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Motivation m?—ﬁ

QCD phase diagram:
> Lattice: Cross-over for up ~ 0, T' =~ 155 MeV
> Effective theories: 15t order transition at high up
= 2" order transition (CEP) at finite T', ug?

Quark-Gluon Plasma

~155 ST
n

> Search for CEP signatures in heavy-ion collisions

Temperature (MeV)

Critical phenomena:

> Strong fluctuations = correlation length diverges

(p(2)(z")) oc e~ l2="1/¢

~923 Baryon Chemical Potential (MeV)

> Observables — Power laws with universal Figure: Semi quantitative phase diagram of QCD, by A.
exponents Steidl.

(A(T)) o< (T = Te)*

— Study simpler systems of the same universality class

» At finite ‘distance’ from CEP quantum corrections may become important

= Consider quantum corrections of Gaussian type to classical dynamics

Need an understanding of open quantum-mechanical systems
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Stochastic Real-time methods



Introduction - Open classical systems m?—ﬁ

» Open systems interact with an environment
— e.g. pollen grain suspended in water

» The many-body interactions cannot be solved by
accounting for every involved particle
— need stochastic models

> e.g. Langevin equation — Brownian motion
dv

My = T +&(t) 7 /7

> a noise term £(t) represents the effects of
collisions with molecules of the environment Figure: An example of 2d Brownian motion (P. Morters)

(&(t)&; (1) = 29T6; 56(t — t')
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Introduction - Open classical systems m?—ﬁ

» Open systems interact with an environment
— e.g. pollen grain suspended in water

» The many-body interactions cannot be solved by
accounting for every involved particle
— need stochastic models

> e.g. Langevin equation — Brownian motion
dv

My = T +&(t) 7 /7

> a noise term £(t) represents the effects of
collisions with molecules of the environment Figure: An example of 2d Brownian motion (P. Morters)

(&(t)&; (1) = 29T6; 56(t — t')

What about quantum mechanical systems?
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Introduction - Open quantum systems (RC-TR2n

o | Sglb\. al demperalace }
Sysdem | 6’ /7, —o
. . . &%
> Open systems interact with an environment N ol 6w g - R
G

— e.g. atom trapped in a cavity 3 I .
e o 4
» The many-body interactions cannot be solved by ] Ay é ey . °y \?
accounting for every involved particle 2 2
Z

) 6_~
< need stochastic models | .

» e.g. Quantum Langevin equation? |

» How can classical behaviour emerge from a i
quantum-mechanical system?
Figure: Visualization of an open quantum system
(J. Xuereb, The Thermodynamics of some Quantum
Information Processes, Masters's Thesis, 2022)

General objective

Obtain a reduced description considering the system’s dynamics explicitly and the environment
implicitly, e.g. temperature T'

= Generalized Langevin Equations
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Road to generalized Langevin equations m?—ﬁ

Consider the system to be a quantum-mechanical particle moving in a potential:

P
Hg = > +V(z)

...linearly coupled to an environment modeled as an assembly of harmonic oscillators!:

2
71'2 (1.12 gs
H H, = Is 4 &s L
B+ Hp ES 9 + 9 Ps WQI )

s

Combined Hamiltonian: H = Hg + Hg + Hj

» Heisenberg equation of motion for an arbitrary system operator O:

O =i[H,0] =i[Hg,0] + % > 0, gsal, me — gsz]

need to eliminate explicity dependence on bath variables!

LA. Caldeira, A. Leggett, Physica A 121, 3 (1983)

Leon Sieke Real-time methods for spectral functions Lunch Club | Feb. 15, 2023



Road to generalized Langevin equations m?—ﬁ

> Heisenberg equations for the evironment operators

s =1[H, ps] = s — gs

. . 2
e = i[H, 7s] = —w5ps
< write these in terms of ladder operators

Wshs +17s t
aS = —_—, aS =
2ws

. . Ws
as = —lwsas — gsq/ —x
2
< can be easily solved

) t ,
as(t) — o~ iws(t—to) as(to) _ 95\/%/ e~ iws(t—t )a:(t')dt'
to

(...analogous for al)

Wsps —iTs

2ws

» Heisenberg equations become
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Road to generalized Langevin equations m?—ﬁ

Recall: .
. . . 1
O =i[H,0] =i[Hs,0] + 5 > [0, gsa), ms — gsa]
S

Now substitute for 74 (t) using the solutions as(t), al (t). Then after a bit of algebra®...

Generalized Langevin equation

0 =i[Hs,0] - % [[x,()], [ - t)a(t)dt" — f(t — to)z(to) + (1)

to

4L

with
() = iZgM / % [—as(to) e~ iws(t=t0) 141 (29) e (t’tO)] “Noise operator”

ft) = Z g2 cos(wst) “Memory function”

Let’s try to understand these equations...

2C.W. Gardiner, P. Zoller, Quantum noise. Springer Berlin, 2000
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Generalized Langevin equations c&!ﬁ;\

Example: Substitute for O, the system’s canonical coordinate and momentum operators x, p and
see what we get out. ..

&(t) = p(t)

t
B() = —V'(x(t)) — / F(E—)a(t)at — F( — to)z(to) + £(1)

> Conservative dynamics of the system!
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Generalized Langevin equations CRc.-TRm

Example: Substitute for O, the system’s canonical coordinate and momentum operators x, p and
see what we get out. ..

i(t) = p(t)
t
B() = —V' (1)) — / F(E— ()t — F(— to)a(to) + E(1)

> f(t) makes the e.o.m. at time ¢ depend on values of z(t) at previous times
— “memory function”

» Depends on the form of the coupling constants g, i.e. spectrum of the bath
» In a continuum limit we can write:
> dw J(w
fit)= Zg§ cos(wst) — / dw J(w) cos(wt)
S 0 m w
>

The spectral density J(w) is model dependent! Consider the simplest model of an Ohmic
bath: J(w) = 2yw
2y

™

= f(t) /Ooo cos(wt)dw = 2v4(t)
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Generalized Langevin equations CRc.-TRm

Looks the same as Langevin's original formulation, but is an operator equation!
i(t) = p(t)
p(t) = —V'(z(t)) — & (t) +&(t)

> £(t) is an externally specified operator that depends on the initial state of the bath

€0 =g [%(to) cos (ws(t — o)) + ™210)

— i (ws(t —t0))

P Interpreting the equations as noise equations is only possible if some assumption is made
about the statistics of £(t) < assume that the bath is initially thermal

pp = Zexp(—BHp), (EMEM)s =Tr (ppEER))
with
(ps)p = (ms)g = (psTsr)g =0
(o) = Sawr 2 (nB(ws) + 1),
(msmar)p = Saws (np(ws) + 3)

> We get colored noise statistics

(EMEW)) 5 = %/Ooo dww coth (%) cos (w(t —t)), (E(t))s =0

— Non-Markovian dynamics!

Lunch Club | Feb. 15, 2023
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Classical approximation (RC-TR2n

Heisenberg-Langevin equations

#(t) = p(t) €e@)s =2 [ dwweoth (%) cos (w(t —t'))

p(t) = —V'(z(t)) —v2(t) +€1X)  (€1)s=0

> Obtained a reduced description considering the system’s dynamics explicitly and the
environment implicitly, e.g. temperature T v’

> But... dealing with operators is unpractical — consider expectation values instead

v

requires truncation of equations because (V' (z)) # V'((z))
» Classical limit A — 0

m expectation values factorize (V'(z)) — V' ({z))

m hw coth(g—a‘i) — 2T white noise spectrum

Classical approximation

X(t) = P(t) (EBER")) g = 29Tt —t')
P(t) = —V'(X(8)) — X (t) +£(2) (€®)ps =0

How can we do better, i.e. include quantum corrections?
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Beyond the classical approximation CRc.-TRm

Idea: Truncate HLEs to include time evolution of two point functions (z(¢)z(t)),
(z(t)p(t) + p(t)z(t)) and (p(t)p(t)) — Gaussian states

» Corresponds to a Gaussian Wigner function, e.g.:

wian =Nenl3(;23) (s 22) ()

Oap = ((ab)) = (ab+ ba)/2 — (a)(b)

» Example: Quartic oscillator / (041)-dim “toy” theory
for self-interacting scalar fields

2
_ W2, A4
V(:v)——Q:v +4!m

Figure: lllustration of a Gaussian Wigner function
» Expectation values factorize (J. Xuereb)

dxdp A A
(V'(z)) = / o (w%x + 523) W(x,p) = w2 X + s (X3 + 3Xcrzz)
» Closed system is fully described by five variables and five equations of motion

X = P, P = —<Vl($)>v Ozz = 202p, Oaxp = app—a'zz<V"(x)>, Opp = —2‘71;0(‘/”(1»
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Beyond the classical approximation CRc.-TRm

Idea: Truncate HLEs to include time evolution of two point functions (z(¢)z(t)),
(z(t)p(t) + p(t)z(t)) and (p(t)p(t)) — Gaussian states

» Corresponds to a Gaussian Wigner function, e.g.:

wian =Nenl3(;23) (s 22) ()

Oap = ((ab)) = (ab+ ba)/2 — (a)(b)

» Example: Quartic oscillator / (041)-dim “toy” theory
for self-interacting scalar fields

2
_ W2, A4
V(:v)——Q:v +4!m

Figure: lllustration of a Gaussian Wigner function
» Expectation values factorize (J. Xuereb)

dxdp A A
(V'(z)) = / o (w%x + 523) W(x,p) = w2 X + s (X3 + 3Xcrzz)
» Closed system is fully described by five variables and five equations of motion

X=P P= —(V'(2)), Oze =20zp, Oup=0pp—022C(t), Ipp=—202pC(t)
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Gaussian state approximation CRC-TR2m

> Introduce heat-bath and interactions
— Gaussian Wigner function describing combined system

1 Te
W) = Newp {-1(¢c - 20)" = (0)(c - 2(0) |
Phase space vector and expectation values Covariance matrix
C:(xvpv---790577r57---) Ozx Ozxp Ozps Ozmg
Z(t) = (X(t), P(t),..., ®s(t), ILs(t),...) Jap Ipp | Ipps Ipms

Tpsz Opsp

Tpsps Tpss
Ongsx Omgp

Tpsmg Omgms

» Equations of motion from averaging HLE's over W (¢, t)

. . A A
X=P P=- (wg 4 503;1) X — EX3—7P+§(t), G = Do

Gap = 0pp — 0xaC(t)—70zp + (x()E(1)), Ipp = —202pC(t)—270pp + (P(H)E(L))

> Dissipation and fluctuations on the level of first- and second-order moments

But... what are (z(t)6(t)) and (p(t)E(t))?

Leon Sieke
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Gaussian state approximation m?—ﬁ

Recall: £(t) depends on initial conditions ¢ (to) and ms(to)
< need to evaluate correlation functions between the system and bath oscillators

Gap,s (1) = (2(t)ps(to)),  Gar,(t) = (@(t)7s(t0))
Gpp. (1) = (p(Ops(to)),  Gpry (1) = (p(H)7s(t0))

» Considering their respective Heisenberg equations of motion

Grp, () +7 Grp, (1) + C(t) Gap, (1) = 52

Ws

ézﬂ's (t) + 'yG'zﬁs (t) + C(t) Gz (t) = %3 sin(wst)

cos(wst)

» Driven damped oscillator with time dependent eigenfrequency
— no analytic solution...

Idea: In thermal equilibrium expand C(t) — (C)g + 6C(t)
— Egs. become solvable! (Only consider static solution in this talk)

Equations of motion:
. . A A
X=P P=- (W§+50a:m>X—gX3—’YP+f(t)a Oza = 20zp,

Gap = 0pp — 0xaC(t)—70zp + (z()E(1)), Ipp = —202pC(t)—270pp + (P(H)E(L))
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Gaussian state approximation m?—ﬁ

Recall: £(t) depends on initial conditions ¢ (to) and ms(to)
< need to evaluate correlation functions between the system and bath oscillators

Gap, (1) = (2(t)es(to)),  Gar, (t) = (@(t)7s(t0))
Gpp. () = (p(Ops(to)),  Gpry () = (p(O)7s(t0))

» Considering their respective Heisenberg equations of motion

Gap, (t) + 7 Gag, (1) + C(t) Gap, (t) = £ cos(wst)

s

2w
Came (8) +7 Gy () + C(t) G, () = % sin(wst)
» Driven damped oscillator with time dependent eigenfrequency
< no analytic solution...
Idea: In thermal equilibrium expand C(t) — (C)g + 6C(t)
< Eqgs. become solvable! (Only consider static solution in this talk)
Equations of motion:

. . A A
X=P, P=- <w3 e EO—M> X — €X3’7P+5(t)’ Gwx = 20up,

Gzp = opp +Cg (F(Cﬁ) — amx)—ﬂyaxp, Gpp = —202pCg—270pp

» No fluctuations on the level of second-order moments
. . . ~ 1
— Particular solution: o4 (t) = F(Cg) = ENE (for small ~)
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Gaussian state approximation — Summary cnc.-ﬁ

Equations of motion:

X=P
: 2 A A3
P=- W0+§F(Cﬂ) X—gX — P +£()

22 2
L
FCN s

5

— Two corrections to classical Langevin dynamics:
o

» Frequency shift

"100

5 10 50
Ty

1
F(Co) ~ 5 72=
B Figure: Temperature dependence of the frequency shift
in units of wg for different values of /\/wg

coth < vCﬂ)
2T

A
Cﬁ:wg“x/@

» Colored noise spectrum

EDEW)) = 2?7 /Oogwwng(w) cos (w(t — 1'))

We can now calculate real-time observables as
functions of X (¢) and P(t)

Figure: One typical trajectory of the colored noise as a
function of time at temperature T'/wg = 1
Lunch Club | Feb. 15, 2023 13 /28
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Gaussian state approximation — Summary cnc.-ﬁ

Equations of motion:
X=P

P=— (wg + gF(cﬂ)) X —

— Two corrections to classical Langevin dynamics: 2

» Frequency shift

1
F(Cg) ~ ——
(Cp) N

Cp=wi +

A
4,/Cg

» Colored noise spectrum

EDEW)) = 2?7 /Oogwwng(w) cos (w(t — 1'))

We can now calculate real-time observables as
functions of X (¢) and P(t)

Leon Sieke

§X3 —yP +£(t)

2 2FC) fwn?

2
2

5

[ N R AR
Ty

Figure: Temperature dependence of the frequency shift
\/C— in units of wg for different values of /\/wg
B
coth [ —— ra.a00
< 2T -

Figure:

One typical trajectory of the colored noise as a

function of time at temperature T'/wqg = 2
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Gaussian state approximation — Summary cnc.-ﬁ

Equations of motion:
X=P
: 9 A Ay
P=—1wp +§F(Cﬂ) X - gX — P +£()

— Two corrections to classical Langevin dynamics:

» Frequency shift

1
F(Cg) ~ ——
(Cp) N

\/C
Cg = wd + A coth [ X2
4\/@ 2T

» Colored noise spectrum

EDEW)) = 2?7 /Oogwwng(w) cos (w(t — 1'))

We can now calculate real-time observables as
functions of X (¢) and P(t)

2 2FC) fwn?

2
2

5

o AR N R AR
Ty

Figure: Temperature dependence of the frequency shift
in units of wg for different values of /\/wg

Tet, 62001

Figure: One typical trajectory of the colored noise as a
function of time at temperature T'/wg = 4
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Gaussian state approximation — Summary cnc.-ﬁ

Equations of motion:

X=P
: 2 A A3
P=- W0+§F(Cﬂ) X—gX — P +£()

22 2
L 2FC)

2

5

— Two corrections to classical Langevin dynamics:

> Frequency shift ™

1 o1 Test S s e T e
F(Cﬁ) ~ ﬁ T
VAl Figure: Temperature dependence of the frequency shift

in units of wg for different values of \/wg

coth < vCﬂ) Ep
2 o

Cp=wi +

A
4,/Cg

» Colored noise spectrum

EDEW)) = 2?7 /Oogwwng(w) cos (w(t — 1'))

We can now calculate real-time observables as
functions of X (¢) and P(t)

Figure: One typical trajectory of the colored noise as a
function of time at temperature T'/wg = 8
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Spectral function



Spectral function m?—ﬁ

eigenstates

» Definition: . r \
p(t —t') =i([z(t), 2(t)])s " el S
> Without dissipation: Sum over energy 0100 I

0.010 | . J
1 = | |n) ¢ |n+5)
—BE
p(w) =— E e B "(5(W—Em+En) < i n:0, 1, ...
A 0.001} ! ! E|
m,n 1 1 1
2 i i -
_6(W+Em —En))|<n\x|m)| 104E| n:od,... ! Lo J
) ) [n) ¢ [n+1) Co
» Ohmic bath (valid for small v): ! Lo
107 I I E|
1 o2 7 s )
—_ —BE. 2
pr(w) =— > e B (nfa|m)|*2A Epn wa
m,n
1 Yw Figure: Exemplary spectral function (in units of wJZ) of the
X — anharmonic oscillator from exact diagonalization with damping,
m (w2 — AE2,,)2 + 72w?2 for T/wo = 1, \/wd = 4, and v/wp = 0.03.

» Serves as a benchmark for comparing the different approximations

J. Roth, D. Schweitzer, LS, L. von Smekal, Phys. Rev. D 105 (2022) 116017
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Fluctuation-dissipation relation m?—ﬁ

How can we calculate the spectral function from classical observables X (), P(t)?

> Spectral function is difficult > Statistical function is easy

p(t,t') =i{ [;v(t),z(t')]) dass, poisson bracket F(t,t) = %<[ (t), z(t")] >BE—> factor 2
Related via decomposition of time-ordered Green's function:

G (t,t') = F(t,t') — %p(t,t/)[@(t —t') — Ot —1)

1. In thermal equilibrium apply

4. After Fourier transf
Kubo-Martin-Schwinger condition er rouner transtorm

1
A /
GT(t,t/):GT(tl,t-‘riﬁ) pc(t—t)——fath(t—t)
1
2. Obtain a fluctuation-dissipation relation = 2T< X)) = XE)PE'))gs
F(w) = coth (ﬂ) 7p(w) Calculate p from classical observables!
2T

P> Gaussian state approximation — modified FDR
3. Classical limit coth(w/2T) ~ 2T /w

) -
T

Fe(w) = ;27rp¢(w) wnp (w

...exponentially difficult at small T'/w
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Linear response m?—ﬁ

Idea: Compute the retarded propagator G directly, then relate to the spectral function via:

GEt—t") =0 —tpt -t

1. Linear response to an external

N 4. Now replace in our Langevin equations
perturbation is given by

X(t) = X(t) 40X (t)

X () = /dt’GR(t —t"h(t) P(t) - P(t) + 5P(t)
2. Choose the external perturbation to be 5. Obtain e.o.m. for the response
h(t) = hod(t — tpert) §X =6P
3. Then the response becomes 5P =— (wg + g (am(t) + X(t)2)> 60X —~oP

AR _
0X (1) = hoG™(t = tpert) , 6. Finally insert the relation from step No. 3

>

Gt~ tpu) +1G7 (1 = tor) + (w8 + 5 (030(0) + X(02) ) Pt = tpun) =0 J

2

Inital conditions:  Gf(0) = 0, and GE(0) = 1

Can be numerically integrated using standard techniques!
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Results vs. Linear response CRC-TR2n

T/wo = 0.25 T/wp = 0.5
S IS S——— 0.§
—— class. stat. (FDR) ~—— class. stat. (FDR)
class. stat. (linear response) 06 class. stat. (linear response)
0.4 ll A
g g I
s S I
§ § 0.2 l A
k4 € 1
g g
3 5 A
: 2 i A
H sy v
4 g v
@ w 0.2 l \J'
-0.4 ll{[
-0.6 ‘
20 40 60 80 100 20 40 60 80 100
Time t Time t
/\ — class. stat. (FDR) —— class. stat. (FDR)
/\ class. stat. (linear response) class. stat. (linear response)
1] / \ 1 El
/ 0\
- \ =
3 3
T 0.100 4 To0.100) 4
§ §
S 0.010} 4 70010 8 1
& &
0.001] " 0.001] E|
_—-\\4
104 1 10 1
1 2 3 4 5 2 4 6
Frequency w Frequency w

Figure: Classical-statistical spectral functions of the anharmonic oscillator (in units of wo_z) for A/wg’ =4, v/wg = 0.12.

Both methods are valid and produce identical results!

ime methods for spectral function:



Results - FDR

vs. Linear response

CRC-TR2n

T/wo = 1.0 T/wo = 2.0
06
—— class. stat. (FOR) —— class. stat. (FDR)
class. stat. (linear response) I class. stat. (linear response)
0.4 I
g g l [
§ g O
Al
H 2 ool
£ g (1Y
g 8
& & | l |
& & v
-0.2 |
i
-0af
20 20 60 80 100 20 40 60 80 100
Time t Time t
—— class. stat. (FDR) —— class. stat. (FDR)
/\ class. stat. (linear response) class. stat. (linear response)
1 [\ — i
\
3 \ 3
T o.200p \ { Toaoop
2 \ s
g \ g
 0.010F 4 B ook
& &
0.001] 0.001
107 1 10 J
2 4 6 0 6

Frequency w

Frequency w

Figure: Classical-statistical spectral functions of the anharmonic oscillator (in units of wo_z) for )\/wg =4, v/wo = 0.12.

Linear response is computationally more expensive — Solution: Parallel processing on GPUs

Real-time methods for spectral functiol




Results - FDR vs. Linear response

CRC-TR2n

T/wo = 0.25 T/wo = 0.5

GSA (FDR, before rescaling)
GSA (linear response)

—— GSA (FDR, before rescaling)
-+ GSA (linear response)

Spectral function p(t)

20 20 60 80 100 60 80 100
Time t Time t
—— GSA (FDR, after rescaling) SA (FDR, after rescaling)
GSA (linear response) GSA (linear response)
1 e B 3 9
3 3
T o.200p 4 To.o0)
F 0.010p © 0.010)
g g
& &
0.001 0.001
107 1 107 1
1 2 3 0 5 1 2 3 4 5

Frequency w Frequency w

Figure: Spectral functions of the anharmonic oscillator in (static) GSA (in units of wo_z) for A/wg =4, v/wo = 0.12.

Linear response is the method of choice to compute spectral functions in the GSA!

ime methods for spectral function:



Results - FDR vs. Linear response CRC-TR2n

T/wo = 1.0 T/wo = 2.0

—— GSA (FDR, before rescaling) . ~—— GSA (FDR, before rescaling)
-+ GSA (linear response) ++++ GSA (linear response)

function p(t)

Spectral function pi(t)

Spectr

Time t Time t

~—— GSA (FDR, after rescaling)
GSA (linear response)

0.100} 4 To.100p

0.010} 4 7 0.010F

Spectral function p(w)
Spectral function p(w)

0.001]

°
s
2

107 4 107 o

1 2 3 4 B 1 2 3 4 5
Frequency w Frequency w

Figure: Spectral functions of the anharmonic oscillator in (static) GSA (in units of wo_z) for A/wg =4, v/wo = 0.12.

Near the classical limit (large %), the approximate FDR may be a useful alternative

ime methods for spectral function: Lunch Club |



Results - Comparison of stochastic real-time m cgc..ﬁ

T/wo = 0.25
10!
> Only [0) « [1),[3)
transitions visible — class. stat.
| ~— quasiclass.
» Main peak in GSA matches 10% A\ — GSA E
up perfectly! 5 \\ —— exact diag.
> Classical peak position too §10'1-
low i
2
» Quasiclassical peak too I
broad 8 102f
2
> |0) <> |3) transition
unresolved in .
approximations

Frequency w

Figure: Spectral function of the anharmonic oscillator (in units of waz) for
A/wg =4, and v/wg = 0.12.
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Results - Comparison of stochastic real-time methods cgc..ﬁ

T/wo = 0.5
. 10t
> |1) < |2), |4) transitions
emerge —— class. stat.
\ ~— quasiclass.
» Main peak in GSA 10% — GSA E
interpolates between both 5 —— exact diag.
> Classical peak position still §10'1-
too low i
5
» Quasiclassical peak still too 3
broad 8 102f
2
> |0) <+ |3) transition visible
in GSA
107

Frequency w

Figure: Spectral function of the anharmonic oscillator (in units of waz) for
A/wg =4, and v/wg = 0.12.
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Results - Comparison of stochastic real-time cgc..ﬁ

T/wp =1
) 10t
» Increasing number of
|7L> <~ \n + 1> s |’I’L + 3> —— class. stat.
e ~— quasiclass.
transitions 100k — Gsa i
» Main peak is approximated 3 —— exact diag.
reasonably well by all T
€ 1
methods £ 107
g
» |n) <> |n + 3) transitions 2
best approximated in GSA 8 10k
&
107

0 2 4 6 8
Frequency w

Figure: Spectral function of the anharmonic oscillator (in units of waz) for
A/wg =4, and v/wg = 0.12.
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Results - Comparison of stochastic real-time m cgc..ﬁ

T/wo =2
. 10t
> Linear response approach
in GSA became too slow — class. stat.
a ~— quasiclass.
»> FDR approach was used 10% —— GSA E
— numerically difficult 3 \ —— exact diag.
» Classical and quasiclassical glo-l
results look the same g
5
> Both interpolate the exact s
sub-peak structure g 107
w
107

Frequency w

Figure: Spectral function of the anharmonic oscillator (in units of waz) for
A/wg =4, and v/wg = 0.12.
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Results - Comparison of stochastic real-time methods CRC-TR2n

T/wy =4
. e . 10!
» Finite ¥ — many individual
transitions combine into — class. stat.
one broad peak 10°F @ — quasiclass. | |
v —— GSA

= —— exact diag.
3
qq0-1p
c
S
o
2
s 102F
g
4
2

._.
2
T

1074

Frequency w

Figure: Spectral function of the anharmonic oscillator (in units of waz) for
A/wg =4, and v/wg = 0.12.
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Results - Comparison of stochastic real-time methods CRC-TR2n

» Finite ¥ — many individual
transitions combine into
one broad peak

All approximations are
consistent with the classical
limit!

Leon Sieke

T/wy =8
10
—— class. stat.
100k ~—— quasiclass.
~— GSA
= —— exact diag.
3
qq0-1p
c
2
©
c
2
E 1072k
o
o
Q
w

._.
2
T

1074

Frequency w

Figure: Spectral function of the anharmonic oscillator (in units of waz) for
A/wg =4, and v/wg = 0.12.
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Summary - Field theory CRc.-TRm

> Formal description of non-equilibrium QFT via Keldysh® formalism
— classical Langevin equation naturally emerges for i — 0

» Classical field theory:

slo.w) = [ atel (R0 - (Vo(@.0)” +m26(@.0) + 3 64,0

> Langevin equations:

bz, t) = m(@,t)

1) = V2(,0) — m2g(a, 1) — S 6°(@,0) — ym(a,0) + €, 1)
P with classical noise spectrum:

(€(@,t))p =0, (E(=,t)e(x" ) = 29T5(x — a')o(t — t')

> analogous expressions in quasiclassical and Gaussian state approximation

3L. Keldysh, Diagram technique for non-equilibrium processes, Sov. Phys. JETP. 20, (1965)
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GSA - Field theory m?—ﬁ

» Equations of motion in static Gaussian state approximation:
d(@,t) = m(,1)
A A
#(@nt) = V20(e.0) — (340000, ) ol t) = 50%(@.0) — n(a ) + ()

> Last problem: How to compute (¢¢));?

Recall:  Cg = (V" (¢))g =m? + % <<¢2>,6‘ + <<¢¢>>,3)

» Can be determined from a Dyson equation

—1 -1 i
0

d C 2
o oA [ (VT
4 (27T)d ‘/Cﬁ —|—p2

> requiring that thermal fluctuations (¢?)g vanish for ' — 0:
N Ty B
@m)* \/Cs+p? 7 2] @nt s+

Consistent with the 0-dim. case! (but... needs to be renormalized for d > 2)

(¢*)p =
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GSA - Field theory m?—ﬁ

» Regularize divergent " — 0 part with a cutoff A:

3 1
Co*m-}— / d

3 \/Co +p?
2

A A A
=m?4+ A%+ " _Cy|1—-In4—In—
KT T nETme

» Define the bare coupling A to cancel the logarithmic divergence and absorb the quadratic
divergence into the relation between bare and renormalized mass

1 A? m2 m? A
+ In— —1+4+In4|, —L=—"4
Ar A

1 1
Ar XA 3272 Co 1672

» Renormalized equilibrium curvature:

AR d3p nB(\/Cg +p2) )\RCQ C@

Cozm%, Cﬁ_mR—i-— + In —2-

(2m)3  /Cs + p? 3272 m%

» Renormalized effective mass:

Cﬁ n S8

2
mg

m? + <<¢¢>> 5=
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Results - (241)d spectral functions (RG-TRzn

T/wg = 0.25

» Class.: Wrong frequency
< missing quantum
fluctuations 100

» Quasiclass.: Wrong width

—— class. stat.
~—— quasiclass.
~ GSA

. 3

— quantum fluctuations 3
are treated as thermal g 107

» GSA: Best of both! 2
E.)_lO’Z

0 2 4 6 8
Frequency w

Figure: Zero momentum mode of the spectral function in (241) dimensions (in units
of wO_Q) for A/wg = 24, and v/wg = 0.12.

Leon Sieke ime methods for spectral functions



Results - (2+1)d spectral functions CRCG-TR2n

T/wo = 0.5
10t T T T T
» Class.: Wrong frequency
— missing quantum —— class. stat.
. — iclass.
fluctuations 1000 quasiclass. |
~— GSA

» Quasiclass.: Wrong width

. 3
< quantum fluctuations T

are treated as thermal 2

2

» GSA: Best of both! =
£ 1072

3

&

,_.
2

-4
10 0

Frequency w

Figure: Zero momentum mode of the spectral function in (2+1) dimensions (in units
of wo_z) for A/wg’ = 24, and v/wp = 0.12.
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Results - (241)d spectral functions (RG-TRzn

T/wyg =1
10!
» Class.: Wrong frequency
< missing quantum — class. stat.
fluctuations 0% - Z:S'“'ass- 9
» Quasiclass.: Wrong width 5
< quantum fluctuations g 107
c
are treated as thermal g
2
> GSA: Best of both! < 107
&
1072
107

0 2 4 6 8 10 12 14
Frequency w

Figure: Zero momentum mode of the spectral function in (241) dimensions (in units
of waz) for )\/wg = 24, and v/wg = 0.12.
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Results - (241)d spectral functions cnc.-ﬁ

T/wo =2
10t
» Class.: Wrong frequency
< missing quantum — class. stat.
i 3 S— iclass. -
fluctuations 10° Z:S'c ass

» Quasiclass.: Wrong width

. 3 -
< quantum fluctuations g 107
c
are treated as thermal g
2
> GSA: Best of both! < 107
8
g
" 102
107

0 2 4 6 8 10 12 14
Frequency w

Figure: Zero momentum mode of the spectral function in (241) dimensions (in units
of waz) for )\/wg = 24, and v/wg = 0.12.
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Results - (241)d spectral functions (RG-TRzn

T/wy =4
10!
» Class.: Wrong frequency
< missing quantum — class. stat.
fluctuations 0% - Z:S'“'ass- 9
» Quasiclass.: Wrong width 5
< quantum fluctuations g 107
c
are treated as thermal g
2
> GSA: Best of both! < 107
&
1072
107

Frequency w

Figure: Zero momentum mode of the spectral function in (241) dimensions (in units
of waz) for )\/wg = 24, and v/wg = 0.12.
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Results - (241)d spectral functions cnc.-ﬁ

T/wyg =8
10!
» Class.: Wrong frequency
< missing quantum — class. stat.
fluctuations 10% ~—— quasiclass. | |
—— GSA
» Quasiclass.: Wrong width 5
< quantum fluctuations g 107
c
are treated as thermal g
2
> GSA: Best of both! < 107
All results are consistent 9 103
with the classical limit!
107

Frequency w

Figure: Zero momentum mode of the spectral function in (241) dimensions (in units
of waz) for )\/wg = 24, and v/wg = 0.12.
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Results - (241)d spectral functions

» Class.: Wrong frequency
< missing quantum
fluctuations

» Quasiclass.: Wrong width
< quantum fluctuations
are treated as thermal

> GSA: Best of both!

All results are consistent
with the classical limit!

CRC-TR2m
T/wo = 16
10° T T r
—— class. stat.
fl ~—— quasiclass.
101F / 4
j — GSA
3 /
]
c 107
2
©
c
2
©
£ 107
o
Q
2]

,_.
2
1

-5 L
10 0

10
Frequency w

Figure: Zero momentum mode of the spectral function in (2+1) dimensions (in units
of wo_z) for A/wg’ = 24, and v/wop = 0.12.
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Results - (241)d spectral functions (RG-TRzn

T/wo = 32
10° T T T T
» Class.: Wrong frequency
— missing quantum —— class. stat.
fluctuations 101 —— quasiclass. | |
— GSA

» Quasiclass.: Wrong width

. 3
< quantum fluctuations T30
are treated as thermal 2

2
» GSA: Best of both! 2 0

g

All results are consistent o
with the classical limit! 107
107

0 5 10 15 20 25
Frequency w

Figure: Zero momentum mode of the spectral function in (2+1) dimensions (in units
of wo_z) for A/wg’ = 24, and v/wop = 0.12.
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Results - (3+1)d spectral functions (RG-TRzn

T/wg = 0.25

» Qualitatively the same
behavior as before

» Quasiclassical and GSA are 10°
more similar than in d = 2

—— class. stat.
~—— quasiclass.
~ GSA

10

1072

Spectral function p(w)

1072

0 2 4 6 8
Frequency w

Figure: Zero momentum mode of the spectral function in (3+1) dimensions (in units
of wO_Q) for A/wg = 24, and v/wg = 0.12.
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Results - (3+1)d spectral functions (RG-TRzn

T/wo = 0.5
. . 10t T - . .
» Qualitatively the same
behavior as before — class. stat.
R . o - quasiclass.
> Quasiclassical and GSA are 0% — GSA E
more similar than in d = 2 5
3
c 107!
L
B
2
3
% 1072
4
2]

Frequency w

Figure: Zero momentum mode of the spectral function in (3+1) dimensions (in units
of wo_z) for A/wg’ = 24, and v/wp = 0.12.
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Results - (3+1)d spectral functions (RG-TRzn

T/wyg =1
L. 10!
» Qualitatively the same
behavior as before — class. stat.
. . 10°F ~—— quasiclass. 4
» Quasiclassical and GSA are \ —— GSA
more similar than in d = 2 _
210t
Q
c
S
E
21072
K
i
&
1072
107

Frequency w

Figure: Zero momentum mode of the spectral function in (341) dimensions (in units
of waz) for )\/wg = 24, and v/wg = 0.12.
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Results - (3+1)d spectral functions (RG-TRzn

T/wo =2

10!
» Qualitatively the same

behavior as before

» Quasiclassical and GSA are
more similar than in d = 2

—— class. stat.
~—— quasiclass. 4
—— GSA

-

o
°
T

H
2

2

Spectral function p(w)
=
o

._.
2

107

Frequency w

Figure: Zero momentum mode of the spectral function in (341) dimensions (in units
of waz) for )\/wg = 24, and v/wg = 0.12.
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Results - (3+1)d spectral functions

» Qualitatively the same
behavior as before

» Quasiclassical and GSA are
more similar than in d = 2

CRC-TR2m
T/wy =4
10t
—— class. stat.
10%F ~—— quasiclass. 4

H
2

2

Spectral function p(w)
=
o

._.
2

107

—— GSA

Frequency w

12 14

Figure: Zero momentum mode of the spectral function in (341) dimensions (in units
of waz) for )\/wg = 24, and v/wg = 0.12.
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Results - (3+1)d spectral functions

» Qualitatively the same
behavior as before

» Quasiclassical and GSA are
more similar than in d = 2

All results are consistent
with the classical limit!

CRC-TR2m
T/wyg =8
10t
—— class. stat.
10%F ~—— quasiclass. 4

H
2

2

Spectral function p(w)
=
o

._.
2

._.
2

—— GSA

Frequency w

10

15

Figure: Zero momentum mode of the spectral function in (341) dimensions (in units

of waz) for )\/wg = 24, and v/wg = 0.12.
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Results - (3+1)d spectral functions

» Qualitatively the same
behavior as before

» Quasiclassical and GSA are
more similar than in d = 2

All results are consistent
with the classical limit!

CRC-TR2m
T/wo = 16
10° T T T
| —— class. stat.
~—— quasiclass.
107 E
— GSA
3
T
c 1072
2
©
c
2
©
£ 107
o
Q
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10
Frequency w

Figure: Zero momentum mode of the spectral function in (3+1) dimensions (in units
of wo_z) for A/wg’ = 24, and v/wop = 0.12.
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Results - (3+1)d spectral functions

» Qualitatively the same
behavior as before

» Quasiclassical and GSA are
more similar than in d = 2

All results are consistent
with the classical limit!

CRC-TR2m
T/wo = 32
10° T T T T
—— class. stat.
101k ~—— quasiclass. B
— GSA
3
T 102
c
2
©
c
2
T 107
©
o
Q
2]
10
10

10 15 20

Frequency w

25

Figure: Zero momentum mode of the spectral function in (3+1) dimensions (in units
of wo_z) for A/wg’ = 24, and v/wop = 0.12.
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Conclusion & Outlook



Conclusion CRc.-TRm

» Generalized Langevin equations:
Effecive description for the behavior of open quantum systems
— Classical dynamics emerge naturally for i — 0

» Gaussian state approximation:
Extension of classical simulations by incorporating lowest order quantum corrections
m Consistent with the classical limit
m Quasiclassical methods not sufficient
m Works in (renormalizable) field theory context

» Linear response:
More generally applicable method of computing spectral functions
m Enables computing spectral functions in GSA
m Also valid off equilibrium
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Outlook CRC.-TRE

» Parallel processing of Linear response spectral functions on GPUs
> Investigate adiabatic corrections in GSA
» Finite momentum modes of spectral functions

» Static and dynamic critical behavior of Z3 Ising in GSA
— Observe crossover from quantum to classical physics?

> Extend GSA to four-component O(4) model

> Explicit time evolution of {¢(t, z)p(t',x’)) to study non-equilibrium dynamics
— Finite quenching rates (Kibble-Zurek)
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Outlook CRC.-TRE

» Parallel processing of Linear response spectral functions on GPUs
> Investigate adiabatic corrections in GSA
» Finite momentum modes of spectral functions

» Static and dynamic critical behavior of Z3 Ising in GSA
— Observe crossover from quantum to classical physics?

> Extend GSA to four-component O(4) model

> Explicit time evolution of {¢(t, z)p(t',x’)) to study non-equilibrium dynamics
— Finite quenching rates (Kibble-Zurek)

Thank You!
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