DIRC@EIC

Greg Kalicy

L. Allison¹, T. Cao², R. Dzhygadlo³, T. Horn⁴, C. Hyde¹, Y. Ilieva², G. Kalicy¹, P. Nadel-Turonski⁵, K. Park¹, K. Peters³, C. Schwarz³, J. Schwiening³, J. Stevens⁵, W. Xi⁵, and C. Zorn⁵.

- ¹⁾ Old Dominion University, Norfolk, VA 23529
- ²⁾ University of South Carolina, Columbia, SC 29208
- ³⁾ GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- ⁴⁾ The Catholic University of America, Washington, DC 20064
- ⁵⁾ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606

- Electron ion Collider
 - High priority in Nuclear Science
 Advisory Committee long range plan
- DIRC@EIC
 - Generic R&D
- High performance DIRC
 - High refractive3 component lens (3CL)
- Components tests
 - Performance of 3CL
 - Sensors tests in B field

1

Electron ion Collider

- High priority in Nuclear Science
 Advisory Committee long range plan
- DIRC@EIC
 - ➢ Generic R&D
- High performance DIRC
 - High refractive3 component lens (3CL)
- Components tests
 - Performance of 3CL
 - Sensors tests in B field

Electron ion Collider

- High priority in Nuclear Science
 Advisory Committee long range plan
- DIRC@EIC
 - Generic R&D
- High performance DIRC
 - High refractive3 component lens (3CL)
- Components tests
 - Performance of 3CL
 - Sensors tests in B field

Electron ion Collider

- High priority in Nuclear Science
 Advisory Committee long range plan
- DIRC@EIC
 - Generic R&D
- High performance DIRC
 - High refractive3 component lens (3CL)
- Components tests
 - Performance of 3CL
 Sensors tests in B field

12th of November 2015, Greg Kalicy

4 **Do**

Electron ion Collider

- High priority in Nuclear Science
 Advisory Committee long range plan
- DIRC@EIC
 - Generic R&D
- High performance DIRC
 - High refractive3 component lens (3CL)
- Components tests

Jefferson Lab

- Performance of 3CL
- Sensors tests in B field

EIC@JIab Siteplan

12th of November 2015, Greg Kalicy

JLEIC Performance goals

Energy

 \sqrt{s} from **15** to **65** GeV Electrons **3-10** GeV, protons **20-100** GeV, ions **12-40** GeV/u

Ion species

Polarized light ions: **p**, **d**, ³**He**, and possibly **Li** Un-polarized light to heavy ions up to A above 200 (Au, Pb)

Space for at least 2 detectors

<u>Full acceptance is critical for the primary detector</u> High luminosity for the second detector

Luminosity

10³³ to 10³⁴cm⁻²s⁻¹ per IP in a broad CM energy range

Polarization

Jefferson Lab

At IP: longitudinal for both beams, transverse for ions only **All polarizations >70%**

Upgrade to higher energies and luminosity possible

20 GeV electron, 250 GeV proton, and 100 GeV/u ion

Design goals consistent with the White Paper requirements

7

JLEIC Current design

Jefferson Lab

JLEIC Current design

12th of November 2015, Greg Kalicy

JLEIC Current design

Jefferson Lab

PID Semi-Inclusive DIS (SIDIS)

- Highly polarized electron collide with highly polarized nuclei (proton, deuteron, 3He ,etc)
- Detect scattered electron and pion at full angle and full momentum range

PID 3D structure of the proton

DIRC@EIC Performance goal

Contributions to performance:

- Correlated term
- Photon Yield

Jefferson Lab

Single photon Cherenkov angle resolution

π/K identification as a function of the θ_c resolution

DIRC@EIC Prototype 3-component lens

Limitations of standard focusing lenses:

- Significant photon yield loss around 90° particle track
- Aberration for photons with steeper angles

DIRC@EIC Prototype 3-component lens

Limitations of standard focusing lenses:

- Significant photon yield loss around 90° particle track
- Aberration for photons with steeper angles

High-performance DIRC Baseline design

- Radiator bars
 - 17 x 35 x 4200 mm
 - 11 bars per box
 - 16 bar boxes, 1m from IP
- 3 component lens
 - 14 x 35 x 50 mm
 - radiuses: 47 mm, 29 mm
- Expansion volume
 - Prism with 38° opening angle
 - 285 x 390 x 300 mm
- Sensors
 - 208k pixels, each 3 mm²

High-performance DIRC Hit Patterns

High-performance DIRC Hit Patterns

High-performance DIRC Single Photon Resolution (SPR)

High-performance DIRC Single Photon Resolution (SPR)

High-performance DIRC Track Resolution

Simulated data

3-Component Lens Performance verification

Measurements on test benches

- Shape of focal plane measurement at ODU
- Radiation hardness test at Jlab

3-Component Lens Performance verification

Full system PANDA barrel DIRC prototype

- 6 weeks of measurements performed in CERN
- Several different focusing lenses were tested

See talk by L. Allison

23

3-component Lens Performance verification

12th of November 2015, Greg Kalicy

High B field test facility Measurements of photosensors

Measurements in 2014 and 2015 with several sensors at multiple positions in B field up to 5T

- Smaller Pore size better performance
- Above 0.5 T the signal amplitude continuously decreases
- Very strong correlation between sensor orientation (both θ and φ) and averaged charge collected on anode
- Change of the voltages across allows to recover part of the signal

See talk by Y. Ilieva

25

High-performance DIRC Tilted detector plane

Modification of 3-component lens

Geant4 simulation of 3-component lens

High-performance DIRC Tilted detector plane

Modification of 3-component lens

- Selecting different (larger) radiuses of lens layers allows to tilt the focal plane
- Tilted detector plane allows to locate sensors perpendicular to the B field lines
- Larger radiuses means smaller curvatures and allows to produce thinner lens what will improve photon yield.

Summary

Fundamental milestone achieved: Simulation shows that 1 mrad Cherenkov angular resolution is reachable.

High Performance DIRC

- 3-component lens mitigates two crucial issues: photon yield loss and aberration
- Properties of 3-component lens evaluated in simulation
- Experimental tests of 3-component lens in beam and on test benches (ongoing)

High B test facility

- Tested several sensors from different vendors
- Observed strong dependence on sensor orientation in the field and pore size

Tilted Detector Plane

Jefferson Lab

 Optimized lens design allows to tilt the focal plane and place sensors perpendicular to the B field

MEIC IP1 Central Detector

Tracking (Gas Electron Multiplier)

Tracking (Gas Electron Multiplier)

- Find particle tracks and measure momentum
- Work in high rate environment

GEM foil: 50 µm Kapton + few µm copper on both sides with 70 μ m holes, 140 μ m pitch

Particle Identification Detector (Hadron Blind Detector)

Particle Identification Detector (Hadron Blind Detector)

Compact e/π PID detector

Blind to hadron < 4GeV with CF₄ gas at PHENIX

Tom Hemmick @ StonyBrook

Particle Identification Detector (Modular RICH)

Particle Identification Detector (Dual Radiator RICH)

- π/K PID detector at ion endcap
- Aerogel with Fresnel lens ~75 cm focal length: image at focal point of mirror (also filter UV)
- CF₄ gas (visible + UV)
- 2nd mirror to place photo sensors in weaker field?

Ion-Side RICH Detector

EIC R&D PID (RICH)

Particle Identification Detector (Time of Flight)

Particle Identification Detector (Time of Flight)

Particle Identification Detector (EMCal)

Particle Identification Detector (EMCal)

Test beam campaigns Readout section Optics section • 2014 campaign in GSI: First experience with 3-component lens • 2015 campaign in CERN: Around 6 weeks of beam Readout Participation of Postdoc and Supporting electronics PhD student from ODU structure TOF2 **Barrel DIRC** TOF1 (20m upstream) FLASH Trigger2/Veto2 Fiber DISC Trigger1/Veto1 hodoscope DIRC 41

High-performance DIRC Prototype 3-component lens

• Polar angle of beam to bar:

- ➤ 20°-160° range with 5° step
- Several fine scans for better resolution evaluation

Different focusing lenses:

- > Air gap spherical and cylindrical lens
- Spherical and cylindrical 2-component lens
- Spherical 3-component lens

• Different radiator:

- Narrow bar
- Wide plate
- Momentum scans
 - > 2-10 GeV/c scans.

2015 Campaign: Beam polar angle: 90°

2015 Campaign: Beam polar angle: 125°

High B field test facility Measurements of photosensors

Magnet:

- superconducting solenoid
- max. field: 5.1 T at 82.8 A
- 12.7cm (5inch) diameter
 76.2cm (30inch) length bore:

Test Box:

- non-magnetic, light-tight
- allows for rotation of sensors
- LED light source

High B field tests Gain measurements of photosensors

Measurement in 2015 of Photek sensor with special voltage divider:

- Independently change the voltages cathode-MCP, across MCPs, and MCP-anode and study gain dependence
- Confirmed that voltage across the MCPs affects the gain the most
- Data at other angles are under analysis

2014 Campaign: Beam polar angle: 124°

