Fast Readout and Performance of the upgraded HADES RICH in Heavy Ion collisions

The HADES detector

- HADES: High Acceptance DiElectron
 Spectrometer
 - Installed at GSI SIS 18, in operation since 2001
 - Studying baryonic matter in light and heavy systems
 - Part of FAIR phase 0 program

- "Old" HADES RICH
 - C₄F₁₀ radiator
 - Low material budget, carbon mirror
 - Hadron blind detector
 - \circ Electron id 15 MeV/c $< p_e < 1.5$ GeV/c
 - Csl cathode, MWPC readout

target

radiator (C₄F₁₀)

The upgraded RICH

Upgraded RICH Detector

RICH Backside with Blocks

One DiRICH Backplane-Module

Motivation:

- Ensure stable RICH operation for future
 FAIR program 2025 and beyond
- Improve close-pair dielectron reconstruction (essential for future physics program)

- Concept:
 - Share MAPMTs and readout chain development with CBM RICH
 - Photodetection plane equipped with 428 64ch H12700 MAPMTs Measure (arrival) time (LE) and Time over Threshold (ToT) of each channel with the DiRICH-FEB
 - Modular backplanes serve as gas- and light tight seal
 - Use C₄H₁₀ as radiator gas

The upgraded RICH - The real thing

Backside of the HADES RICH with view onto the DiRICH readout system

Single Event Display of one of the first Rings (no cuts appl.)

- Full HADES Detector during one of the first events
 - Ring clearly visible
- Ring still surrounded by additional hits (charge sharing between channels or capacitive crosstalk)
- Ring still accompanied by coincident noise in the full detector
 - Here no hit (arrival) time (LE) and Time over Threshold (ToT) cuts are applied

Impact of RICH on Particle ID

All Particle candidates with no requirement

- Channel individually cut on:
 - \circ Hit arrival time w.r.t trigger ($\Delta t=60$ ns)
 - Time over Threshold: (meanToT-4σ to 15ns)

- Requiring a RICH-Ring matched to the individual track (angular difference < 1°)
 - The radius of the RICH-Ring needs to be between 17 mm and 30 mm

Ring Center Positions of Electron Rings

Ring center positions for rings matched to an electron reconstructed in TOF/RPC

Homogeneously spaced over full detector

Clearly visible are the spokes of MDC each 60° in ϕ

Radius Distribution for Electron Rings

Hit multiplicity per Ring without ToT-based Hit selection

- From simulation an average of
 15 hits per ring expected
- Bump at low number of hits indicates underlying contribution
- Still significant contribution from capacitive crosstalk due to relaxed ToT cut

Correlation between ToT and Number of Hits per PMT

- Capacitive crosstalk visible in distribution of single channel ToT against number of hits on same MAPMT
- ToT for crosstalk hits increases with MAPMT occupancy indication of capacitive crosstalk
- Capacitive crosstalk still separable from single photon peak via ToT-Cut

Time vs. ToT Spectra of Individual Channels

Single Event Plot for first Peak in Time vs. ToT Spectra

- Simulation indicates "backwards" flying electrons skimming directly over the MAPMTs
 - Those would cast a highly elliptical ring

Single Event Plot with Cut on Signal Peak

Single Event Plot with Cut on Signal Peak

Hit multiplicity per Ring with strict Time and ToT cuts

- Number of measured photons in ring for rings matched to an electron track with strict cut on hit time and ToT
- Average number of hits per ring are close to the simulated 15
- Bump to lower number of hits per ring not visible anymore

Beta Momentum Distribution with strict Time and ToT cuts

- Stricter cut on ToT and LE
- Only e⁻ e⁺ "visible" in spectrum
- Proton and Pion heavily suppressed

Single Channel Timing relative to Trigger

- For each channel fill an individual histogram with hit time and ToT if the hit belongs to an electron ring
- Take each channel's
 2D-distribution and make a
 X-projection through the largest bin
- Fit the resulting
 1D "single" ToT
 distribution with
 a Gaussian
 distribution

Single Channel Timing Precision relative to Trigger

- Average timing precision of σ = 225 ps can be achieved for a single ToT-Bin (0.1 ns) in the "full" detector (work in progress)
- HAMAMATSU claim typical transit time spread (FWHM) 350 ps for H12700 MAPMTs roughly equals σ = 150 ps
- Contribution of trigger jitter leading to a worse timing precision

Timing Precision for a Subset of all

Channel to Channel Timing Precision

For each pair of channels fill an individual histogram with hit time differences and ToT differences if both channels did see a photon from the same electron ring

Channel to Channel Timing Precision

- Average timing precision **around** σ = **226** ps for a single bin in ΔToT (0.5 ns) (work in progress)
- Still influenced by walk since here the walk of two channels. contribute to a broadened time distribution
- Walk correction needs to be made before final timing precision can be stated

Summary

- HADES RICH upgrade with new MAPMT readout and DiRICH readout chain finalized this year
- In time for very successful 4-week production beamtime March 2019
- Use of RICH provides strong suppression of non-electron background
- RICH performance in good agreement with simulations
- Structures in the hit time distribution are nearly fully understood
- Precise Time Over Threshold measurement vital for suppression of background
 - In particular capacitive crosstalk
- First studies indicate a full detector timing precision better than σ = 225 ps in average (work in progress)

Backup

Beamtime Webpage

6 S K

HADES: FAIR Phase-0 Experiment

HADES monitoring LIVE

Ag+Ag 1.58A GeV

Date: 10 April 2019

Event rate: 16-18 kHz

15268.68 × 106 Collected events:

Collected data: 359.23 TB

Last update: 22:30

Event Display

e+/e- Cherenkov Rings

Ring Hit Positions of Rings matched to an Electron

Improvement of Single Events with Time and ToT-Cut

- Channel individually cut on:
 - Leading edge (Δt=60ns)
 - \circ ToT (-4 σ -- 15ns w.r.t. SPP)

Wiggle Signal

Cut definition

Different Cuts are:

"Coarse"-Cut Rectangular area around "Fine"-Cut

"Fine"-Cut

Region with **0.1*Maximum_Value**

- For channels where no cut-values could be retrieved (less than 3 Bins with >100 Cals), the further analysis is subdivided into
 - "useempty" meaning channels with too few hits are included without cut
 - "normal" meaning channels with too few hits are **excluded** from further analysis

Single Event Plot for signal Peak in Time-vs-ToT

