics more
clearly. In Fig. 8.8 we display the number of baryon-baryon collisions dNBB/d./s
as a function of the invariant energy /s for Ar + Ta at 92 A MeV integrated over
all impact parameters. The dashed line shows the result for the on-shell transport
approach (starting at 2my) whereas the solid line corresponds to the off-shell result,
which extends down to /s = 1.5 GeV. Note, that elastic collisions of off-shell nucleons
can occur below /s = 2my due to their dynamical virtuality in mass.
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Figure 8.9: The inclusive differential photon spectra for Ar + Au at 95 A MeV within
various limits in comparison to the data from Ref. [104]. The dashed line is obtained
in the on-shell propagation limit including on-shell nucleons in the final state, too.
The dash-dotted line results from the off-shell propagation, however, including on-
shell nucleons in the final production channel. The solid line results from the off-shell
propagation of nucleons including also off-shell nucleons in the final channel.

The latter /s distribution can approximately be tested experimentally by hard
photon spectra, a question that has been explored by the TAPS collaboration for
Ar + Au at 95 A MeV [104, 105]. In order to test the off-shell transport approach
we have performed calculations for this system, too, using the parametrizations (4.13)
of Ref. [14] for the elementary differential photon cross section in proton-neutron
(pn) collisions. Note, that the elementary photon bremsstrahlung in pn collisions is
at best known within a factor of 2 (cf. the discussion in Ref. [14]). Fig. 8.9 displays
the results of our bremsstrahlung calculations in comparison to the data from Ref.
[104]. The dashed line corresponds to the conventional on-shell calculation and is
practically identical to the BUU analysis performed by Holzmann et al. [105], but
underestimates the high energy photon yield dramatically. This situation does not
improve very much when including the off-shell propagation of nucleons for the initial
channel (dash-dotted line), however, still requiring that the nucleons in the final state
are on-shell, too. Denoting off-shell nucleons by an extra * this corresponds to the
individual reactions p* +n* — p+ n + 7y, whereas the dashed line is obtained from the
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channel p+n —p+n+1.

On the other hand, the energetic photons are produced very early in the collision
phase where the virtual mass distribution of nucleons — determined by I, (z) (8.29) —
becomes very broad. Thus including this virtuality in mass also in the final state, where
the masses are selected by Monte-Carlo according to (8.21) with a local width I'(x),
we self-consistently can sum the individual channels p* +n* — p™* +n'* +~. The result
of such calculations is shown in Fig. 8.9 by the solid line which comes quite close to
the experimental data [104]. We note that in the latter calculations we have averaged
the photon yield over 10 MeV bins to reduce the statistical fluctuations emerging from
the Monte-Carlo final state selection. Whereas in Ref. [105] the high energy photon
yield has been tentatively attributed to very high momentum components in the initial
phase-space distribution — which semiclassically are not bound — our present results
indicate that this yield might be almost entirely explained (without introducing any
additional assumptions) by the off-shell transport approach. It is presently unclear,
if the missing high energy photon yield should be attributed to three-body reaction
channels [106, 107], to the contribution of the A — N channel [108] or to the secondary
7N — N channel [109, 110].

Whereas for energies up to 100 A MeV (GANIL energies) essentially the nucleon
degrees of freedom were important, we have to take into account inelastic processes in
the SIS regime (up to 2 A GeV). Thus the actual ‘recipies’ for the creation of nucleon
and meson resonances involved have to be specified. We will only briefly mention the
main assumptions entering the calculation. For a detailed discussion of this issue we
refer the reader to Ref. [35]. For the production of resonances — by employing the
usual Breit-Wigner cross section — we take into account not only the (mass-dependent)
vacuum width 'y but the width caused by collisions I'.,; as well. The (two-body)
decay of resonances is treated as in the standard on-shell picture but corrected by the
appropriate phase-space factors. Thus the ratio of the two-body phase-space integrals
evaluated with the general off-shell masses of the emerging particles to the integrals
calculated with the usual on-shell values enters explicitly. The masses of the outgoing
particles are selected by Monte-Carlo according to the local spectral functions with a
total width, which is self-consistently determined by (8.29) in its full space-time and
momentum dependence.

In case of meson production by off-shell baryon-baryon or meson-baryon collisions
one has to fix the mass differential cross sections, that depend on the particles in the
entrance channel and especially on the available energy. Far above the thresholds the
mass differential cross sections are approximated by the standard on-shell cross section
in terms of the excess energy above the threshold weighted by the meson spectral
functions for given total width. Close to the threshold, however, a constant matrix
element is assumed which is multiplied by the available phase-space for the outgoing off-
shell particles. Again we refer the reader to a more detailed study of the implementation
of the off-shell transitions to Ref. [35], where the reasonability of the assumptions is
discussed as well. In a more recent work [37] the concept has been improved significantly
by incorporating off-shell G-matrix elements in order to describe antikaon production
in nucleus-nucleus collisions at SIS energies.
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Figure 8.10: Some randomly chosen examples for the baryon off-shell propagation in
mass in Au + Awu collisions at 1 A GeV and b = 1.5 fm. The sudden spikes correspond
to A or N* excitations, that decay again after a few fm/c to off-shell nucleons and a
pion.

We now proceed to nuclear reactions at SIS energies (1 - 2 A GeV) that have been
analysed within conventional transport models to a large extent (cf. Ref. [27] and Refs.
cited therein). In order to show the qualitative changes relative to the case of lower
bombarding energies we present in Fig. 8.10 the off-mass-shell behaviour M2 (t) — M2
for some randomly chosen testparticles ¢ as a function of time in a central Au + Au
collision (b = 1.5 fm) at 1 A GeV. It is seen that during the collision of the nuclei
from ¢t ~ 7 — 25 fm/c the off-shellness of baryons reaches up to 0.8 GeV?, however, the
nucleons become practically on-shell for ¢ > 35 fm/c. The individual sudden high mass
excitations and subsequent decays correspond essentially to A and N(1440) baryons.
Nucleons in their decay may be off-shell, but propagate again to their on-shell mass in
the continuum.

The corresponding baryon spectral distribution is shown in Fig. 8.11 as a function
of the invariant mass for the latter reaction at times of 0, 5, 10, 20, 40 and 60 fm/c.
Apart from a broadening of the nucleon spectral function at the initial time steps one
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Figure 8.11: The baryon distribution in mass M for Au+ Au at 1 A GeV and b = 1.5
fm for times of 0, 5, 10, 20, 40 and 60 fm/c. The dashed and dotted lines stand for A
and N(1440) resonances, respectively.

observes that the high mass tail is completely covered by the A and N(1440) excitations.
This is different from the results at GANIL energies since in the latter case the A
excitation was dynamically suppressed and the high mass tail of the spectral function
dominated by nucleons. In fact, in 1 A GeV Au + Au collisions the resonance high
mass spectrum in the off-shell calculations is only slightly enhanced as compared to
the on-shell calculations (without explicit representation). Note that at t = 60 fm/c
all resonances have decayed and the nucleons have become on-shell again.

Without going into detail we want to summarize the findings of the application
of the on-shell transport to heavy-ion collisions in the SIS energy regime. A detailed
discussion and representation is given in [35]. We find that the off-shell propagation
of nucleons practically does not change the rapidity distributions dN/dy and has only
a minor effect on the transverse momentum spectra of protons within the statistics
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reached except for the very high momentum tails. The distribution of baryon-baryon
collisions in the invariant energy /s is found to be also enhanced only for high invariant
energies since here the collisions with or between resonances — which are only slightly
affected in their high mass spectrum — dominate the spectrum. Again except for high
momentum tails there is no dramatic change in the pion and K spectra at SIS energies
for Au+ Au at 1.0 A GeV and Ni + Ni at 1.8 A GeV, our results being well in line
with the data of the KaoS Collaboration. This no longer holds for the K~ spectra from
N1+ Ni collisions at 1.8 A GeV which are enhanced by a factor of ~ 2 relative to the
on-shell calculation within the statistics reached. We attribute this enhancement to a
broad spectral function of antikaons at high baryon density and to the ‘subthreshold’
energy of 1.8 A GeV considered. Antikaons couple strongly to nucleons and thus
achieve a large collisional width in the nuclear medium. Thus off-shell antikaons might
be produced at far subthreshold energies, become asymptotically on-shell and thus
enhance the K~ yield.

As mentioned above the situation has been improved more recently by taking into
account a coupled-channel G-matrix approach for the determination of the in-medium
properties of the antikaons as well as off-shell transition matrix elements [37]. The full
in-medium calculations agree well with the K~ spectra in semi-central Ni+ N+ collisions
at 1.93 A GeV, which are underestimated by a factor of 2 for free transition matrix
elements. However, the actual results show a strong sensitivity on the many-body
scheme involved, especially on the dressing of the pion. In all limits considered [37] no
convincing description could be obtained of all spectra measured at GSI simultaneously.

At AGS energies (2 - 11 A GeV) the particle production in the HSD approach essen-
tially occurs via the excitation and decay of strings which can be viewed as continuum
excitations of hadrons. Any spectral broadening of the ‘continuum’ thus is not likely to
be seen in the asymptotic particle spectra of pions, kaons or antikaons especially since
they are most abundantly produced far above the individual NN or 7N thresholds.
Indeed, we have found almost negligible deviations between the off-shell and the on-
shell propagation in the rapidity spectra of these particle species for Au+ Au collisions
at 11.3 A GeV [35].

Furthermore, we have investigated equilibration times for nuclear matter configu-
rations — modelling intermediate and high energy nucleus-nucleus collisions — within
the semiclassical off-shell transport approach [36]. In this case the transport equations
are solved for a finite box in coordinate space employing periodic boundary condi-
tions. We have found that the equilibration times within the off-shell approach are
approximately the same as within the on-shell limit for the momentum configurations
considered. Moreover, it has been demonstrated [36] that the off-shell HSD approach
reproduces the ‘proper’ spectral functions for nucleons and A’s, which in equilibrium
are given analytically once the collisional width ., (P, M) is known as a function of
the 3-momentum p’ and invariant mass M.

We conclude this Chapter by noting that the Botermans-Malfliet form of the semi-
classical generalized transport equation (6.34) allows for an explicit solution within the
generalized testparticle representation (8.2). The corresponding testparticle equations
of motion (8.10)-(8.12) provide transparent extensions of the on-shell testparticle dy-
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namics by including additionally the off-mass-shell dynamics (8.16), which is directly
determined by the total width I'(p,z) or equivalently the imaginary part of the re-
tarded self-energy. The extended testparticle equations of motion can be incorporated
in present transport codes like HSD without any severe problems, however, the off-shell
transition rates have to be specified in addition. These off-shell rates might be deter-
mined by on-shell rates, that are corrected by phase-space [34, 35, 36] or explicitly from
in-medium G-matrix calculations [37]. Both ways have been persued in the last years
showing that the off-shell dynamics in nucleus-nucleus collisions leaves its traces essen-
tially in the high momentum spectra of particles as well as in the differential spectra
of produced photons or mesons close to threshold energies.
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Chapter 9

Summary and Outlook

In this thesis the problem of nonequilibrium dynamics of strongly interacting quan-
tum fields has been addressed, which is a genuine problem in practically all branches
of physics that either involve strong couplings or long time phase-coherences between
amplitudes such as two-point Green functions. The quantum evolution of systems
far from equilibrium has been based on the Kadanoff-Baym equations within a self-
consistent scheme for the self-energies from a 2PI effective action for self-interacting
quantum fields. In particular we have investigated the question, to what extent ap-
proximate solutions based i) on a generalized semiclassical off-shell transport equation
or ii) the classical on-shell Boltzmann equation compare with the exact solution of the
respective Kadanoff-Baym equations.

In detail we have studied the quantum time evolution of ¢*-field theory for ho-
mogeneous systems in 241 space-time dimensions for far-from-equilibrium initial con-
ditions [111]. The three-loop approximation for the CTP 2PI effective action has
been employed, i.e. the tadpole and sunset self-energies (cf. Fig. 2.3). The tadpole
contribution corresponds to a dynamical mass term whereas the sunset self-energy is
responsible for dissipation and an equilibration of the system. Since both self-energies
are ultraviolet divergent they had to be renormalized by including proper counterterms
(cf. Appendix B). The numerical solutions for different initial configurations out of
equilibrium (with the same energy density) show, that the asymptotic state achieved
for t — oo is the same for all initial conditions. In fact, we have shown that this asymp-
totic state corresponds to the exact off-shell equilibrium state of the system obeying
the equilibrium Kubo-Martin-Schwinger (KMS) relations among the various two-point
functions. Hence, within these approximations, the Kadanoff-Baym equations mani-
fest irreversibility as expected from its coarse graining nature by expressing the n-body
dynamics in terms of two-point functions, only.

During the equilibration process we have identified three different stages which are
related to i) the initial build-up of correlations, ii) a kinetic thermalization and finally
iii) a chemical equilibration. We find that the correlations are formed at very short
times scales and are practically independent from the coupling strength involved. This
result is in agreement with earlier studies of the nonrelativistic Kadanoff-Baym theory
in the nuclear physics context [63]. We have, furthermore, observed that during the
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second phase of kinetic equilibration the time evolution of the occupation numbers
of states (momentum modes) may be non-monotonic; here a memory to the initial
configuration is kept in the full off-shell dynamics. This is not observed in the ki-
netic on-shell Boltzmann description. In the final state, which is achieved by chemical
equilibration, we have demonstrated that the distribution functions can adequately be
described by thermal Bose functions employing a temperature 7" and chemical potential
w as Lagrange parameters. Since the ¢*-theory does not include an explicitly conserved
quantum number, the chemical potential pz has to vanish in thermal equilibrium. This
limit is achieved dynamically within the Kadanoff-Baym scheme by off-shell 1 <+ 3
transitions that violate particle number conservation as recently conjectured in [48].
Such processes are inhibited in the Boltzmann limit due to the restriction to number-
conserving 2 <> 2 on-shell scattering processes. The approach to chemical equilibrium,
moreover, is found to be well described in an approximate scheme that only involves
small deviations from the equilibrium state.

The spectral (‘off-shell’) distributions of the excited quantum modes have been
evaluated by a Fourier transformation with respect to the time difference ¢ — ' from
the retarded Green functions. For the systems investigated we have found no universal
time evolution for the spectral functions, however, they differ only in the phase of
kinetic nonequilibrium and rather fast approach the thermal equilibrium shapes. The
width of the spectral functions increases with the coupling strength A employed in the
interacting theory.

Furthermore, a detailed comparison of the full quantum dynamics to approximate
schemes like that of a standard kinetic (on-shell) Boltzmann equation has been per-
formed for the ¢*-field theory. Our analysis shows that the consistent inclusion of
the dynamical spectral function has a significant impact on relaxation phenomena.
We find that far off-shell 1 <> 3 processes are also responsible for an increase of the
quadrupole relaxation rate in case of larger couplings A relative to the Boltzmann limit,
which is attributed again to the fact that the latter transitions are missed in the Boltz-
mann approximation. Nevertheless, the relaxation is rather adequately described in the
Boltzmann limit for small and moderate couplings, such that the full off-shell dynam-
ics has only a small effect on the relaxation processes in momentum space. We have
shown additionally, that the relaxation rates can also approximately be determined
by a simple relaxation ansatz with satisfying results. These studies demonstrate, that
quantum-field theoretical problems behave very much like (semi-)classical many-body
systems.

Moreover, it has been seen, that the monotonous evolution within the number
conserving Boltzmann limit does not approach the correct equilibrium state, but shows
a finite chemical potential in the stationary limit. This, of course, is a shortcoming
of the on-shell approximation, which in principle can be cured by inclusion of higher
order processes.

In order to improve the standard on-shell (or quasiparticle) transport theory we
have derived generalized off-shell transport equations from the Kadanoff-Baym equa-
tions in phase-space representation by restricting to first order derivatives in = and p.
In fact, it could been shown explicitly, that second order derivatives (of self-energies
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and Green functions) are smaller than the first order derivatives by at least an order
of magnitude. As a consequence the dynamics within the generalized transport formu-
lation shows a very similar structure as the full quantum solution. This is clearly seen
for the propagation of the equal-time momentum modes of the Green functions and
the evolution of the spectral function for all configurations considered. It includes, in
particular, the overshooting behaviour of the low momentum equal-time modes, which
occurs at intermediate times depending on the initial distribution. Furthermore, the
evolution within the generalized transport equation leads to a stationary state in the
long time limit, which exhibits a full off-shell equilibration with vanishing chemical
potential. Even the relaxation rates of the chemical potential obtained from the semi-
classical evolution agree very well with those of the full Kadanoff-Baym theory. The
dependence of the relaxation rate on the coupling constant is rather non-trivial, since
it is strongly affected by the equilibrium spectral function as seen from the analytical
estimate. Thus we conclude that the inclusion of the dynamical spectral function —
as inherent in the semiclassical approximation of the KB equations — surpasses the
shortcomings of the on-shell Boltzmann limit.

Moreover, we have shown that the generalized transport equation in Kadanoff-Baym
(KB) form and in Botermans-Malfliet (BM) form lead to comparable results for the
time evolution of the initial configurations considered. Only for the time-dependent
occupation of low momentum modes slight differences have been observed. This is a
typical quantum phenomenon related to the large de Broglie wavelength of the low
momentum modes.

The generalized transport equation in BM form is used for the off-shell description
of realistic heavy-ion collisions [34, 35, 36] since it allows for a solution within an
extended testparticle ansatz. The resulting equations of motion in 8-dimensional phase-
space include additional terms with space-time and energy-momentum derivatives of
the imaginary part of the self-energies, that are not contained in the conventional on-
shell limit of quasiparticles. It is found that the off-shellness in the particle mass is
directly connected to the total width of the particle in the medium (eq. (8.16)).

The off-shell dynamics has been incorporated in the HSD transport approach and
applied to heavy-ion collisions from GANIL to AGS energies. In this context we have
discussed some details of the implementation, partly focussing on the importance of
the self-consistent dynamical width, which results from collisions of the particles in the
dense and/or hot medium. The consequences of the off-shell extension have been ex-
emplified for single testparticle trajectories and the spectral function for model cases as
well as nucleus-nucleus reactions at different energies. The main effects of the off-shell
dynamics show up in the subthreshold production of particles and in a modification of
the /s distribution of the collisions, which yields a change (hardening) of the transverse
momentum spectra.

Furthermore, we have introduced an efficient method for the calculation of self-
consistent spectral functions in thermal equilibrium. The iteration scheme proposed
automatically preserves the underlying normalization and analyticity condition. In this
context we have briefly considered the case of massless fields (m — 0) in the original
Lagrangian as well. In principle, we find no qualitative difference in the dynamics of
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massless fields compared to the one with finite mass for moderate couplings due to the
generation of a dynamical mass by the leading tadpole diagram. However, close to a
critical coupling we obtain a substantial decrease of the pole mass for the zero mo-
mentum mode, which is accompanied by a large increase of the width. Simultaneously
the occupation number of the lowest mode changes drastically while the occupation of
the higher momentum modes remain about the same. We address this effect as due
to the onset of Bose condensation, where our successive iteration scheme breaks down.
In order to study the Bose condensation in more detail one has to include explicitly
non-vanishing field expectation values [55] in the self-consistent dynamics. This task
we leave for future investigations.

There are further questions, that should be settled in the future. First of all, a solu-
tion of the generalized BM transport equation in testparticle form for the ¢*-theory is
desirable in order to finally show, that a description on the basis of the testparticle equa-
tions of motion (8.10, 8.11 and 8.16) leads to the same results as the direct integration
of the transport equations in Chapter 7. Additionally, appropriate off-shell transport
equations in the case of gauge-field theories like Quantum-Electrodynamics (QED) or
Quantum-Chromodynamics (QCD) should be studied within the same framework as
developed in this work. We note, however, that this additionally requires to solve the
problem of gauge constraints like Slavnov-Taylor identities, which is a separate problem
of highly complex nature.



Appendix A

Numerical Implementation

For the solution of the Kadanoff-Baym equations we have developed a computer pro-
gram which differs in several points from the approach presented in Refs. [67, 68|.
Instead of solving the second order differential equation (2.22) we generate a set of first
order differential equations for the Green functions in the Heisenberg picture,
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with the canonical field momentum 7 (z) = 0,,¢(x). The first index 7 or ¢ is always
related to the first space-time argument. Exploiting the time-reflection symmetry of
the Green functions some of the differential equations are redundant. The required
equations of motion are given as
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where t = (¢; + t2)/2 is the mean time variable. Thus we explicitly consider the prop-
agation in the time diagonal direction as in Ref. [62]. In the equations of motion
(A.2) the current (renormalized) effective energy including the time dependent tadpole
contribution enters,

Q*t) = p% + m® + dmi, + om>, + X(t). (A.3)

sun

The evolution in the t, direction has not be taken into account for G5, and G, since
the Green functions beyond the time diagonal (¢, > t1) are determined via the time-
reflection symmetry G;qb/m(ﬁ, t1,ta) = —[G;Wm(ﬁ, to,t1) |* from the known values for
the lower time triangle in both cases. Since there is no time reflection symmetry
for the G4 functions, they have to be calculated (and stored) in the whole ¢, t,
range. However, we can ignore the evolution of G, since it is obtained by the relation
G5 (it ta) = =[G, (P, t2,t1) |*. The correlation integrals in (A.2) are given by
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In (A.2) and (A.5) one can replace G35 (P, t1,t2) = —[ G5, (P, 2, t1) |* such that the set

of equations is closed in the Green functions G, Gy and G,

The disadvantage, to integrate more Green functions in time in this first order
scheme, is compensated by its good accuracy. As mentioned before, we especially
take into account the propagation along the time diagonal which leads to an improved
numerical precision. The set of differential equations (A.2) is solved by means of a
4th order Runge-Kutta algorithm. For the calculation of the self-energies we apply a
Fourier-method similar to that used in Ref. [59, 62]. The self-energies (2.24), further-
more, are calculated in coordinate space where they are products of coordinate space
Green functions (that are available by Fourier transformation) and finally transformed
to momentum space.



Appendix B

Renormalization of ¢*-Theory in
241 Dimensions

In 2+1 space-time dimensions both self-energies (cf. Fig. (2.3)) incorporated in the
present case are ultraviolet divergent. Since we consider particles with a finite mass no
problems arise from the infrared momentum regime. The ultraviolet regime, however,
has to be treated explicitly.

For the renormalization of the divergences we only assume that the time-dependent
nonequilibrium distribution functions are decreasing for large momenta comparable
to the equilibrium distribution functions, i.e exponentially. Thus we can apply the
conventional finite temperature renormalization scheme. By separating the real-time
(equilibrium) Green functions into vacuum (7" = 0) and thermal parts it becomes ap-
parent, that only the pure vacuum contributions of the self-energies are divergent. For
the linear divergent tadpole diagram we introduce a mass counterterm (at the renor-
malized mass m) as

dp 1
2 _ _
omy,, = /—(27r)2 Sy wy = /P> +m?, (B.1)

that cancels the contribution from the momentum integration of the vacuum part of
the Green function.

In case of the sunset diagram only the logarithmically divergent pure vacuum part
requires a renormalization, while it remains finite as long as at least one temperature
line is involved. Contrary to the case of 3+1 dimensions it is not necessary to employ
the involved techniques developed for the renormalization of self-consistent theories (in
equilibrium) in Refs. [78, 79]. Since the divergence only appears (in energy-momentum
space) in the real part of the Feynman self-energy 3¢ at 7' = 0 (and equivalently in the
real part of the retarded/advanced self-energies /1), it can be absorbed by another
mass counterterm
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at given 4-momentum p = (po, p) and renormalized mass m.

In summary, we replace the non-renormalized mass m?

contained in the original
Lagrangian (2.1) by m% = m? + dm2,; + 0m?,, with the mass counterterms given by
(B.1) and (B.2). Thus the divergent part of both diagrams is subtracted. The finite
part is fixed such that for the vacuum case (n(p) = 0) both renormalized self-energies

vanish at the renormalized mass m.

In Figs. B.1 and B.2 we demonstrate the applicability of the renormalization pre-
scription. To this aim we display two momentum modes |p'|/m = 0.0 (upper plots)
and |p'|/m = 2.0 (lower plots) of the equal-time Green function iG<(| 7|, ¢,t) for var-
ious momentum cut-offs pp../m = 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 with (cf. Fig.
B.1) and without (cf. Fig. B.2) renormalization of the sunset self-energy. For both
cases the renormalization of the tadpole diagram has been used. We mention, that a
non-renormalization of the tadpole self-energy has even more drastic consequences in
accordance with the linear degree of divergence. For the non-renormalized calculations
— with respect to the sunset diagram — we observe that both momentum modes do not
converge with increasing momentum space cut-off. In fact, all lines tend to infinity
when the maximum momentum is enlarged (since the gridsize of the momentum grid
is kept constant). Although the divergence (as a function of the momentum cut-off) is
rather weak — in accordance with the logarithmic divergence of the sunset self-energy
in 241 space-time dimensions — a proper ultraviolet limit is not obtained.

This problem is cured by the sunset mass counterterm (B.2) as seen from Fig.
B.1. For the momentum mode |p'|/m = 2.0 the calculations converge to a limiting
curve with increasing momentum cut-off. Even for the more selective case of the
|P|/m = 0.0 mode of the equal-time Green function the convergence is established.
We point out that this limit is obtained for the unequal-time Green functions as well
(not shown here explicitly). In fact, it turns out that the equal-time functions provide
the most crucial test for the applicability of the renormalization prescription, since
the divergent behaviour appears to be less pronounced for the propagation along a
single time direction t¢; or . Thus we can conclude, that the renormalization scheme
introduced above, i.e. including mass counterterms for the divergent tadpole and sunset
self-energies, leads to ultraviolet stable results.
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Figure B.1: Time evolution of two momentum modes |5 |/m = 0.0, |F|/m = 2.0 of
the equal-time Green function starting from the initial distribution D2 (as specified in
Section 3.1) with coupling constant \/m = 14. With the renormalization of the sunset
diagram a proper limit is obtained when increasing the momentum cut-off pya./m =

6, 8, 10, 12, 14, 16, 18, 20, 22, 24.
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B. Renormalization of ¢*-Theory in 2+1 Dimensions
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the equal-time Green function starting from the initial distribution D2 with coupling
constant A\/m = 14. Without the renormalization of the sunset diagram the curves
tend to infinity when enlarging the ultraviolet cut-off.



Appendix C

General Initial Conditions

In Section 3.1 we briefly have described our choice for the initial conditions for the full
dynamical equations; i.e. we have taken some particular initial momentum distribution
of interest, n(p,t = 0), which is then inserted in the standard quasiparticle expressions
(compare (5.1)):

oot =01'=0) = 7= {n(FF) + [n(F)+1]) (C.1)
G p@1=01=0) = _{Fn(FF) * [n(p)+1]}
G 1=01=0) =  {£n(FF) F [n(=p)+1]}
G 1=0=0) = —F {n(zp) + [n(£p)+1]}.

We note that for the energy wy in the above expression we have taken the on-shell
energy with the bare mass. This straightforward procedure, though, is not the most
general form for initial conditions within the standard Kadanoff-Baym scheme. In
principle, there exist four independent real valued numbers for characterizing the most
general initial condition instead of the two distributions n(p,¢t = 0) and n(—p,t = 0))
in (C.1). To this aim we first remark that the formal solution of the Kadanoff-Baym
equations (2.15), including all boundary conditions at the initial time ¢y, can be cast
in the form [11]
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This relation is sometimes denoted as a generalized fluctuation-dissipation theorem in
the literature [5, 8, 11, 15]. G® and G* represent the self-consistently dressed retarded
and advanced propagator, respectively, within the real-time formalism (2.18, 2.19).
Since the Kadanoff-Baym equations are second order differential equations in time for
both time arguments in case of a relativistic bosonic theory, (C.2) obviously has to con-
tain four independent initial real valued quantities. It is straightforward to show that
iG55, (P, t,t) and iG, (P, t,t) are real valued, whereas iG3, (P)t,t) and G5, (7, ,t) are
related to each other by complex conjugation; hence we get two further real quantities
for the initial conditions. Furthermore, due to the equal-time commutation relations,
one first notes that i) G5, (9, t,t) = G5,(=p,t, 1)), G (D, 1, 1) = Gy, (=P, 1, 1)) and ii)
G< (D, t,1)) = G:¢(—ﬁ, t,t)) — 1. Hence, for a real relativistic field theory for scalar
bosons all the various Green functions for equal times at momentum —p are directly
related to those at momentum p. In total, this proves that apart from the two distri-
butions n(p) and n(—p) there exist two further independent quantities for the initial
Green functions (C.1). One is allowed, for example, to freely choose the real and imag-
inary part of G, (p,t,t)) instead of those stated in (C.1). In more physical terms,
the four initial condltlons correspond to the amplitudes and the phases of the two
momentum modes 7 and —p. The ansatz in (C.1) represents a statistically averaged
distribution for the phases.

Inspecting further the formal solution (C.2), one notices that all the various terms
containing the four initial conditions and contributing to G;¢ are damped by the re-
tarded and advanced propagator for times t,%5 > ¢ty = 0 and thus will die out on a
timescale of the inverse damping width (3.8). Correspondingly, this is also the timescale
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of dephasing and decoherence of the initial modes if particular phases would have been
chosen initially. As an example, some moderate initial oscillations in the equal-time
Green function can be seen in Fig. 3.2 and in Fig. B.1. The modes need ‘some time’ to
acquire their characteristic spectral dressing and collective phase correlations, before
the further (and rather smooth) dynamics proceeds. This time is indeed roughly the
inverse damping width for the various modes. The destruction of initial (phase) cor-
relations resembles the old conjecture of Bogolyubov [112] that the initial conditions
do vanish after some finite time and do not show up any further in the subsequent
dynamics of the system.

As a final remark we note, that one can principally also take care of higher order
initial correlations within the dynamical prescription, which are not incorporated in
(C.2) and in the standard Kadanoff-Baym equations [8, 113, 114, 115]. We recall that
the standard real-time prescription stems from a perturbative Wick-type expansion,
which is valid for a special initial density operator of single-particle (Gaussian) type.
The Kadanoff-Baym equations then correspond to self-consistent and resummed Dyson-
Schwinger equations in real-time for a given set of skeleton-type diagrams. On the
other hand, there might (or should) exist initial correlations beyond the single-particle
mean-field (or Gaussian) level. As we have discussed in section 3.3, some particular
higher order correlations — in this case due to the quantal collisions — will be generated
dynamically during the course of the evolution. Hence, in principle, such correlations
should also be taken care of in the beginning of the evolution. This is not a simple task,
though: These non-trivial correlations lead to non-zero expectation values of normal-
ordered operators, which can be taken care of by defining new types of contractions,
which couple the time evolution of the system also to those higher order correlations.
For details of such a procedure we refer the interested reader to Refs. [8, 113, 114, 115].
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Deutsche Zusammenfassung

Nichtgleichgewichts-Vielteilchentheorie oder Quantenfeldtheorie ist von grofier Be-
deutung in der Untersuchung von Transportvorgangen in vielen Bereichen der Physik,
in der Kernphysik, in der kosmologischen Teilchenphysik und auch in der Physik der
kondensierten Materie. Der multidisziplinare Aspekt ergibt sich dabei aus dem gemein-
samen Interesse, die verschiedenen Relaxationsphinomene von dissipativen Quanten-
systemen zu verstehen. In der aktuellen Kernphysik bildet vor allem das Verstandnis
der Dynamik von Schwerionenkollisionen bei verschiedenen Einschussenergien eine grofle
Motivation fiir die Untersuchung von Vielteilchen-Quantensystemen oder Quanten-
feldtheorien auflerhalb des Gleichgewichts. Der Anfangszustand einer solchen Schwer-
ionenreaktion stellt dabei einen extremen Nichtgleichgewichtszustand dar, wéihrend
der Endzustand zumindest einen gewissen Grad an Thermalisierung aufweisen kann.
Tatséchlich zeigen sich bei den Experimenten am Relativistic Heavy-Ion Collider (RHIC)
in Brookhaven, der die zur Zeit hochsten Einschussenergien liefert, erste Hinweise — wie
der Aufbau eines kollektiven Flusses verbunden mit der Erzeugung von grofien Driicken
— fiir eine frithe Thermalisierung des Systems. Fiir eine vollstandiges Verstandnis
solcher Phanomene ist eine ab initio Beschreibung der Dynamik von Quantenfeldtheo-
rien auflerhalb des Gleichgewichts unerlasslich.

Fiir eine theoretische Untersuchung der Nichtgleichgewichts-Vielteilchenphysik von
Quantensystemen stellt die Formulierung auf dem geschlossenen Zeitpfad (CTP oder
Schwinger-Keldysh Formalismus) eine geeignete Basis dar. Die bedeutsamste Rolle
spielen hierbei die resultierenden Dyson-Schwinger Gleichungen fiir die Einteilchen-
Green-Funktionen, die sogenannten Kadanoff-Baym Gleichungen. Sie beschreiben die
kausale Evolution des Systems als ein Ensemblemittel iiber die Anfangsdichtematrix,
die den Ausgangszustand des Systems auch weitab vom Gleichgewicht charakterisiert.
Die in die Kadanoff-Baym Gleichung eingehenden Selbstenergien konnen aus einer
zweiteilchen-irreduziblen (2PI) Effektiven Wirkung abgeleitet werden. Aufgrund der
Konstruktion dieses Funktionals und somit auch der Selbstenergien mittels selbstkon-
sistenter Green-Funktionen bleiben die fundamentalen globalen Symmetrien der zu-
grundeliegenden Theorie erhalten und die thermodynamische Konsistenz gewahrt. Ent-
scheidenden Einfluss auf das Aquilibrierungsverhalten hat die explizite Beriicksichtigung
von Kollisionsprozessen, wie schon Untersuchungen von Schwerionenreaktionen bei
niedrigen Energien gezeigt haben. Hier ist eine volle zeitabhangige Hartree- oder
Hartree-Fock Beschreibung nicht in der Lage, die Reaktionsdynamik mit ansteigen-
der Einschussenergie hinreichend gut zu beschreiben, so dass zusédtzlich Boltzmann-
dhnliche Kollisionsterme in Betracht gezogen werden miissen. Ahnliche Resultate
zeigen sich auch bei der nichtperturbativen Untersuchung von Phaseniibergiangen zwei-
ter Ordnung von Quantenfeldtheorien auflerhalb des Gleichgewichts. Geht man in der
Kadanoff-Baym Gleichung iiber eine mean-field Beschreibung hinaus und bezieht in
den Selbstenergien Stofiprozesse ein, so fithrt dies zu Dissipation und zur Brechung der
Zeitumkehrinvarianz. Diese makroskopische Irreversibilitiat entsteht letztlich durch
das Abschneiden der (exakten) Martin-Schwinger Hierarchie fiir Green-Funktionen und
einer Reduktion der vollen n-Teilchendynamik auf das Zweiteilchen-Niveau.
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Ein weiterer wichtiger Aspekt des CTP-Formalismus liegt in der Tatsache, dass
dieser einen Ausgangspunkt fiir die Ableitung generalisierter Transportgleichungen
darstellt. So konnen on-shell Boltzmann Gleichungen aus der vollen Kadanoff-Baym
Theorie unter bestimmten Naherungen abgeleitet werden, die insbesondere in prak-
tischen Untersuchungen von Nichtgleichgewichtssystemen eine vorrangige Rolle spielen.
Dariiberhinaus konnen iiber eine Gradientenentwicklung der vollen Kadanoff-Baym
Gleichung (und den Verzicht auf eine zusétzliche Quasiteilchen-Annahme) off-shell Er-
weiterungen formuliert werden. Neben Anwendungen in der Plasmaphsik und der
Festkorperphysik sind diese generalisierten off-shell Transportgleichungen insbesondere
von Relevanz fir die Simulation von Schwerionenkollisionen. Hier besitzen Teilchen wie
die A-Resonanz oder das p-Meson grofie Zerfallsbreiten im Vakuum, wahrend andere
Hadronen aufgrund der Stofle im Medium eine nichtvernachlassighare Kollisionsbreite
aufweisen konnen. Eine Beschreibung in Form von on-shell Quasiteilchen wird da-
her fragwiirdig und eine explizite Beriicksichtigung der dynamischen Spektralfunktion
notwendig. Aus diesem Grund ist die konsistente Formulierung des Quantentrans-
ports von extrem kurzlebigen Teilchen jenseits der Quasiteilchenannahme von grofler
Bedeutung.

Obwohl die Analogie zwischen den Kadanoff-Baym Gleichungen und der Boltzmann
Néaherung offensichtlich ist, ist der Zusammenhang alles andere als trivial. Die volle
Quantenevolution enthilt viel mehr Information als die on-shell Boltzmann Gleichung,
da sie die komplette Dynamik der Spektralfunktion beriicksichtigt. Fine zufriedenstel-
lende Antwort auf die Frage, inwieweit die Quantendynamik das Aquilibrierungsverhal—
ten beeinflusst, 1afit sich dementsprechend nur aus der vollstandigen Losung sowohl der
Kadanoff-Baym als auch der Boltzmann Gleichung erhalten.

In der vorliegenden Arbeit wurde die Quanten-Zeitentwicklung am Beispiel der
relativistischen ¢*-Theorie in 2+1 Raumzeit Dimensionen fiir Anfangszustinde weitab
vom Gleichgewicht fiir raumlich homogene Systeme untersucht. Die hierbei verwendete
Kadanoff-Baym Gleichung beinhaltet die volle Nichtgleichgewichts-QQuantendynamik
auf dem Einteilchen-Niveau, d.h. bei Beschrinkung auf Zweipunkt(Green)-Funktionen.
Die kausale Evolution ist nicht-lokal in der Zeit, sondern wird auch beeinflusst durch
Konfigurationen in der Vergangenheit, aufgrund der auftretenden memory(-Gedéchtnis)-
Integrale. Weiterhin enthalt die Kadanoff-Baym Gleichung sowohl die statistische wie
auch die volle spektrale Information des sich entwickelnden Systems. Die Naherungen
an die exakte Theorie entstehen lediglich durch den Ansatz fiir die Selbstenergiebeitrage.
Im vorliegenden Fall wurde eine Drei-Loop-Approximation beziiglich der zweiteilchen-
irreduziblen Effektiven Wirkung (definiert auf dem geschlossenen Zeitpfad) benutzt,
so dass die selbstkonsistenten tadpole- und sunset-Selbstenergien die Zeitentwicklung
des Systems steuern. Der tadpole-Beitrag fiihrt dabei zu einer dynamisch generierten
effektiven Masse, wahrend die sunset-Selbstenergie Stofiprozesse miteinbezieht und
somit fiir den dissipativen Charakter verantwortlich ist, der zu einer vollstandigen
Aquilibrierung des Systems fiihrt. Da beide Selbstenergien ultraviolett divergent sind,
muflten sie durch die Einfithrung von geeigneten Massengegentermen renormiert wer-
den.

Fiir die Untersuchungen der skalaren ¢*-Theorie in 2+1 Raumzeit Dimensionen
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sind — abgesehen von der Tatsache, dass dieser Quantenfeldtheorie per se von Interesse
ist — hauptsichlich zwei Aspekte von Vorteil:

1) In 141 Dimensionen finden on-shell Streuprozesse aufgrund von Energie- und Im-
pulserhaltung nur (kol-)linear statt. Entsprechend fiihren on-shell St68e somit nicht zu
einer Veranderung der Impulsverteilung; eine Aquilibrierung wird ausschlieBlich durch
off-shell Kollisionen bewirkt, was einer eher ungewohnlichen Situation entspricht. In
2+1 Dimensionen tragen sowohl on-shell als auch off-shell Prozesse zu einer Aquilibrie-
rung der Impulsverteilung bei. Aus diesem Grund stellt die ¢*-Theorie in 2+1 Dimen-
sionen ein geeignetes quantenfeldtheoretisches Modellsystem dar, um die Unterschiede
zwischen der vollen Kadanoff-Baym Dynamik und Naherungsverfahren, wie z.B. dem
Boltzmann Grenzfall, zu untersuchen.

2) Die Divergenzstruktur der ¢*-Theorie in 2+1 Dimensionen erlaubt ein kontrol-
liertes Renormierungsverfahren. Beide berticksichtigten Selbstenergien enthalten nur
Vakuumanteile der Green-Funktionen und konnen uiber Massengegenterme renormiert
werden. In 341 Dimensionen divergieren dagegen Klassen von Diagrammen, die zu-
dem Nicht-Vakuumanteile der Green-Funktionen beinhalten. Hier miissen im Prinzip
Renormierungsverfahren fiir selbstkonsistente Naherungen angewandt werden, die bis-
her nur fiir den thermischen Gleichgewichtsfall entwickelt worden sind.

Die Losung der vollen Kadanoff-Baym Gleichung wurde zunachst fiir verschiedene
Anfangszustande untersucht, die durch die gleiche Gesamtenergie gekennzeichnet sind.
Dabei zeigte sich, dass die Zeitentwicklung der unterschiedlichen Initialisierungen gle-
icher Energie im Langzeitlimes auf ein und denselben Endzustand hinauslauft. Der
resultierende gemeinsame asymptotische Zustand entspricht dabei dem exakten off-
shell Gleichgewichtszustand. Dies konnte explizit durch das Erfiillen der Kubo-Martin-
Schwinger (KMS) Gleichgewichtsrelationen durch die verschiedenen Zweipunkt-Funk-
tionen nachgewiesen werden.

Die Zeitentwicklung des Systems konnte weiterhin durch drei verschiedene Stufen
gekennzeichnet werden. Zunéchst werden i) Anfangskorrelationen aufgebaut, danach
folgt ii) eine kinetische Thermalisierung bevor schliellich iii) eine chemische Aquilibrie-
rung stattfindet. Die erste Phase der Entwicklung ist bestimmt durch ein Anwachsen
der anfinglich verschwindenden Korrelationsenergie. Diese Korrelationen werden auf
sehr kurzen Zeitskalen erzeugt, die ndherungsweise unabhingig sind von der verwende-
ten Kopplungsstarke. Zusatzlich werden die in einzelnen Impulsmoden der gleichzei-
tigen Green-Funktion auftretenden Anfangsoszillationen entsprechend der selbstkon-
sistenten Breite gedampft. Die zeitliche Entwicklung der Besetzungszahlen der Im-
pulszustinde kann dabei in der zweiten Phase der kinetischen Aquilibrierung nicht-
monoton verlaufen, so dass im Rahmen der vollen off-shell Dynamik stets ein gewisses
Gedachtnis des Ausgangszustandes gewahrt bleibt. In der on-shell Boltzmann Naherung
hingegen tritt dieses nicht-monotone Verhalten nicht auf.

Die letzte Phase der Zeitentwicklung ist charakerisiert durch die Abnahme des
chemischen Potentials. Da die (neutrale) ¢*-Theorie keine erhaltenen Quantenzahlen
beinhaltet, muss das chemische Potential im thermischen Gleichgewichtszustand ver-
schwinden. Dies geschieht dynamisch innerhalb der Kadanoff-Baym Zeitentwicklung
durch off-shell 1 «» 3 Ubergiinge, die die Teilchenzahl verindern. Die Wichtigkeit der
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einbezogenen Spektralfunktion 148t sich hierbei aus einer Abschatzung fiir die chemi-
sche Relaxationsrate (fiir kleine Abweichungen vom Gleichgewichtszustand) ablesen.
Im Gegensatz hierzu ist die Boltzmann Naherung auf teilchenzahlerhaltende 2 <« 2
on-shell Streuprozesse beschrinkt, wodurch der resultierende Endzustand der Zeitent-
wicklung durch ein endliches chemisches Potential gekennzeichnet ist. Die asympto-
tische Verteilungsfunktion der Kadanoff-Baym Zeitentwicklung kann fiir alle Impulse
und Energien durch ein und dieselbe thermische Bose-Verteilung bei einer Tempera-
tur 7" und einem nahezu verschwindenden chemischen Potential p beschrieben wer-
den, d.h. sowohl fiir die on-shell Energien als auch im off-shell Bereich. Aus diesem
Grund entspricht dieser Langzeitlimes einem thermischen Gleichgewichtszustand unter
Erfillung der zugehorigen KMS-Relationen.

Die zeitliche Entwicklung der Spektralfunktion zeigte weiterhin kein universelles
Verhalten; alle untersuchten Anfangszustiande lieferten unterschiedliche Spektralfunk-
tionen bis in den Bereich der kinetischen Aquilibrierung. Im Verlauf der kinetischen
Aquilibrierungsphase nahmen die Spektralfunktionen jedoch eine Struktur ahnlich dem
Gleichgewichtszustand an, was sich insbesondere in den gleichen Relaxationsraten fiir
das chemische Potential fiir die verschiedenen Anfangsverteilungen duflerte.

Als zweiter Schwerpunkt der vorliegenden Arbeit wurde die Zeitentwicklung der
Kadanoff-Baym Gleichung mit Ndherungsverfahren verglichen und dabei zunachst die
on-shell Boltzmann Approximation untersucht. Hierbei zeigte sich, dass die konsis-
tente Berticksichtigung der dynamischen Spektralfunktion einen deutlichen Einfluss
auf das Relaxationsverhalten hat. So bedingen nichtteilchenzahlerhaltende off-shell
Prozesse fiir grofle Kopplungsstiarken ein Anwachsen der Quadrupol-Relaxationsrate
im Kadanoff-Baym Fall relativ zur Boltzmann Naherung. Auf der anderen Seite lassen
sich die Relaxationsraten fiir kleinere und mittlere Kopplungen recht gut mit der on-
shell Boltzmann Naherung abschitzen, so dass der Schluss naheliegt, dass sich quan-
tenfeldtheoretische Probleme sehr dhnlich zu (semi-)klassischen Vielteilchensystemen
verhalten. Wie schon erwahnt, weist die Boltzmann Rechnung jedoch noch weit-
ere Unzulanglichkeiten auf. Zum einen findet innerhalb der teilchenzahlerhaltenden
Boltzmann Naherung keine Relaxation des chemischen Potentials statt. Somit kon-
vergiert die Zeitentwicklung fiir ¢ — oo nicht gegen den korrekten Gleichgewichtszu-
stand der skalaren Theorie, sondern weist ein endliches chemisches Potential auf. Zum
anderen erfolgt die Evolution der Impulsmoden der gleichzeitigen Green-Funktion in
der Boltzmann Niherung stets in monotoner Weise und steht damit im Gegensatz
zu dem beobachteten Uberschwingen fiir bestimmte Anfangsverteilungen in der vollen
Kadanoff-Baym Rechnung.

Um die Beschreibung mittels genaherter Methoden zu verbessern, wurden — iiber
die Quasiteilchen-Boltzmann Gleichung hinaus — generalisierte off-shell Transportglei-
chungen abgeleitet, die sich aus der Kadanoff-Baym Gleichung in Phasenraumdarstel-
lung durch eine Gradientenentwicklung der ersten Ordnung ergaben. Es zeigte sich
fiir die untersuchten Systeme, dass die generalisierten Transportgleichungen eine sehr
ahnliche Zeitentwicklung wie die volle Kadanoff-Baym Theorie liefern. Dies beinhal-
tet die Evolution der einzelnen Moden der gleichzeitigen Green-Funktion, die auch
fiir die generalisierten quantenkinetischen Gleichungen bei mittleren Zeiten fiir kleine
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Impulse nicht-monoton verlaufen. Desweiteren findet man in der zeitlichen Entwick-
lung der Spektralfunktion innerhalb der semiklassischen Naherung dieselben Charak-
teristika wie in der vollen Theorie. Schliellich fiihrt auch die generalisierte Trans-
portgleichung im Grenzfall groler Zeit zu einem stationdren Zustand, der einem (off-
shell) Gleichgewichtszustand mit verschwindendem chemischen Potential entspricht.
Die zugehorigen Relaxationsraten stimmen ebenfalls sehr gut mit denen der vollen
Kadanoff-Baym Gleichung iiberein. Sie weisen eine starke, nichttriviale Abhéngigkeit
von der Kopplungskonstanten auf, da die Relaxation des chemischen Potentials mafige-
blich von der (Gleichgewichts-)Spektralfunktion beeinflusst wird, wie eine analytische
Abschétzung belegt. Zusammenfassend ist zu sagen, dass durch die Miteinbeziehung
der dynamischen Spektralfunktion im Rahmen der generalisierten Transportgleichung
eine verlassliche Naherungslosung der vollen Kadanoff-Baym Gleichung erreicht wird.

Neben der zunéchst verwendeten generalisierten Transportgleichung (in der Kadanoff-
Baym (KB) Form) wurde zusétzlich die Botermans-Malfliet (BM) Form untersucht,
die sich aus ersterer durch eine zusatzliche Konsistenzforderung beziiglich der ersten
Gradientenordnung ergibt. Die detaillierten Rechnungen zeigten, dass in beiden semi-
klassischen Naherungen die Zeitentwicklung in sehr &hnlicher Weise erfolgt, wobei nur
leichte Differenzen in der Besetzung der Niedrigimpulsmoden auftraten.

Die generalisierte Transportgleichung in BM Form bildete auflerdem den Ausgangs-
punkt fiir eine Einbeziehung der off-shell Dynamik in die Beschreibung realistischer
Schwerionenkollisionen. Im Rahmen eines Testteilchen-Ansatzes liessen sich Evolu-
tionsgleichungen fiir die Off-shellness der Teilchen, d.h. die Abweichung des quadrierten
Viererimpulses von der Massenschale, herleiten, die entscheidend von der Veranderung
der Breite bestimmt wird und iiber den Imaginérteil der (retardierten) Selbstenergie
gegeben ist. Die off-shell Dynamik wurde in das bestehende HSD Transportmodell
implementiert und auf Schwerionenreaktionen von GANIL bis AGS Energien (0.1 - 10
A GeV) angewandt. Die Effekte der off-shell Erweiterung wurden hierbei fiir Modell-
studien anhand von einzelnen Testteilchentrajektorien und der resultierenden Spek-
tralfunktion diskutiert. In Kern-Kern Reaktionen auflert sich die Miteinbeziehung
der off-shell Eigenschaften hauptsichlich in der Erzeugung von Teilchen unterhalb
der (Vakuum-)Schwelle (relativ zu Nukleon-Nuleon Stéfien) und einer Modifikation
der /s-Verteilung der Kollisionen, die eine Verinderung oder Hértung der Transver-
salimpulsspektren mit sich bringt.

Neben der Dynamik von Systemen abseits des Gleichgewichts wurde in dieser Arbeit
auch eine effiziente Methode zur Berechnung von selbstkonsistenten Spektralfunktionen
bei endlicher Temperatur vorgestellt, die automatisch die zugehorigen Normierungs-
und Analyzitdatsbedingungen erfiillt. In diesem Zusammenhang wurde ebenfalls der
masselose Fall der ¢*-Theorie in 241 Dimensionen untersucht. Fiir grofie Kopp-
lungen ist eine starke Reduktion der Polmasse der Impuls-Nullmode zu beobachten,
die von einem deutlichen Anwachsen der Breite begleitet wird; zudem wichst die Be-
setzungszahl der Nullmode, im Gegensatz zu den restlichen energetischeren Moden,
deutlich an. Dieses Verhalten 148}t sich als der Beginn einer Bose Kondensation inter-
pretieren.
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