





# The Giessen Cosmic Station

<u>Simon Bodenschatz</u>, Lisa Brück, Michael Düren, Avetik Hayrapetyan, Jan Niclas Hofmann, Sophie Kegel, İlknur Köseoğlu Sarı, Jhonatan Pereira de Lira, Mustafa Schmidt, Marc Strickert

### DIRC 2019 - Rauischholzhausen

September 13, 2019

# Introduction

### Principle

 Using cosmic particles (esp. muons) for tests of DIRC detectors

### Requirements

- Position and direction of the particles
- Selection of muons with a minimum energy
- Acceptance for slightly angled tracks (about 13°)

# Introduction

### Principle

 Using cosmic particles (esp. muons) for tests of DIRC detectors

#### Requirements

- Position and direction of the particles
- Selection of muons with a minimum energy
- Acceptance for slightly angled tracks (about 13°)

# Overview

### Track Reconstruction

Track reconstruction via position measurment in two planes

#### Components

The test stand consists of

- Two scintillating plates defining a trigger
- Four layers of scintillating bars (track reconstruction)
- About 45 cm of lead in between the trigger plates (energy selection)



### Overview



Figure: Schematic overview and CAD drawing.

### Tracking Boxes



Figure: One of the tracking boxes without lid.

# Tracking Boxes

#### Geometry of the bars

- 48 bars (15 × 10 × 500 mm) in two half-layers shifted against each other
- Second layer rotated by 90° for position resolution along the other axis
- Every layer in a separate light-proof box



# Tracking Boxes

#### Readout of the bars

- Readout via one SiPM at the top of each bar
- 24 SiPMs are grouped together on one PCB
- Passing the signals to the readout system via micro-coaxial-cables
- Shielding of reflected light via foam



# **Trigger Plates**

### Trigger plates

- 50×50 cm<sup>2</sup> homogeneous scintillating plate with cut off corners
- Readout via four PMTs in each of the corners



Figure: Schematic drawing of one of trigger plates.

# **Trigger Plates**



Figure: One of the trigger plates.

# Absorber

### Role of the absorber

- Flight distance in combination with timing resolution insufficient for momentum selection
- Instead energy discrimination via absorption in 45 cm lead





# Absorber



Figure: Energy deposition in trigger plate after passing though 45 cm of lead (Monte-Carlo simulation).

### Absorber



Figure: Cherenkov angle range in fused silica over muon kinetic energy (**blue**) and 600 MeV cutoff energy (**red**).

Wavelength cut: 200 nm  $<\lambda<$  800 nm // Sensor acceptance and emission probability not included.

# **Finger Counters**

#### Detector to test ...

- Cross of two small scintillating bars
- Readout via PMTs
- Overlapping area of approx.  $1, 8 \times 1, 8$  cm



Figure: Schematic drawing of the finger counters.

# **Finger Counters**



Figure: Overview and detailed image of the finger counters.

# Readout and Slow Control

#### Readout

- All 202 channels readout with the same ASIC-based system (TOFPET 2)
- Trigger and finger signals are inverted
- Off-line analysis and event selection

### Additional monitoring of . . .

- ASIC temperature
- Inverter current and HV channels
- Ambient pressure, temperature and humidity

#### Light level

# Readout and Slow Control

#### Readout

- All 202 channels readout with the same ASIC-based system (TOFPET 2)
- Trigger and finger signals are inverted
- Off-line analysis and event selection

### Additional monitoring of ...

- ASIC temperature
- Inverter current and HV channels
- Ambient pressure, temperature and humidity

#### Light level

### Readout and Slow Control



Figure: TOPFET frontend modules with two ASICs each (left) and intermediate "D-Board" (right).

### All components together



Figure: Tracking box, finger counters and read out electronics.

### Testruns

#### Measurment - Run 1

- Running nonstop for approx. 64 days
- Acquisition performed in 30 minute runs (2922 in total)
- A total of approx. 6.7 · 10<sup>6</sup> events with "clean" tracking information collected (600 · 10<sup>3</sup> trigger hits)



Figure: Number of "clean" tracking events per run.

### Testruns

### Test setup

- Finger counters instead of prototype
- Counters placed directly on the table
- Find tracks in coincidences with the counters





# **Reconstruction - Finger Counters**



Figure: 2D-Histogram of the coordinate combinations  $(X_{bot}, Y_{bot})$  for events in coincidence with the finger counters and the top tracking ensemble (**left**) and a 3D Visualisation of the tracks (**right**).

# **Reconstruction - Finger Counters**



Figure: 2D-Histogram of the coordinate combinations  $(X_{bot}, Y_{bot})$  for events in coincidence with the finger counters and all bars of the top tracking ensemble (**left**) and only a selected "frame" (**right**).

### Reconstruction - Spatial Acceptance



#### Figure: Spatial acceptance without trigger.

Simulation: Geant4 [1] with CRY [2] event generator.

 S.Agostinelli et al. (2007). Geant4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A.
Hagmann, Chris& Lange, David & Wright, Douglas. (2007). Cosmic-ray shower generator (CRY) for Monte Carlo transport codes. IEEE Nuclear Science Symposium.

### Reconstruction - Spatial Acceptance



Figure: Spatial acceptance with and without trigger.

### Reconstruction - Angular Acceptance



Figure: Angular acceptance without trigger.

### Reconstruction - Angular Acceptance



Figure: Angular acceptance with and without trigger.

### Reconstruction - Expected Angular Resolution



Figure: Expected angular resolution (Monte-Carlo-Estimate).

### Reconstruction - Expected Spatial Resolution



Figure: Expected spatial resolution (Monte-Carlo-Estimate).

### Reconstruction - Resolution Verification



Figure: Fit of the finger hits with a convoluted normal distribution.

# Event Rate



Figure: Number of events in 30 minutes averaged over 4 runs.

### Event Rate - Pressure Correlation



Figure: Comparison of rate and ambient pressure - local data (blue) and data provided by german weather service (orange).

Data for station 01639 (Gießen) provided by "Deutscher Wetterdienst" (Open data server). Last accessed 25.06.2019. ftp://ftp-cdc.dwd.de/pub/CDC/observations\_germany/climate/hourly/pressure/recent/stundenwerte\_P0\_01639\_akt.zip

### Event Rate - Pressure Correlation



Figure: Scatter plot with fit of the ambient pressure versus the number of events in 30 minutes.  $(8096 - 5.018 \frac{1}{hPa} \cdot p)$ 

# GCS "Datasheet"

| Angular acceptance                       |                     |            | Angular                                   | Angular resolution |              |  |
|------------------------------------------|---------------------|------------|-------------------------------------------|--------------------|--------------|--|
| $egin{array}{c} 	heta\ \phi \end{array}$ | 0.1 0.4<br>-1.0 1.0 | rad<br>rad | $egin{array}{c} 	heta \ \phi \end{array}$ | 3.8<br>17.7        | mrad<br>mrad |  |
| Spatial acceptance                       |                     |            | Spatial r                                 | Spatial resolution |              |  |
| x<br>y                                   | -25 25<br>-25 25    | cm<br>cm   | x<br>y                                    | 4.4<br>3.7         | mm<br>mm     |  |

#### Event rate, trigger and timing

- $\blacktriangleright$  ~ 2400 "clean" events in 30 minutes (10% with trigger)
- ho  $\sim$  600 MeV muon kinetic energy threshold
- $ightarrow \sim$  500 ps global time difference resolution

### New Radiator Plate



Figure: The new radiator plate.

# Conclusion

### Summary

- Data acquisition and reconstruction working
- Successful operated for several months
- Tracking is stable

#### Current status

Tests with the new radiator plate planned

# Thank you for your attention!

# Multiplicity Distribution



Figure: Multiplicity distribution for top x-coordinate tracking layer (Measurement and simulation).