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PANDA @ FAIR

• Large Upgrade of the existing GSI 

• Versatile facility for different scientific topics

• PANDA is the only experiment dedicated to 
hadron physics and strong interaction
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PANDA @ FAIR

Detector:

• fixed p-target

• p @ 1.5 - 15 GeV/c

• momentum resolution 

• maximum luminosity  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PANDA @ FAIR

Detector:

• fixed p-target

• p @ 1.5 - 15 GeV/c

• momentum resolution 

• maximum luminosity  
 

Physics:

• hadron spectroscopy

• nucleon structure

• hadrons in matter

• hypernuclei 
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Disc DIRC requirements

• 4σ π/K separation up to 4.5 GeV/c

• continuous beam with interaction rates 

up to 20 MHz

• strong magnetic field

• high radiation level and photon dose

• high-precision and large-area optics

• high time resolution, data rate and 

channel density

• very limited space

Disc DIRC
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DIRC principle

RICH DIRC
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Focussing Disc DIRC

4 independent quadrants made of 
fused silica and equipped with a total of 
108 read-out modules (ROMs)
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Focussing Disc DIRC

focusing 
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bar
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(position + time)

cherenkov
cone

particle

trapped by total
internal reflection

lost by refraction

optical bandpass filter
(control of photon rate
& dispersion mitigation)

4 independent quadrants made of 
fused silica and equipped with a total of 
108 read-out modules (ROMs)
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Simulation
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Simulation

O. Merle (RICH 13)
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Simulation

O. Merle (PhD-Thesis, 2015)
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8.2. Performance studies 215
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Figure 8.15.: Misidentification obtained by reconstructing 103 probe-tracks per
colormap-bin in presence of DPM-background at the nominal interaction rate of
20 MHz. Track angles at the interaction point are given by the bin coordinates µp ,¡p .
Probe-tracks are scanned over one SDM. In the presented color-maps, bins with a
track reconstruction efficiency below 90 % have been omitted. Hence, the acceptance
of the SDM is clearly visible in the plots. The hole for the beam pipe is visible as
empty bins in the lower left corner. Tracks at 22± pass through the GEM electronics.
At 4 GeV/c, the misidentification for these tracks exceeds 10 %. The colormap has
been restricted to 10 % to allow a comparison of the results for µp < 22±.

216 8. An MCP-PMT optimized design option
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Figure 8.16.: Track reconstruction efficiency for the results shown in Fig. 8.15. This
value is defined as the percentage of reconstructed probe-tracks from all probe-tracks
which reach the radiator. Note that the decay of probe tracks has been suppressed
during simulation. Tracks can be lost due to inelastic collisions or simply because the
reconstruction algorithm rejects all hits. However, the average track reconstruction
efficiency is ª 99 % for all momenta. This value is considered to be sufficient.

K misidentification @ 4 GeV/c

K reconstruction eff. @ 4 GeV/c
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Optics and Readout

focusing 
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ba
r

PMT
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nk

segmented
PMT anode
(e.g. 3x100)

Filter

ASIC readout
e.g. TOF-PET

2'' MCP-PMT

the envisaged ROM
• realization of the optomechanical system and the 

readout is ongoing

• different test setups for QA of sensors and 

optical components are available
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Optical system

old dSiPM 
design

light-guides are to scale

K. Föhl (VIC 12)

• spot width for focussing matches with 

the step size of the MCP-PMT anode

new MCP-PMT 
design

O. Merle (RICH 13)
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Optical system

old dSiPM 
design

• spot width for focussing matches with 

the step size of the MCP-PMT anode

• non-adhesive bonding of prism and FLG 

prevents from losses or defocussing of 

trespassing photons

light-guides are to scale

K. Föhl (VIC 12)
new MCP-PMT 

design

O. Merle (RICH 13)



E. Etzelmüller, The PANDA Disc DIRC project at FAIR 18

Optical system
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Optical system
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sensors and readout

Reminder 

04.11.2015 PID Meeting 2015 3 

Measurements without magnetic 
field can be taken with our fully 

automated setup 

• Charge spectra  
• position resolution 

 
• Old measurements 

show PHOTONIS device 
with prox. focus 

(𝜎 = 183 𝜇𝑚) 

Reminder 
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Measurements without magnetic 
field can be taken with our fully 

automated setup 

• Charge spectra  
• position resolution 

 
• Old measurements 

show PHOTONIS device 
with prox. focus 

(𝜎 = 183 𝜇𝑚) 

Photonis
Hamamatsu

Hamamatsu 

04.11.2015 PID Meeting 2015 12 

• Position resolution without magnetic field 
• Anode pitch only 0.3 mm 

• Next step: apply magnetic field 

3600 V 3400 V 𝜎 = 120 𝜇𝑚 𝜎 = 190 𝜇𝑚 

Magnet box measurements 
are one the way! 

prox. focus

190 um

• automated setup for precise MCP-PMT QA 
measurements and setup with permanent 
magnets available

• Photonis MCP-PMT without proximity 
focussing works well in a magnetic field

• Hamamatsu measurements are on the way
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sensors and readout
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field can be taken with our fully 

automated setup 

• Charge spectra  
• position resolution 

 
• Old measurements 

show PHOTONIS device 
with prox. focus 

(𝜎 = 183 𝜇𝑚) 

Photonis
Hamamatsu

PHOTONIS overview 

04.11.2015 PID Meeting 2015 10 

Hamamatsu 

04.11.2015 PID Meeting 2015 12 

• Position resolution without magnetic field 
• Anode pitch only 0.3 mm 

• Next step: apply magnetic field 

3600 V 3400 V 𝜎 = 120 𝜇𝑚 𝜎 = 190 𝜇𝑚 

Magnet box measurements 
are one the way! 

prox. focus no prox. focus

190 um

• automated setup for precise MCP-PMT QA 
measurements and setup with permanent 
magnets available

• Photonis MCP-PMT without proximity 
focussing works well in a magnetic field

• Hamamatsu measurements are on the way

PHOTONIS in the magnet box 

04.11.2015 PID Meeting 2015 8 

• The magnetic field is quite homogenous 
in the middle of the to magnet walls 

• Field is measured in the absence of the 
sensor 

see talk by J.Rieke
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sensors and readoutNew Prototype Hardware 

04.11.2015 PID Meeting 2015 13 

• CERN testbeam was very successful with old hardware 
• However, the TOFPET ASIC seems to be very sensitive  

when using the unshielded flex cables 
• Flex cables pick up noise in the magnet box 
• Mechanical stability of connections can be improved 
• Impedance control of flex prints is inacurate 

Also used by Erlangen! 
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New Prototype Hardware 

04.11.2015 PID Meeting 2015 13 

• CERN testbeam was very successful with old hardware 
• However, the TOFPET ASIC seems to be very sensitive  

when using the unshielded flex cables 
• Flex cables pick up noise in the magnet box 
• Mechanical stability of connections can be improved 
• Impedance control of flex prints is inacurate 

Also used by Erlangen! 

• pointed angle between prism and FLG 

requires a compact solution

• second iteration of PCBs is being 

produced in preparation for a TOFPET 

readout
see talk by L. Ferramacho
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Testbeam at CERN 2015

• joint testbeam of the Barrel and Disc DIRC 
prototypes

• mixed hadron beam up to 10 GeV/c

• common system for data taking (TRBv3)

see talk by M.Traxler

Barrel DIRC

Disc DIRC

Beamline

TRBv3 Tower

LV Supply
PaDiWa Boards
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Testbeam at CERN 2015
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Testbeam at CERN 2015

Laser
ROMs

• Minimal setup with laser calibration

• Nevertheless over 300 readout channels

• Fused silica optics 

Laser Calibration

Read Out Modules (ROMs)
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Testbeam at CERN 2015

Laser
ROMsRead Out Modules (ROMs)
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Testbeam at CERN 2015
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Testbeam at CERN 2015

Grounding

Flex Cables

ROM Case

Voltage Divider

HV Cables

Gel Coupling
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Testbeam at CERN 2015

preliminary preliminary

• 10 GeV/c mixed hadron beam

• angles of incidence are 6° (left) and 8° (right)

• Preliminary plots show a good agreement between MC and real data for number 
of hits vs. channel number

channel channel
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preliminary

Testbeam at CERN 2015
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preliminary

Testbeam at CERN 2015
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Summary and outlook

• final design found, realization is ongoing

• first prototype with final components has been tested 
(analysis is ongoing)

• a larger prototype (with more ROMs) is currently being designed

• readout is being minimized and ASICs are being tested

• mechanical design and assembly has to be determined
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Summary and outlook

Thank you for your attention

with supportfrom BINP
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Backup

Backup
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Assembly

assembly of DIRC quadrants with 
stabilizing cross and mounting 
frame in horizontal position  

 
bring fully assembled DIRC to a 
vertical position using a custom-built 
mounting device

slowly move DIRC up to the endcap 
holding structure

mounting frame

stabilizing cross

endcap holding structure 
with calorimeter

DIRC quadrant
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Separation Power and Pixel Size
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Number of FLGs per ROM
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Misidentification
8.2. Performance studies 215
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(d) K at 3 GeV/c
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(e) º at 4 GeV/c
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(f) K at 4 GeV/c

Figure 8.15.: Misidentification obtained by reconstructing 103 probe-tracks per
colormap-bin in presence of DPM-background at the nominal interaction rate of
20 MHz. Track angles at the interaction point are given by the bin coordinates µp ,¡p .
Probe-tracks are scanned over one SDM. In the presented color-maps, bins with a
track reconstruction efficiency below 90 % have been omitted. Hence, the acceptance
of the SDM is clearly visible in the plots. The hole for the beam pipe is visible as
empty bins in the lower left corner. Tracks at 22± pass through the GEM electronics.
At 4 GeV/c, the misidentification for these tracks exceeds 10 %. The colormap has
been restricted to 10 % to allow a comparison of the results for µp < 22±.

O. Merle (PhD-Thesis, 2015)
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Reconstruction Efficiency
216 8. An MCP-PMT optimized design option
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(f) K at 4 GeV/c

Figure 8.16.: Track reconstruction efficiency for the results shown in Fig. 8.15. This
value is defined as the percentage of reconstructed probe-tracks from all probe-tracks
which reach the radiator. Note that the decay of probe tracks has been suppressed
during simulation. Tracks can be lost due to inelastic collisions or simply because the
reconstruction algorithm rejects all hits. However, the average track reconstruction
efficiency is ª 99 % for all momenta. This value is considered to be sufficient.

O. Merle (PhD-Thesis, 2015)
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Figure 8.17.: Average number of detected hits per reconstruction frame with a
duration of 45 ns. The given values correspond to the results shown in Fig. 8.15. The
decreasing number of hits towards lower polar angles is a consequence of the limited
angular acceptance of the focusing elements and the higher number of reflections at
the radiator surface.
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Figure 8.18.: RMS of the single photon Cherenkov angle distributions corresponding
to the results shown in Fig. 8.15.
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