The TOP Project at Belle II Toru lijima Kobayashi-Maskawa Institute Nagoya University for Belle II B-RID group 2015.11.12

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Talk Outline

- Status of Belle II
- Overview of the Belle II TOP Counter
- Status of detector construction
 - Module production
 - Quartz optics
 - Mechanics
 - MCP-PMT
 - Readout electronics
 - Calibration system
- Summary

Detailed information available via webpages of "BPAC review" meetings.

 \rightarrow belle2.kek.jp

SuperKEKB/Belle II

- New intensity frontier facility
- Target luminosity ;
 - $L_{peak} = 8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

"Nano-beam" scheme

- $L_{int} > 50 \text{ ab}^{-1}$ by early 2020's.
- \Rightarrow ~10¹⁰ BB, τ + τ and charms per year !

	SuperKEKB LER/HER	KEKB LER/HER
E(GeV)	4.0/7.0	3.5/8.0
ε _x (nm)	3.2/4.6	18/24
βy at IP(mm)	0.27/0.30	5.9/5.9
βx at IP(mm)	32/25	120/120
Half crossing angle(mrad)	41.5	11
I(A)	3.6/2.6	1.6/1.2
Lifetime	~10min	130min/ 200min
L(cm ⁻² s ⁻¹)	80×10 ³⁴	2.1×10 ³⁴

Belle II collaboration (>600 from 99 institutes)

Getting Ready for Phase 1

Schedule

- 2016.1: start beam commissioning
- 2017: data taking without vertex detector
- 2018: data taking with full detector

BEAST phase 1	2016	BEAST/SuperKEKB & cosmics
BEAST phase 2	Mid 2017- Early 2018	BEAST with Partial Belle II
Full physics	Oct 2018-	Full detector

Belle II TOP counter

- Cherenkov ring imaging using precision timing (σ_{TTS} < 50ps/photon).
- Very compact, suitable for collider geometry.
- Focusing mirror for correcting chromatic dispersion effect.

Collaboration of Japan + US + Slovenia + Italy

Group leader : Jim Fast (PNNL), sub-leader: T.I.

Beam Test @ Spring-8/LEPS (June 2013)

More results (also with conventional CFD readout) → talks by K. Inami @ RICH2013, K. Matsuoka @ TIPP2014

Belle II TOP Quartz Bar Box (QBB)

Belle II TOP Quartz Optics

Bar (photon propagation)

- L=1250 ± 0.5mm
- W = 450 ± 0.15mm
- H = 20 ± 0.1mm
- Flatness (S1,S2) $\leq 6.3 \mu m$
- Local flatness (S1, S2) \leq 1.8µm (200mm area)
- Surface roughness ≤ 5 Å rms (S1-S4)
- S1 \perp S3,4 \leq 20 arcsec, S1 // S2 \leq 4 arcsec

Mirror (image focusing)

- L = 100 ± 0.15 mm
- R = 6500 ± 100 mm

Prism (image expansion)

- L = 100 +0.1/ -0.25 mm
- W = 456 ± 0.15 mm
- H = 51 ± 0.1 mm (PMT side)
- Angle (S1-S2) = 18.07 ± 0.04 deg.

4 bars produced by Okamoto Optics Works 29 of 34 bars are at hand (completed by Feb. 2016)

Delivery completed

Delivery completed

Construction flow overview

TOP Assembly Facility @ Fuji B4

Optics QA : Bars

- QA measurements are made in the clean room #2 at KEK.
- Inspect bulk transmission, reflectivity and chips.

Assembling steps

Optics: alignment, gluing, curing and aging (~2 weeks).

Enclosure: gluing CCDs and LEDs, integrating fiber mounts.

QBB: strong back flattening, button & enclosure gluing.

Put on a cart. PMT and frontend integration, performance check. QBB assembly and gas sealing.

Move optics to QBB using the "lifting jig".

Quartz Gluing

- We use EPOTEK-301 for all joints.
- Gluing procedure is based on dry runs + some R&D for details
 - Taping (+ curtain for prism-bar joint)
 - Centrifuge for eliminating bubbles
 - Glue injection with a trolley
 - Cleaning, curing, ...

Remove extra glue after ~6hrs Remove tape and clean optics after ~27hrs

Gluing for module 01

We use Teflon tapes for later modules

- Small delamination observed in prism-bar joint for the module01.
- Gluing procedures were revisited, and many studies were made.
- We haven't seen similar phenomena for later modules.

Glued Optics (Module 01)

QBB preparation

- Measure flatness of the honeycomb panels.
- Attach strong-back, tune and test stability.
- Assemble enclosure
 - Align inner-panel and enclosure < 0.06mm.
- Install LEDs, cameras, spring holders, fiber holders

QBB Preparation (PEEK button)

- Quartz are supported by PEEK buttons.
- Height of the PEEK buttons need be adjusted very carefully.

More Pictures from QBB Preparation

Installation of Optics to QBB

Completion of Optics + QBB (Nov.10)

PMT Module Assembly

- PMT modules are assembled in the Fuji FI clean booth.
- The assembly procedure has been fixed.
- Every module is tested for HV after assembly.

Vacuum chuck to align the PMT faces 2 RTV silicon rubber to hold the PMTs

Silicon rubber TSE3032 (before curing) to be filled between the PMTs and the wavelength cut filter

PMT module completed

HV test in a dark box

MCP-PMT Mounting

- Designed so that PMT+ readout modules can be replaced from the access hatch.
- Mounting method has been established with the prototype.
 - Optical cookies for WL-filter–Prism interface
 - Pogo pins for PMT Readout interface

Installation for module 01

Production schedule

Year/Month	2	015	/03		20	15/	04		20	15/	/05	j	201	5/()6		20	15/	07		20	15	/08	}	2	201	5/0	9		201	15/	10	2	201	5/1	1		20	15/	12		201	6/0	01	2	201	6/0)2		201	6/	03		20	16/	/04
Week	1	2	3 4	1	2	3	4	5	1	2	3	4 1	2	3	4	1	2	3	4	5	1	2	3	4	1	2	3 4	1 5	5 1	2	3	4	1	2	3	4	1	2	3	4 {	5 1	2	3	4	1	2	3	4	1	2	3	4	5	1 [2 3	3 4
Module02																				Ι				Ι																	Ι												Ι	Ι		
Module03																																																								
Module04																																																								
Module05				L																													L																							
Module06																																																								
Module07																																																								
Module08																																																								
Module09																																																								
Module10																																																								
Module11																																																								
Module12																																																								
Module13																																																								
Module14																																																								
Module15																																																						Τ		
Module16																								Ι					Τ																								Τ	Τ		
Module17																													Ι																									T		
Week	1	2	3 4	1	2	3	4	5	1	2	3	4 1	2	3	4	1	2	3	4	5	1	2	3	4	1	2 3	3 4	1 5	5 1	2	2 3	4	1	2	3	4	1	2	3	4 3	5 1	2	3	4	1	2	3	4	1	2	3	4	5	1 (2 3	3 4
Year/Month	2	015	/03		20	15/	04		20	15/	/05	j	201	5/0)6		20	15/	07		20	15	/08	3	2	201	5/0	9	Ι	201	15/	10	2	201	5/1	1		20	15/	12		201	6/0	01	2	201	6/0)2		201	6/	03	Τ	20	16/	/04

Module assembly period Module assembly done Long national holidays/vacations (no work) Collaboration meetings, reviews or workshops

- Module production moves smoothly now. ~3 weeks per module
- Finished Module10 assembly as scheduled

Current status

Module01 at Fuji F1

Module02, 05-07 at Fuji B4 tent

Module03,04 at Fuji B4 tent in testing for installation

Module08,09 at Buffer2

In clean room, Module10 gas sealed Module11 optics glued.

Readout Electronics + HV

- MCP-PMT signal is readout by newly developed "IRS" ASICs.
 - Waveform sampling
 - High density, multi-hit buffering
 - 512ch/module, 30kHz trigger rate
 - Clock jitter measured with test pulse is 20ps.

26

Production Workflow

All circuit boards fabricated, assembled

Cable harnesses in fabrication, HV board PoGO pins & potting

Production Laser Testing (at UH)

Readout meets experiment needs

Production status

- Testing is going well.
- More manpower for HVB going to IU in November.
- Rework is needed to get sufficient number of SCROD.

Test bench at U. South Carolina

Board	# Required	# Fabbed	# Grade A*	# Grade B**	# Grade F***	Untested
Front	136	164	125	15	13	11
High Voltage	68	90	17 <mark>28</mark>	0 1	0	73 <mark>61</mark>
SCROD	68	77	63	0	14	0
Carrier	272	332	213 <mark>2</mark> 4	47 41 74	18 <mark>9</mark>	63 <mark>2</mark>

* Grade A = perfect

** Possibly usable

*** Requires rework prior to using

Update (G. Varner)

MCP-PMT Production

- Total of 611 MCP-PMTs have been ordered
 - Phase1 production completed: 515 total (285 conventional, 230 ALD)
 - Lifetime extension R&D is using 42 (will not be used in Belle II)
 - Phase 2 production of extended lifetime tubes will produce final 54
 - Belle II will have a total of 569 tubes (512 + 57 spares).

Hamamatsu 1"

Measured QE

Photoelectron flux, accumulated charge

1 MHz/PMT at 5 10⁵ gain at design luminosity

 \rightarrow about 1 C/cm²/50ab⁻¹ normal type MCP PMTs

Rate plot can be turned into an accumulated charge (C/cm²) plot

Plot the accumulated charge for expected summer shutdown luminosities

Conventional MCP-PMTs have to be replaced at some point.

Recent Lifetime R&D

- Test 6 methods of processing to improve the lifetime.
- Produce 6 samples of each method for life test.
 - Test 4 samples at Nagoya and 1 at HPK.
- Produce 8 samples with the good methods combined, and measure their lifetime for confirmation.

Plan for MCP-PMT Installation

- We have three types of MCP-PMTs:
 - 283 conventional MCP-PMTs (lifetime: 0.3-1.8 C/cm², average 1.1 C/cm²)
 - 231 normal ALD MCP-PMTs (>3 C/cm², average 8.6 C/cm²)
 - 65 life-extended ALD MCP-PMTs under production (at least 15 C/cm²) (cf. Predicted output charge: $1.5-3.1 \text{ C/cm}^2/50 \text{ ab}^{-1}$ at 5 x 10^5 gain)
- Conventional ones have to be replaced in 2020 or 2021 summer.
- Average QE of each module is almost the same.

Laser Calibration System

- Developed by Italian group (Padova/Torino)
- w/ PiLas laser, PLC splitter, SM fiber, MM fiber, GRIN lens.

TOP light distribution system

Module Installation

Module installation practice went extremely well.

Module Testing Plan

- Primary test for every module
 - Electronic charge injection
 - Laser test in modules
 - Cosmic test without tracking
- Cosmic test with precision tracking for subset of modules (one or two)
 - Use CDC for precision tracking
 - Also as an integration test of Belle II DAQ
- Global cosmic ray test after installation
- A beam test could occur after installation
 - If a compelling reason emerges (e.g. calibration of p.d.f.)

37

CDC at Tsukuba exp. hall

Summary

- Belle II TOP is the first realization of a detector using internally reflected Cherenkov lights with precise Time-Of-Propagation measurement.
 - After >15 years of R&D + very large efforts.
- Construction is progressing very well, after solving many many problems.
- Many many experiences (quartz optics, MCP-PMT, mechanics) have been accumulated.
 - We are happy to share knowledge, know-hows, ...
- Many more to learn (probably) for stable operation, analysis, etc.

Stay tuned ! & Let's keep in touch !

Danke schön !

Backup

Quartz Alignment

• Quartz alignment is done with a gluing stage, autocollimator, and laser sensors.

Optics QA : Mirror (SN002)

• Measured at Cincinnati (M. Belhorn, B. Pal, A. Schwarz)

ements	Cincinnati Measur		Vendor	Test
Measurement	Location	Date	Measurement	(Specification)
0 additional		03/15/2014	16 ("Chippy")	Edge Chips (< 20 /m)
$88.29 \pm 0.03 \%$ $88.09 \pm 0.02 \%$ $87.81 \pm 0.03 \%$	y = 8.8 mm y = 10.0 mm y = 12.5 mm	06/10/2014 06/10/2014 06/13/2014	87.26 %	Reflectivity $(> 85~\%~{ m for}~300-600~{ m nm}\lambda)$
99.921 ± 0.052 %/m		07/21/2014		Transmittance
6501.38 ± 0.15 mm 6500.15 ± 0.15 mm 6499.04 ± 0.14 mm 6500.15 ± 0.07 mm	y = 8.8 mm y = 10.0 mm y = 12.5 mm Overall Fit*:	06/10/2014 06/10/2014 06/13/2014	"Approx. 6497 mm"	Radius (6500 \pm 100 mm)

* Statistical error only, applies to following tables.

Optics QA: Prism

• Inspected for chips, angle and transmittance at Cincinnati (M. Belhorn, B. Pal, A. Schwarz)

Chips	Transmittance	Angle	
0	99.934 \pm 0.044 %/m	$18.089^{\circ} \pm 0.007^{\circ}$	
0	$99.774 \pm 0.043 \ \%/m$	$18.091^\circ\pm0.007^\circ$	
0	$99.935 \pm 0.044 ~\%/m$	$18.073^\circ\pm0.007^\circ$	
0	$99.703 \pm 0.043 \; \%/m$	$18.086^\circ\pm0.005^\circ$	
	Chips 0 0 0 0 0 0	ChipsTransmittance0 $99.934 \pm 0.044 \%/m$ 0 $99.774 \pm 0.043 \%/m$ 0 $99.935 \pm 0.044 \%/m$ 0 $99.703 \pm 0.043 \%/m$	ChipsTransmittanceAngle0 $99.934 \pm 0.044 \%/m$ $18.089^{\circ} \pm 0.007^{\circ}$ 0 $99.774 \pm 0.043 \%/m$ $18.091^{\circ} \pm 0.007^{\circ}$ 0 $99.935 \pm 0.044 \%/m$ $18.073^{\circ} \pm 0.007^{\circ}$ 0 $99.703 \pm 0.043 \%/m$ $18.086^{\circ} \pm 0.005^{\circ}$

High Purity N2 System

- We will seal QBB and test leak.
- High purity N2 system is ready in Fuji hall

Lucien Cremaldi (Mississippi)

Gas sealing

- QBB panels, side Rails, FWD endplate, prism enclosure were sealed with Si glue.
- Tested with Restek Electronic Leak
 Detector + Pure N2 (& G1 Ar)
 - Significant leaks were found in the prism enclosure through the mounts for CCD cameras, LED, fibers and others (fixed now).
- Started to flow pure N2, and measure dew point.
 - < -51 degC. (34.31ppm) achieved</p>
 - Target is 60 deg (11 vol.ppm) with the inlet flow rate of 0.5L/min. and pressure < 1kPa.

